
Lecture 3

Instantons – imaginary time

A. Introduction

Last lecture we reviewed the standard WKB approach from your quantum me-

chanics class. The key to making the approximation work is that at fixed E,

and near some fixed x, the wavefunction locally must be of the form ψ ∼
Aeipx + Be−ipx, with p2/2m + V (x) = E. This works fine in 1D, but what

about 2D or 3D? Or what about the field theory version of things where you

might be working in ∞D. The generic approach that has developed to deal with

tunneling in these higher dimensions is instantons. In this chapter we will look

at things from a thermodynamic perspective. In a later chapter we will take a

dynamical view instead.

I’ll assume everyone has seen path integrals, and just skim the details. [They

are a standard part of the graduate quantum course, which is a prereq for this

module.] If they are new to you, don’t panic. As with most other mathematical

constructs, the hardest part is learning what the notation means, and not feeling

too uncomfortable when you realize that you do not actually know how to

evaluate the expressions.

B. The partition function

B.1. Definitions

For concreteness we will once again consider the double well potential V (x) =

V0x2(x2−a2). We want to know the splitting between the two nearly degenerate

ground states. The tact we will take here is thermodynamics. We will calculate

the partition function

Z = Tre−βH . (3.1)
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In the low temperature limit, Z is dominated by the two lowest energy states,

and

Z → e−βE�
(

1 + e−β∆
)

. (3.2)

If all we care about is ∆, we just need the ratio of the first and second terms:

hence one can often be pretty cavalier about multiplicative constants. I always

like to dot my I’s and cross my t’s, so I’ll try to be as careful as I can with them.

We will calculate the partition function through a path integral. This means

we split up the trace in Eq. (3.1) into a product of N terms:

Z = Tre−Hδτ/!e−Hδτ/! · · · e−Hδτ/! (3.3)

There are N factors of e−Hδτ/! and δτ = !β/N .

Many of you have seen this approach before, and may be a little complacent.

Here, where we are going to take the “semiclassical limit” ! → 0. If you are

smart, this whole setup should smell a little fishy. Aside from being dimensional,

! is a completely artificial parameter in this case. Why did we chose to put the

!’s where we did? If we were doing time dynamics the answer would be obvious:

! is the conversion factor between energy and frequency. If we want τ to be a

time, we need a !. Here the Trotter expansion is largely a mathematical trick,

and so far it is not obvious why we are doing this. As we continue on, follow

the !’s.

We now insert a resolution of the identity

1 =

∫

dx dp

2π!
|x〉〈x| |p〉〈p| (3.4)

between each term in Eq. (3.3). A typical term will be

〈x1|p1〉〈p1|e−Hδτ/!|x2〉 ≈ 〈x1|p1〉〈p1|1 − Hδτ/!|x2〉 (3.5)

= x〈x1|p1〉〈p1|x2〉
(

1 −
δτ

!

(

p2
1

2m
+ V (x2)

))

≈ exp

(

i

!
p1(x2 − x1) −

(

p2
1

2m
+ V (x2)

)

δτ

!

)

Both terms in the exponent carry a 1/!. This is our reason for our choice of τ

being a time variable. We want the same coefficient to be in front of each term.

Taking the product of all these terms we get

Z =

∫

dx1dp1

2π!
·
dxNdpN

2π!
e
− 


!

P

j δτ
h

−ipj
xj� 
−xj

δτ +(p�
j/2m+V (xj))

i

(3.6)

≡
∫

DxDp exp
−1

!

∫ !β

0
dτ [−ip∂τx + H ] , (3.7)
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which defines the symbol
∫

DxDp: the limit N → ∞ is implicit. [The expression

in the exponential is just the definition of the Riemann integral, so no new

notation is being introduced there.] Equation (3.7) is the ”imaginary time phase

space path integral” with H = p2/2m+V (r). It turns out that the phase space

path integral is poorly behaved, so almost everyone at this point integrates out

the p variables. This is actually straightforward, as p only appears quadratically.

Taking one time slice, and completing the square
∫

dp ei δτ
!

p∂τ x− δτ
!

p�
�m =

∫

dp e−
δτ

�m! (p−im∂τ x)�− m
�!

