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FIG. 2: Radio frequency spectra of a harmonically trapped
gas in the limit of vanishing N2: number of atoms re-
maining in the 2 state as a function of the detuning ν of
the probe from the vacuum transition value (offset verti-
cally for clarity). In all cases a12 = ∞. Top figure mea-
sures frequencies in physical units for experimentally rel-
evant parameters: from top to bottom a13

p

mkBT/!2 =
−3,−2.6,−2.4,−2.4,−1.8 with T/TF = 1.9, 1, 0.9, 0.7, 0.5
and Ef = kBTF = 260hkHz, 360hkHz, 360hkHz, 360hkHz,
where Ef = (3Nωxωyωz)

1/3/π measures the number of ma-
jority species atoms, with ωj the small oscillation frequency
in direction j, and h is Planck’s constant. Lower figure
measures frequencies in units of Ef : From top to bottom
T/Tf = 1.25, 0.7, 0.5, while from left to right a

p

mkBT/!2 =
−5,−2.55,−1. The shape of the spectrum is mainly set by
T/Tf , while the frequency scale depends on the interaction
strength. The upper figures are convolved with a Gaussian
of width 0.003Ef , while no broadening is used in the lower
figures.

pairwise summing all scattering events, taking into ac-
count medium effects by a phase space reduction factor,
the interaction contribution to the free energy is

δΩ = −π
∫

d3k
(2π)3

∫

dω
2π g(ω) arg

(

1
4πa + θ(k, ω)

)

θ(k, ω) =
∫ d3q

(2π)3

[

1−f↑

q−k/2
−f↓

q+k/2

ω−q2/m−k2/4m + m
q2

]

,
(6)

where the inverse temperature β enters in the Bose
and Fermi functions g(ω) = (eβω − 1)−1, fσ

k =

(eβ(k2/2m−µσ) − 1)−1. Replacing ↓ with x (and using

the appropriate scattering length) gives the equivalent
quantity in the excited state. As in the standard deriva-
tion of the Gibbs-Duhem relation, dimensional analy-
sis requires that the free energy density is of the form
βΩ/V = λ−3f(a/λ, βµ↑, βµ↓). Since in the limit of low
down-spin density this will be proportional to the number
of down-spins, we have that the interaction energy will
be of the form N↓ε↓ = Eint = Ω−Ω0− TS − µ↑N↑ − µ↓

= (−3/2)δΩ− (1/2)a∂δΩ/∂a. As one tunes from the di-
lute limit, na3 # 1, to unitarity, the interaction energy
goes from Eint = −2δΩ to Eint = −3/2δΩ [28]. Formally
one can write Eq. (6) in the limit βµ → −∞,

δΩ
N↓

∣

∣

∣

N↓=0
= 2λ3

T

∫ ∞

0 dq
∫ ∞

0 dν q2e−β(ν+ q2

4m−µ↑)×

arg
(

1
4πa + θ

)

.
(7)

Where θ, defined in Eq. (6), is evaluated with f↓ = 0,
implying it is only a function of ν = ω + µ↑ + µ↓ −
q2/4m, β, q and µ↑. At low temperature, βµ↑ ' 1, this
integral is poorly behaved and is best replaced by a low
temperature expansion whose leading term is

δΩ

N↓

∣

∣

∣

∣

T,N↓=0

=
1

(2π)2
!2

m

∫ ∞

0

q2dq

(4πa)−1 + Re(θ)
, (8)

where θ can be calculated analytically, and is evaluated
at ν = q2/4m. At unitarity we find ε = −0.69µ↑, a rea-
sonable approximation to the results of quantum Monte-
Carlo [29]. Given that the lowest temperature highly
polarized data from [3] has βµ↑ = 1.25, finite tempera-
ture effects are crucial and the asymptotic result cannot
be compared to experiment.

As previously anticipated, at high temperatures
Eq. (7) reduces to the polarization-imbalanced virial
expansion result ε =

√
2kBTλ3

T n↑ (−3b2/4 − y∂b2/∂y)
(cf. [28]), where the second virial coefficient is b2 =

(1/π)
∫ ∞

0 dx/(1 + x2)e−x2/y, with y = mkBTa2/!2. At
low densities (na3 # 1) we can analytically integrate (6)
to recover ε = (4π!2/m)an↑, regardless of temperature.

The spectra in figure 2 capture many features of the
experiments [3] and of more numerically demanding the-
ories [7, 8]. The most successful element is that since
we include final state interactions we are able to repro-
duce the energy scales observed in experiment. Addi-
tionally, as already emphasized, our intermediate tem-
perature spectra are bimodal – however the bimodal-
ity is much much less pronounced in our theory than
in the experiment. By comparing with the calculation
of Massignan, Bruun, and Stoof [8], we can understand
this discrepency as an artifact of neglecting the width
of the homogeneous spectrum – due in part to the fact
that at higher densities the initial | ↓〉 state has overlap
with many |x〉 states. The intermediate detuning spectral
weight (for example around 10 kHz in figure 2) will be
reduced by this broadening, more clearly separating the
spectrum into two peaks. In experiments, finite probe


