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Basic Idea



Interpreting Images

gas of density n

Light: intensity Light: intensity 
I0 If

If

I0
≡ e−O.D. Defines Optical Density

dI

dz
= −nσI O.D. = σ

∫
n(z)dz



Example
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O.D. = σ

∫
n(z)dz

Take Log



Questions

What can you learn from these images?

Simple answer: column density

Extract many things from this

Where did the light go?



Where did the light go?

A: Scattered

Standard formalism:
Classical EM field coupled to 2-level atom
(Assume you have all seen)

Here:
Imaginary part of photon self-energy



Photon-Atom 
interaction

H =
∑

q

λb†aαq + H.C.
a

b

b

a

Σ = Σ(q, q′;ω) =
λ2

ω − ω0

Neglect recoil

q q’

Is not diagonal

λ
dipole matrix element/Sqrt[V]



Photon Green Function
((ω − ck)δkq − Σkq) Gq = δkq
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Result
Gqq =

1
ω − cq − λ2

ω−ω0−iΓ

Γ = πλ2
∑

k

δ(ω − ck)

Get same result if you just couple to 2-level atom 
and let upper level have finite lifetime 

Gqq ≈
Z

ω − cq − λ2

cq−ω0−iΓ

+ incoherent

Photon decay rate:
λ2Γ

(cq − ω)2 + Γ2
≡ σc

V



Maximum cross-section
On resonance: 1

σ
∼ cΓ

λ2V
∼ k2

Optical 
Theorem: You can’t scatter more than comes in

eikz =
e−ikr

2ikr
+ · · ·

Total s-wave flux:

Φs =
c

V

4πr2

4k2r2
≥ cσ

V
σmax =

π

k2



Intermission



Interpreting column 
densities

Strategy 1:
Model trap and equation of state
- calculate column density
- compare with image

Strategy 2:
Model trap and extract EOS independent quantities
- virial theorem

Strategy 3:
Model trap and extract EOS
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Hydrostatics

z

Isothermal Assumption:

gives

Result: Thomas-Fermi

Punchline: 
local properties of inhomogeneous system given by homogeneous equation of state

Assume locally Homogeneous



How good is 
assumption?

Non-interacting fermions in 1D -- very small particle numbers
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Phase boundaries?
First order: good to thickness of domain wall

(also need to model surface tension)

Second order: Good to scale where:
1
ξ
∼ V

V ′

example: first order

4

All the four above-mentioned facts agree very well with
the theory for the normal phase exposed in the previous
section.

We proceed by comparing the theoretical density pro-
files with the available data[3, 4]. In Fig. (1) we compare
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FIG. 1: Column density profiles for the majority, the minority
component and for their difference: MIT data vs. our theory
(curves obtained by the method described in the text) for
P = 44%.

our theory with the experimental data for the column
density for P = 44% and in Fig. (2) we show the com-
parison with the double integrated density difference

nd(z) = 2π

∫ ∞

−∞

dρρ(n↑(z, ρ) − n↓(z, ρ)), (17)

for a range of polarisations both above and below Pc ∼
77%. As it can be observed, the matching is excellent in
all cases.

The agreement between theory and experiment is also
revealed in Fig. (3) where we analyse the reconstructed
three dimensional density: the jump in the n↓ density
is evident (see also [21]). We emphasize that, since the
data are normalized to the non-interacting gas, the only
input needed in Figs. (1) and (3) is the polarization P . In
the case of Fig. (2), where the experimental data are not
given in dimensionless units, we have used the measured
central (z = 0) density as a fitting parameter. Below the
critical polarization the doubly integrated density pro-
files exhibits a typical plateu whose existence is a direct
consequence of the LDA in the presence of an unpolarized
superfluid core [22].

We stress that the good agreement is ensured by the
proper inclusion of interactions in the normal state. This
is not just a quantitative question since assuming that
the normal state is noninteracting can lead to unphysi-
cally high values of polarisation for the Chandrasekhar-
Clogston limit. This is the case of the extensively em-
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FIG. 2: Doubly integrated density profile difference (nd), data
(black dots) and our theory (red lines) for different polarisa-
tions, above and below Pc, starting with the lowest curve and
moving up: P = 58%, 73%, 80%, 92%.
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FIG. 3: Density profiles for a polarization P = 44%. Theory:
solid black line (dashed red line) is the spin-↑ (spin-↓) density.
Experiment: the black (red) line is the spin-↑ (spin-↓) density
as reported in [4]. The density jump in the ↓ component is
clearly visible.

ployed Bogoliubov - de Gennes theory. Although the en-
ergy of the superfluid even at unitarity is quite close to
the Monte Carlo one, for the normal phase such a theory
includes the interactions only through the pairing terms
in the superfluid phase yielding a value close to 100% for
the critical polarization[7], a value definitely ruled out by
the MIT experiments.

IV. SPIN MODES

The excellent agreement with experiments discussed
in the previous section strongly supports the basic pic-
ture underlying this paper, i.e. the assumption that, at
unitarity, a phase separation takes place between a super-
fluid unpolarized core and an external polarized normal

black: up
red: down

1st order transition



Extracting density 
from column density

(not practical -- signal to noise)

Assume Harmonic trap

Integrate to get “Axial Density” Differentiate



Abel Transform
n(r⊥, z)

Assume cylindrical symmetry
Abel nc(x, z) =

∫
dy n(

√
x2 + y2, z)

Inverse Abel

= 2
∫ ∞

x

rdr√
r2 − x2

n(r, z)

n(r, z) = − 1
π

∫ ∞

r

dx√
x2 − r2

dnc(x, z)
dx

Problem: Adds noise



Generic Problem
Given: Data set is convolved

F (r) =
∫

dsK(r, s)f(s)

Measured Known Desired

Example 1: K is aperture function of optics
Example 2: K is projection from 3D to 2D

Given: Data is noisy
(And inverse transform increases noise)

How to extract f?



Idea: Model Noise
Model Space

(ex 3D)

{fi} K
Data Space

{Fν}
Data

{F d
ν }

Model 
noise

F d
ν = F̄ d

ν + σνξν

Ex: Independent Gaussian random 
variables with mean 0 and 

standard deviation 1

χ2 =
∑

ν

(Fν − F d
ν )2

σ2

Compare model and data

Want to choose f 
so that Fν = F̄ d

ν



Idea: Model Noise
Data

{F d
ν }

Model 
noise

F d
ν = F̄ d

ν + σνξν

Ex: Independent Gaussian random 
variables with mean 0 and 

standard deviation 1

χ2 =
∑

ν

(Fν − F d
ν )2

σ2

Fν = F̄ d
νIf

Most probable value of χ2

χ̄2 = N

= number of pixels

Consider space of all f’s 
which give this chi^2



Maximum Entropy
Bayesian Principle:

If you don’t know anything, assume
everything is equally likely

Choose the f’s which satisfy χ2 = N

and carry the least information

Maximize S = −
∑

i

fi log(fi/M) M =
∑

i

fi