(∂τ x)�), (3.8)

=

√

2πm!

δτ
e−



!

m	∂τ x
�
�. (3.9)

one finds that

Z =

∫

dx1

λ
· · ·

dxN

λ
e
− 


!

P

j δτ

»

m	xj� 
−xj 
�

�δτ�+V (xj)

–

(3.10)

≡
∫

Dx e−SE/! (3.11)

where the Euclidian Action is

SE =

∫ β

0
dτ

[

1

2
mv2 + V (x)

]

. (3.12)

The lengthscale in Eq. (3.10) is proportional to the thermal wavelength,

λ2 =
2π!δτ

m
=

λ2
T

N
. (3.13)

We have absorbed this coefficient into the definition of the symbol
∫

Dx. Typi-

cally it is not important

There are good reasons for calling the SE in Eq. (3.11) an ”action”, but its

clearly better to think of it as βE, averaged over a trajectory. Recall that in

quantum mechanics you can make virtual transitions, ”violating energy conser-

vation”, as long as you do so for sufficiently short times.

B.2. Small Parameters

We want to consider the partition function defined by

Z =

∫

Dx exp−
1

!

∫ β!

0
dτ

[

1

2
mẋ2 + V0x

2(x2 − a2)

]

. (3.14)

As in the first lecture, we can rescale lengths and energies

x = ay

τ = (!/V0a
4)t
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to get

Z =

∫

Dy, exp−
∫ βV�a�

0
dτ

[

1

2

mV0a6

!2
ẏ2 + y2(y2 − 12)

]

. (3.15)

As before, the small semiclassical parameter is ε = !2/(2mV0a6). When ε is

small, it is expensive for paths to bend. There is of course a second parameter

βV0a4, which tells us how the temperature compares to the barrier height. For

our argument, we are in the low temperature limit. Thus we will always assume

that this thermal parameter is large, meaning that the barrier is large compared

to temperature.

To be honest it would drive me crazy to work in these rescaled units – so

typically won’t.

B.3. Numerical Approach

To continue in my honesty streak, I find most treatments of instantons quite

obtuse. The problem being that the imaginary time path integral is quite ab-

stract. The really clean way to think about them is to imagine doing a numer-

ical experiment. Imagine writing a computer program that generated positions

{x1, x2, · · ·xN}, such that the probability of any particular configuration is given

by

P ({x1, x2, · · ·xN})
dx1

λ
· · ·

dxn

λ
= e

− 

!

PN
j� 
δτ

»

m	xj� 
−xj 
�

�δτ +V (xj)

–

. (3.16)

I am not claiming it is trivial to write such a program, but it can be done:

this will be the content of Cyrus Umrigar’s module. On the other hand, once

you have this program, you can learn about the quantum system by looking at

the properties of this ensemble of configurations. For example, if you wanted

to produce the probability that the particle is at position x, one just makes a

histogram of the xj across all of the ensembles.

The way this is usually expressed is that the path integral maps quantum

thermodynamics onto the classical thermodynamics of a collection of masses

and springs. We know how to numerically sample the configurations of such

classical systems.

Group Activity: What is the most probable trajectory?

One reason I bring this numerical approach up is that this numerical pro-

cedure gives a nice visual picture of what is going on. Below is a sketch of a

typical trajectory that your black box spits out
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x

V

x

t

It stays near the energy minimum, undergoing some sort of random walk. An-

other, equally likely path is

x

V

x

t

The distance that the particle strays from the minimum (on average) is related

to the parameter βV0a4.

If we make ε larger, the ”correlation time” drops. The RMS displacement of

the path from the minimum is unchanged, but it moves around more rapidly:
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x

V

x

t

Thus the semiclassical limit ε → 0 is the limit in which the correlation time is

very long: ie. paths become smooth.

Another way to think about the correlation time is that there is a character-

istic frequency of small oscillations about each minimum, ω0. The correlation

time must be something like 1/!ω0.

