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FIG. 1: (color online) Radio-frequency (rf) spectroscopy of a
Fermi gas with in situ phase-contrast imaging. (a) After ap-
plying an rf pulse, the spatial distribution of the density dif-
ference between state |1〉 and |2〉 is recorded with the phase-
contrast imaging technique [17]. The density depletion re-
flects the spin excitation induced by the rf pulse. The dashed
line indicates the size of the trapped sample. (b) An absorp-
tion image of an equal mixture without applying an rf pulse.
The field of view for each image is 205 µm × 680 µm. (c)
Overall rf spectrum of the inhomogeneous sample is obtained
by integrating the signal in the phase-contrast images. The
red line is a Gaussian fit to the spectrum.

n2 are the densities of atoms in the states |1〉 and |2〉,
respectively. The frequency of the imaging beam was set
to make the net phase shift in the sample proportional to
the density difference nd, which was done by zeroing the
optical signal in an equal mixture without applying an
rf pulse [17]. Since the initial atom densities in state |1〉
and |2〉 are equal, the density difference nd represents the
atom number depletion in state |2〉, the spectral response
I [19].

The total spectral response, obtained by integrating
over the phase contrast images, reproduces earlier re-
sults [10, 11]. The phase-contrast images now reveal the
nature of the observed line shape (Fig. 1). The spec-
tral response strongly depends on position. The inner
region of the cloud, which is at higher density, shows a
higher resonance frequency. The integrated inhomoge-
neous spectrum peaks at the rf offset ∆νi ≈ 10 kHz [20].
The spatially resolved images reveal that at this fre-
quency, no excitations occur in the center of the cloud,
but rather in a spatial shell. The rf offset ∆ν is measured
with respect to the resonance frequency of the |2〉 − |3〉
transition in the absence of atoms in state |1〉 [21].

Local rf spectra I(r,∆ν) are compiled from the recon-
structed 3D radial profiles of the density difference. A
phase-contrast image contains the 2D distribution of the
column density difference integrated along the imaging
line, ñd(x, z) ≡

∫

nd("r) dy. The excited regions have an

elliptical shape with the same aspect ratio as the trap,
λ = fz/fr, confirming the validity of the local density
approximation. Therefore, we can use elliptically aver-
aged profiles of the column density difference, ñd(r), to
improve the signal-to-noise ratio, where the ellipse for av-
eraging is defined as x2+λ2z2 = r2. The 3D radial profile
nd(r) is calculated using the inverse Abel transformation
of ñd(r) [22] and I(r,∆ν) ∝ nd(r; ∆ν).

With this technique, we obtain homogeneous rf spectra
as a function of the 3D position, shown in Fig. 2. These
spectra are the main result of this paper and we now dis-
cuss their features and implications for our system. The
local homogeneous rf spectra shows a spectral gap. The
spectral peak is shifted away from the atomic reference
line by much more than its line width. Such a gap is not
observed in the inhomogeneous rf spectrum (Fig. 1(c))
where the Gaussian wings overlap with the position of
the free atomic line. Furthermore, the local rf spec-
trum reveals an asymmetric line shape of the excitation
spectrum. For the central region, the peak is located at
∆νp ≈ 15 kHz and the spectral gap, defined as the mini-
mum energy offset for excitation, is h∆νg ≈ h × 10 kHz.

The spectral peak position ∆νp in the local rf spec-
tra shows a parabolic dependence on the radial position
(Fig. 2(a)). This can be explained by unitarity, which de-
mands that all energetic quantities scale with the Fermi
energy. At unitarity, the only relevant energy scale in the
system is the Fermi energy εF ≡ h̄2(6π2n)2/3/2m [3, 23],
where n is the atom density in one spin state and m
is the atomic mass, so the energetic quantities such as
chemical potential µ and pairing gap energy ∆ are pro-
portional to εF , i.e., µ = ξεF and ∆ = ηεF with the
universal parameters ξ and η. Therefore the excitation
spectrum should also scale with the Fermi energy. In an
external harmonic potential V (r) ∝ r2, the local Fermi
energy εF (r) = µ(r)/ξ = (µ0−V (r))/ξ = εF0(1−r2/R2),
where µ0 is the global chemical potential, εF0 is the local
Fermi energy at the center, R is the radius of the trapped
sample and εF0 = µ0/ξ = V (R)/ξ. The spectral peak
position ∆νp(r) reflects the parabolic radial dependence
of the local Fermi energy εF (r).

The local Fermi energy at the center is determined
from εF0 = (R/RTF )−2EF , where RTF is the radial
Thomas-Fermi radius for a noninteracting Fermi gas with
the same atom number. We obtain RTF = 67.3±1.1 µm
for the measured total atom number and trap frequen-
cies. The radius of the trapped sample was measured to
be R = 56.6 ± 1.8 µm, using absorption images like in
Fig. 1(b) and fitting the non-saturated outer wing pro-
file to a zero-temperature TF distribution, giving εF0 =
h× 31.5± 2.5 kHz. We estimate the universal parameter
ξ = (R/RTF )4 = 0.50±0.07, which is in good agreement
with previous measurements [4, 5, 24, 25, 26, 27, 28] and
Quantum Monte Carlo calculations [29, 30, 31] (ξ ≡ 1+β
in some references).

The local spectrum at the center of our sample shows


