Evolution of the Pseudogap in Strongly Interacting Fermi Gases

Erich Mueller Cornell University

Sourish Basu Stefan Baur Dan Goldbaum Kaden Hazzard

\$\$ -- NSF, Darpa OLE

Kathy Levin Henk Stoof Mohit Randeria Cheng Chin Francesco Fumarola Tin-Lun Ho Kyle Shen Martin Zwierlein Wolfgang Ketterle

Nandini Trivedi Henk Stoof Paivi Torma Giancarlo Strinati Wilhelm Zwerger Christian Schunck

If you get bored...

 Submit a symposium for the 2009 DAMOP meeting (Charlottesville, Virginia, May 19-23, 2009) --

http://meetings.aps.org/aps_invited/Invited/LoginForm.cfm?MT=DAMOP09&UNIT=DAMOP
Deadline: next Monday

 Apply to attend workshop at Aspen Center for physics: Quantum Simulation/Computation with Cold Atoms and Molecules (May 24-June 14 2009)

http://www.aspenphys.org/

Deadline: Jan 31, 2009

Outline

- Background
 - Spectral Densities
 - Gaps and Pseudogaps
- Pseudogap in Polarized gases
- RF Spectroscopy
- What modes drive superfluidity?

Spectral Density

If I add a particle with momentum k, what energy does it have?

Shift: ΔE average potential seen by atoms Broadening: $\delta E \sim \frac{\hbar}{\delta t}$ Heisenberg

Analogy: shine light through a cavity filled with atoms Cavity mode shifted and broadened

Dispersion

Dispersion

Zero (low) T: Atoms at Fermi surface have nowhere to scatter Spectral density has delta-function peak "Fermi Liquid"

Dispersion

High energies: Scattering cross-sections become small

Now on: $\hbar = 1$ $E \leftrightarrow \omega$

Pairing

Two ways to add particle:

Simply add the particle

$$\omega = \frac{k^2}{2m} - \mu$$

Pairing

(condensate)

Pairing

States Hybridize

Weight states with overlap with free-particles (coherence factors)

Spectral Gap

Other systems with gaps: Semiconductors/insulator, Charge/Spin Density Waves,

Above Tc

(Using NSR -- qualitatively generic)

Physics: non-condensed pairs in normal state

Minimal model

Pseudogap

• Idea: pairing is not limited to superfluid phase

History

High Temperature Superconductors:

Rev. Mod. Phys. 75, 473 (2003)

Also: spin susceptibility, Nernst effect,...

May not have anything to do with superconductivity

Extreme BEC limit

Fermion chemical potential: $\mu < 0$

ie. all atoms are paired

Pair binding energy:

 $E_B \gg k_b T$

Spectrum in normal state has two branches:

Extreme BEC limit

Fermion chemical potential: $\mu < 0$

Pair binding energy: $E_B \gg k_b T$

Spectrum in normal state has two branches:

After bands cross

Physics: pairs in normal state give two excitation branches

Polarized Gases

Motivations:

- Investigate Low Temperature Normal State
- FFLO
- Interplay between Superconductivity and Magnetism

Pseudogap

No condensed Bosons (normal) No non-condensed Bosons (T=0)

What happens to pseudogap?

Parameters: Temp, Polarization, Interactions

Basic Result

Basic Result

Basic Result

Basic Idea

 \uparrow

 k/k_c

Minority Species

method I: add particle

$$\omega = \frac{k^2}{2m} - \mu_{\downarrow}$$

method 2: add pair + hole

$$\omega = (E_b - \mu_b) - (\frac{k^2}{2m} - \mu_\uparrow)$$

gap (pseudogap) lifted above Fermi surface

 $(E-\mu)/E_F$

Majority Species

method I: add particle

$$\omega = \frac{k^2}{2m} - \mu_{\uparrow}$$

method 2: add pair + hole

$$\omega = (E_b - \mu_b) - (\frac{k^2}{2m} - \mu_\downarrow)$$

gap (pseudogap) pushed below Fermi surface

cf. "breached pairs" -- Liu

Detection

RF Spectroscopy:

S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle, Science, 300, 1723 (2003)

Assuming:

- no atoms in 3
- no interactions with 3

Transition rate maps spectrum

$$I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$$

(transfer from a to b)

(Problem 1: non-interacting assumption is bad) (Problem 2: inhomogeneous broadening)

I: Spectral Density

 $I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$

I: Spectral Density

2: Fermi function

$$I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$$

I: Spectral Density

2: Fermi function

3: Shift axes (remove µ from Hamiltonian)

 $I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$

I: Spectral Density

2: Fermi function

3: Shift axes (remove µ from Hamiltonian)

4: Fermi's Golden Rule

$$I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$$

Most prominent features: deep in Fermi sea

 $I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$

Most prominent features: deep in Fermi sea

 $I(\omega) \propto \int d^3k \, G_a^{<}(k, \omega - \epsilon_k^{(b)})$

Direct measurement

Momentum Resolution:

Image transfered atoms after time of flight

BEC

Stewart, Gaebler, and Jin,

Nature 454, 744 (2008)

Question: what modes go unstable at the superfluid transition?

2 particle spectral density:

add 2 particles with total momentum k, what are allowed energies?

Pair susceptability diverges at transition

Modes that drive transition

Modes that drive transition

Crossover

Polarized

Summary

-2

0

1

 E/E_F

2

Pseudogap in Normal state (from normal pairs)

Moves away from Fermi energy at low T

 c/k_f

 c/k_f

 k/k_f

"Midgap" sharpening

High polarization limit

(Chevy, Combescot, Zwierlein,...)

One downspin wavefunction

Г

$$\begin{split} |\Psi\rangle &= \left[\phi_0 a_{\downarrow}^{\dagger}(0) + \sum_{kq} \phi_{kq} a_{\downarrow}^{\dagger}(q) a_{\uparrow}^{\dagger}(k) a_{\uparrow}(k+q) \right. \\ &+ \sum_{kqpl} \phi_{kqplm} a_{\downarrow}^{\dagger}(q) a_{\uparrow}^{\dagger}(k) a_{\uparrow}^{\dagger}(p) a_{\uparrow}(l) a_{\uparrow}(k+q+p-l) \right. \\ &+ \cdots \right] |FS_{\uparrow}\rangle \end{split}$$