From what we know about tunneling, we expect the splitting between the

two lowest energy states to have something to do with paths that visit both

minima. A typical one of these looks like

x

V

x

t

It features relatively sudden ”jumps” from one minimum to the other. These

are short because it costs a lot of weight to spend much time away from the

minimum. These jumps are known as instantons. As we will argue in the next

two section, we can relate the probability of an instanton to the level splitting

of the ground state.

Crudely speaking, there is a minimum action S0 associated with an instanton
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event. As we will show, this action is essentially S0 =
∫

dx
√

−mV (x), taken

on the contour from one well to the other. We will find that ∆ ∼ e−S�/!. In

higher dimensions, you just find the path which minimizes this action, and that

gives you the level splitting. The hard part is finding the coefficient of in front

of the exponential.

C. Calculating the path integral

Here I use an approach that is a variation on one I learned from John Shumway

at ASU [who uses path integrals in a professional context, as opposed to my

hobbyist approach]. It is similar to what Kleinert does in his book. The idea

is you break the partition function into two parts: Z = Zs + Za, where Zs

comes from all the symmetric states, and Za from all the antisymmetric states.

Explicitly,

Zs =
1

2

∫ ∞

0
dx (〈x| + 〈−x|)e−βH(|x〉 + | − x〉) = Z+ + Z− (3.17)

Za =
1

2

∫ ∞

0
dx (〈x| − 〈−x|)e−βH(|x〉 − | − x〉) = Z+ − Z− (3.18)

where we have introduced two more ”partition functions”

Z+ = Z =

∫

dx 〈x|e−βH |x〉 (3.19)

Z− =

∫

dx 〈x|e−βH | − x〉. (3.20)

At low temperatures, the partition functions Zs and Za are dominated by the

lowest energy symmetric and antisymmetric states. Let E2 be the energy of the

second excited state – assumed to be well separated from the ground and first

excited states. If βE2 ) 1

e−β∆ ≈
Za

Zs
=

1 − Z−/Z+

1 + Z−/Z+
. (3.21)

We can make further approximation if either β∆ ) 1 or β∆ * 1. We get

insight by thinking of each of these.

C.1. Case 1: β∆) 1

Conceptually cleanest is the very very very low temperature limit, where the

temperature is much smaller than the level spacing ∆. Then the left hand side

of Eq. (3.21) is very close to zero. That must mean that Z+ and Z− are very

close to eachother. How does this come about? It turns out that for every path

in Z− we can find a path in Z+ with the same energy. Here is an example:
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x

t

x

t

The path on the left is a contributor to Z−, while the path on the right is a

standard path which is periodic in imaginary time. Thus Z− can be interpreted

as the sum of all paths in Z which at some point hit the origin.

The difference (Z+ −Z−)/Z is then the probability that a given path in our

ensemble does not touch the origin.

Group Activity: Lets take some chunk of imaginary time

τ0 which is long compared to the ”correlation time”. Let

p0 be the probability that a path does not touch the origin

in time τ0. What is the probability that the path does not

touch the origin in time 2τ0?

Group Activity: Lets take some chunk of imaginary time

τ0 which is long compared to the ”correlation time”. Let p0

be the probability that a path does not touch the origin in

time τ0. Can one determine how many times a path should

touch the origin in time τ?

Let dp/dτ be the probability per unit time that a path touches the origin.

In other words

dp

dτ
=

〈number of times path crosses/touches the origin〉
β

(3.22)

Assuming β is large compared to the ”correlation time”, δτ , the probability of

having no touches in time β is then

pno =

(

1 −
dp

dτ
δτ

)!β/δτ

= e−!β dp
dτ . (3.23)

Comparing this to our previous expression, we see that for β∆) 1,

e−β∆ =
Z+ − Z−

Z+ + Z−
=

1

2
e−!β dp

dτ , (3.24)
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which to leading order in β gives ∆ = !dp/dτ . Or in words, ∆ is the proba-

bility per unit imaginary time that the path reaches the origin. In a

simulation one can calculate ∆ from Eq. (3.22).

Of course, we have cheated a little bit. For sufficiently large N , the zero

crossings presumably come in ”avalanches” like this:

x

t

That is the path actually crosses the origin many times in an instanton event.

