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FIG. 2: (Color online) Slice of the mean-field phase diagram
taken at t/εB = 0.08. The phases shown include the unpo-
larized superfluid (SF), partially-polarized normal (N), and
fully-polarized normal (NP). The FFLO phase is divided into
gapped ‘commensurate’ (C) and ungapped ‘incommensurate’
(IC) phases. The filled circle marks the tricritical point; near
it, but not visible here is a tiny region of SFM magnetized
superfluid phase, a remnant of the 3D BEC regime. The SF-
NP and SF-N transitions are first-order for µ/εB above the
tricritical point, along the solid heavy line. The SF-FFLO
transition (solid line) is estimated from the domain wall calcu-
lation. The transition from FFLO to normal (dotted-dashed
line) is assumed to be second-order. The large circle marks
the region of FFLO where ∆/εF is largest, so the phase is
likely to be most robust to T > 0 here. The dashed line near
the SF-FFLO transition shows where the wave vector of the
FFLO state is stationary as a function of µ: dq/dµ = 0 (this
is calculated using the FF approximation).

generally, ∆(z) is a real periodic function of z. When the
coherence length ξ is small compared to 1/q, this state
consists of well-separated domain walls between domains
where ∆ is alternately positive and negative. The polar-
ized cores of these domain walls result from occupying
the spin-up Andreev bound states on each wall [21].

We calculate the energy of a single domain wall by it-
erating to self-consistency Eq. (5) in a finite box with pe-
riodic boundary conditions, beginning with a trial ∆(z)
containing two domain walls whose separation is large
compared to the coherence length. If the domain walls
interact repulsively, the SF to FFLO transition is con-
tinuous and lies where this domain wall energy vanishes;
otherwise this condition marks the spinodal of a first-
order transition (likely to be near the true phase bound-
ary). Within mean field theory the transition is contin-
uous in 1D [22], and has been argued to be so in 3D
[21, 23, 24]: in weak coupling the critical fields are re-
spectively h = (2/π)∆0(= 0.64∆0), and 0.67∆0, where
∆0 is the gap in the SF phase. We are unaware of a
strong coupling 3D calculation of the sign of the domain
wall interaction.

Fig. 2 shows a representative slice of the mean-field
phase diagram at fixed t/εB = 0.08 (if one can neglect
the spatial variation of εB and t, this slice corresponds
to a fixed optical lattice intensity). Near the vacuum at
small filling (low µ) is the 3D BEC regime, including a
very small region of the SFM magnetized superfluid phase
where the excess fermions form a Fermi liquid within the
BEC. As µ and thus the filling is increased, the system
crosses over towards 1D. Here, the FFLO phase appears
and occupies a large portion of the phase diagram [25].
Both the SF and FFLO phases become re-entrant: in the
1D regime the FFLO phase is at a higher µ and thus a
higher density than SF, while in the 3D regime this den-
sity relation is reversed. Thus, we see that the “inverted”
phase separation in 1D trapped gases is connected to
the standard phase separation of 3D via an intermedi-
ate pattern of phases where SF forms a shell surrounded
by polarized phases. As t/εB is further reduced, the 3D
regime becomes smaller, with the re-entrance of the SF
phase moving to lower µ, while the FFLO phase grows
and the sliver of N phase between FFLO and NP is di-
minished. In the limit t = 0 this phase diagram matches
fairly well to that obtained from the exact solution in
1D (e.g., Fig. 1 of Ref. [11]). The main feature that the
mean-field approximation misses at t = 0 is the multi-
critical point where the four phases, SF, FFLO, NP and
vacuum, all meet at h = −µ = εB/2. In mean-field the-
ory, the FFLO phase never extends all the way down
to zero density; instead it is preempted by a first-order
SF-to-NP transition.

A new T = 0 phase transition occurs within the FFLO
phase as one moves from 3D to 1D by increasing the
intensity of the 2D optical lattice. In 3D the FFLO state
has a Fermi surface, and is therefore gapless. In 1D the
spectrum of BdG quasiparticles is fully gapped in the
FFLO state. The gapped, commensurate FFLO state
(FFLO-C) contains exactly one excess spin-up atom per
1D tube per domain wall. This commensurability means
that q = πb2(n↑ − n↓), while, by contrast, the number of
excess up spins in the ungapped, incommensurate FFLO
state (FFLO-IC) is not constrained.

The transition between FFLO-C and FFLO-IC can
be understood from the band structure of the Andreev
bound states on the domain walls. In FFLO-C the chem-
ical potential lies in a gap in the quasiparticle spectrum.
Thus, the superfluid FFLO-C phase is a band insulator
for the relative motion of the unpaired atoms and the
condensate of pairs. As the optical lattice intensity is
decreased, the 3D bands broaden and may overlap the
chemical potential, opening up a Fermi surface. We ap-
proximate the IC-C transition within the FF ansatz by
examining the kz > 0 half of the Fermi surface to see if
it is fully gapped. In the limit µ/t " 1, the transition
occurs when ∆ ∼ 8th/µ.

We now address the question of what are the best
conditions for experimentally producing, detecting and