If we count each ”avalanche” as a single crossing/touching, then in the limit

the events are sufficiently largely spaced our previous argument holds. The

semiclassical limit is exactly the one in which the instanton spacing becomes

large compared to its duration, making this approach sensibe.

The β ) 1 limit gives us a nice physical picture of ∆, and it gives us a pretty

good numerical approach to calculate it. For analytics, however, the opposite

limit β∆* 1 is better.

It is also worth noting that in this limit, where 1/β is the largest energy

scale in the problem, our algorithm is better formulated in terms of ”diffusion

Monte Carlo” instead of ”path integral Monte Carlo”. Essentially what we want

to do is generate a sequence x1, x2, · · · such that the probability distribution

P (xj) ∝ 〈x0|e−jHδτ/!|x0〉. We then look at instanton events in this sequence.

The average density of instanton events in imaginary time is exactly ∆. Again,

Cyrus Umrigar will explain in his module how to construct such a sequence.

After you have attended his module, I would encourage you to write a diffusion

Monte Carlo program to calculate the level splitting.

C.2. Case 2: β∆* 1

Lets now consider the limit β∆ * 1, for which a typical path contains no

instantons. In this case Z− * Z+, and we can expand Eq. (3.24) to find

∆ =
2

β

Z−

Z+
. (3.25)

This expression has a nice interpretation. In this limit, Z− is dominated by

the sum of all paths which cross the origin exactly once (ie. single instantons),

while Z+ is dominated by those that never cross.
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The single instanton events involve an avalanche which roughly takes a time

of 1/ω. Thus there are roughly βω independent times for the instanton to occur,

and we can write
Z−

∼
βωZ0 (3.26)

where Z0 involves the sum of all paths which have the instanton at time t = 0.

This can be caluclated by instead of using periodic boundary conditions in our

action using zero boundary conditions.

Hence

∆ ≈ β!ω
Zzero boundary

Zperiodic
. (3.27)

Our task is now to calculate this ratio. One could use Monte-Carlo to do it, but

we in the semiclassical limit we can analytically approximate the ratio. Getting

the prefactor right is a bit of a pain, and its probably best to leave that to

another day.

C.3. Saddle point approximation

We want to calculate

Z =

∫

Dx, e−


!

SE [x], (3.28)

where SE(x) =
∫ !β
0 [mẋ2/2 + V (x)]dτ with some set boundary condition: pe-

riodic x(0) = x(β) or vanishing x(0) = x(β) = 0. It should be clear that this

integral will be dominated by the paths which make SE stationary (and the

nearby) paths.

We are most familiar with such minimization problems in the context of

classical mechanics. Thus we often interpret SE as an action – even though

it is more like an energy. It is related to the ”physical action” by the fact

that the sign of the potential is reversed. Thus the paths which dominate the

thermodynamics are those corresponding to motion in the inverted potential.

This seems strange at first, but will be clear after an example.

Lets first do the crudest approximation

Z ≈ e−


!

SE [x∗], (3.29)

where x∗ is the path which minimizes SE . Equation (3.29) is pretty good, but

it misses a multiplicative constant. Regardless, lets start there.

First for periodic boundary conditions a constant x∗ is going to minimize

SE(x). In our case where V (x) = V0x2(x2 − a2), we can take

x∗
p = a/2. (3.30)
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One could just as well take x∗ = −a/2. Each path contributes the same. For

simplicity we will just do the x > 0 paths. The action for this constant path is

SE[x∗
p] = !βV (a/2) = !βVmin. (3.31)

In this approximation Z = 2e−βV� � �. This is not so bad. It just misses the

factor e−β!ω/2 corresponding to the zero point energy. [Recall β∆ * 1, so at

this level we can neglect the spacing between the two levels.] We will show how

to get this factor below.

For zero boundary conditions we need to do a bit more work. The constant

path x(τ) = 0 satisfies the boundary conditions, but has a high energy. The

dominant path is the instanton that rolls from x = 0 to x = a/2 in time τi,

stays there for a long time, then rolls back. Minimizing SE with respect to x

yields a differential equation:

m
∂2x

∂τ2
= V ′(x) = −2V0a

2x + 4V0x
3. (3.32)

This looks just like Newton’s laws, but with a minus sign wrong! It looks

like motion in the inverted potential. We want to calculate the ”action” for

the trajectory which starts in the ”well” at x = 0, with just enough initial

momentum to barely make it up the hill. It doesn’t quite have the energy to

reach the top, and just before τ = !β it rolls back down.

x

V

For this cubic potential one can analytically solve Eq. 3.59, but you don’t need

to. Instead we will use our tricks from classical mechanics, noting that we have

a conserved quantity, the “Euclidean Energy”,

E =
1

2
mẋ2 − V (x). (3.33)

This quantity should be independent of time – allowing us to write a closed

form expression for x, for any V .

The difference between the action for the path with zero boundaries, and

the action for the periodic path is

SI =

∫ β!

0
dτ

[

1

2
mẋ2 + V (x) − V (a/2)

]

(3.34)

=

∫ β!

0
dτ

[

E − V (a/2) + mẋ2
]

. (3.35)
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The energy of the path we are interested in is essentially E = V (a/2). We then

change variables to get

SI = 2

∫ a/2

0
dxmẋ = 2

∫ a/2

0
dx

√

2m(V (a/2) − V (x)). (3.36)

Putting this result together with Eq. (3.27), we have

∆ ≈ !ωe−
R a/�
−a/�

√
2m(V (a/2)−V (x))dx. (3.37)

It is clear that this argument generalizes nicely to higher dimensions, and

one just replaces in Eq. (3.37) the integral with a line integral through the higher

dimensional space, chosen to minimize the argument of the exponent.

Prefactor

Although it is largely irrelevant to us, it makes us feel smart if we can calculate

the prefactors and not just the exponent. The standard approach is to not just

include the saddle point path, but quadratic fluctuations about it. In fact any

time you do a saddle point approximation, you get the prefactor wrong if you

don’t include points away from the very top. A simple example is a Gaussian:

I =

∫

dx eA−B(x−x�)�
=

√

π

B
eA. (3.38)

The naive approximation we used was just I = eA.

As with the standard saddle point approximation, to get the prefactor we

just need to do a Gaussian integral. In practice it is a bit of a pain here since it

is a very high dimensional Gaussian integral. There are a number of very formal

approaches to calculating it. Here is a reasonably physical one. We start with

the most general path integral,

Z =

∫

dx1

λ
· · ·

dxN

λ
e
− δτ

!

»

PN−

j� 


m	xj� 
−xj 
�

�δτ�+
PN

j�
 V (xj)+αx�

−2βx
xN+γx�

N

–

.

(3.39)

For periodic boundary conditions α = β = γ = m/2δτ2, while for the zero

boundary conditions α = β = γ = 0. We expand about the saddle point

solution: xj = x∗
j + yj . Keeping terms only to second order in the y’s, we have

Z

Z0
=

∫

dy1

λ
· · ·

dyN

λ
(3.40)

×e
− δτ

!

»

PN−

j� �

m	yj� 
−yj 
�

�δτ�+
PN−


j��
mω�

j
�y�

j +( m
�δτ�)(A
y�


−2B
y
yN+C
y�
N)

–

,

=

∫

dy1√
π
· · ·

dyN√
π

e−[
PN−


j� 
(yj� 
−yj)
�+

PN−

j� �Ωjy�

j +(A
y�

−2B
y
yN+C
y�

N)],
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where Z0 = e−βS�is the partition function contribution just from the saddle

point path. This looks like the path integral for a particle in a ”time dependent”

harmonic oscillator potential, with mω2
j /2 = V ′′(x∗

j ). Of course ω2
j is negative

near the top of the barrier. For periodic boundary conditions, as δτ → 0 we

can approximate A1 = (2δτ2/m)α = 1, B1 = (2δτ2/m)β = 1, and C1 =

(2δτ2/m)γ = 1, and for zero boundary conditions these are all 0. In the second

line we have rescaled y and defined

Ωj = ω2
j δτ

2 * 1. (3.41)

We will now integrate out y1. After performing the Gaussian integral, the

expression should look like

Z

Z0
= Z2

∫

dy2√
π
· · ·

dyN√
π

e−[
PN−


j�� (yj�
 −yj)
�+

PN−

j�� Ωjy�

j +(A�y�
�−2B�y�yN+C�y�

N)].

Group Activity: What are the constants A2, B2, C2, and

Z2 in terms of A1, B1, C1?

You should find

Z2 = (1 + A1)
−1/2 (3.42)

A2 = Ω2 +
A1

1 + A1
(3.43)

B2 =
B1

1 + A1
(3.44)

C2 = C1 −
B2

1

1 + A1
. (3.45)

Repeating the procedure m times produces

Z

Z0
= Zm

∫

dy2√
π
· · ·

dyN√
π

e−[
PN−


j�m(yj� 
−yj)
�+

PN−

j�m� 
Ωjy�

j +(Amy�
m−2BmymyN+Cmy�

N)],(3.46)

with

Zm = Zm−1(1 + Am)−1/2 (3.47)

Am = Ωm +
Am−1

1 + Am−1
(3.48)

Bm =
Bm−1

1 + Am−1
(3.49)

Cm = Cm−1 −
B2

m−1

1 + Am−1
. (3.50)

If we can solve these recursion relations we can calculate Z.
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A good starting point is to consider the case of periodic boundary conditions,

where Ωm = (ωδτ)2 is a constant, independent of m. Under those circumstances,

one would expect that Am, Bm, and Cm will reach some sort of steady state.

The equation for the steady state A is

A = Ω+
A

1 + A
(3.51)

which is a quadratic equation. For Ω* 1, the solution is

A =
√
Ω* 1. (3.52)

Thus A drops from its initial value of 1 to
√
Ω. For large N the integral is going

to be dominated by the steady state contribution, rather than the boundaries,

and we can approximate

ZN ≈ (1 + A)−N/2 ≈ e−AN/2 = e−β!ω/2, (3.53)

which is the correct contribution of the zero point energy to the partition func-

tion.

The more general case needs more thought. One approach is to try to write

the recursion relationships as a differential equation. For example:

Am+1 − Am =
dA

dτ
δτ = Ω(τ) −

A2

1 + A
. (3.54)

In the context of our steady state result this makes sense. Initially A is large

(A ≈ 1), and you can neglect the first term. Then A rapidly drops until A ∼√
Ω ∼ δτ . The timescale for this drop is of order 1/ω. However, the timescale

for A to be small compared to 1 is of order δτ . Since the initial decay is so

fast, it is reasonable (at least at first) to throw away the A in the denominator,

writing

δτ∂τA = Ω(τ) − A2. (3.55)

We have seen this equation before: this is the eikonal equation from the WKB

approximation. In particular, if I define a new function X sattisfying

∂τX = A (3.56)

and introduce a function

ψ = eX/δτ (3.57)

then

∂2
τψ =

1

δτ

[

∂τA +
A2

δτ

]

ψ (3.58)

=
Ω

δτ2
ψ, (3.59)
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with boundary condition

ψ(0) = 1 (3.60)

ψ′(0) =
A(0)

δτ
. (3.61)

This is just the time independent Schrodinger equation. One can also identify

ZN =
√

1/ψ(Nδτ). [For those who are experts in path integrals, this is more-

or-less the Gelfund-Yaglom formula for the functional determinant.] One has

to be a bit cautious about what we mean by Eq. (3.61), as we don’t want A(0)

there, what we really want is A at some small time where we can neglect the

1 in Eq. (3.54). For the zero boundary conditions A(0) = 0, and things are

simple.

Once again we can reproduce the periodic boundary condition result. Clearly

for large τ we have ψ = e
√

Ωτ/δτ up to some multiplicative constant. Since

Ω = ω2δτ2 this reproduces our last result.

For the instanton solution, there are some neat tricks to solving Eq. (3.59).

What one does is find two linearly independent solutions, then take the appro-

priate combination to match the boundary condition. For example, one solution

is ψ(τ) = ∂τx, where x(τ) is the classical trajectory of the instanton. Another

solution can be written in closed form as an integral of this function.


