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FIG. 2: Finite temperature phase diagram as a function of
magnetisation m/n and interaction 1/kF a. The plane at tem-
perature T = 0 is the phase diagram in Fig. 1. The yel-
low line represents the locus of tricritical points calculated in
the mean-field approximation, while the orange tricritical line
corresponds to mean-field theory plus pair fluctuations. The
fluctuation correction breaks down in the unitarity regime
−1 < 1/kF a < 1, and is thus shown as a dotted line. The
slice at 1/kF a = −1 is based on a mean-field calculation and
it shows the region of phase separation terminating in a tri-
critical point (yellow circle) at finite temperature, followed by
a second-order phase transition from the superfluid to normal
state. Note that the boundary between the FFLO and nor-
mal states (blue line) defines a small region of FFLO phase
confined to the BCS side of the crossover, as explained in the
text.

is a natural consequence of having a first-order transi-
tion from the superfluid to normal state at T = 0 and
a second-order transition at m = 0. First studied by
Sarma in the context of superconductivity in the pres-
ence of a magnetic field [33], the BCS tricritical point
is located at (Tcrit/∆, hcrit/∆) = (0.3188, 0.6061) [34],
where ∆ = 8

e2 εF exp [−π/2|kF a|] (i.e. at weak coupling
all energies scale with ∆). This corresponds to a magneti-

sation m = 2ν(εF )hcrit, where ν(εF ) = m3/2
f

√
εF /

√
2π2

is the Fermi surface density of states. To investigate how
the BCS tricritical point is related to the one at zero
temperature, we must develop a perturbative expansion
of Eq. (2) for small ∆ and general 1/kF a. Doing so, one
finds (Fig. 2) that the tricritical point at m/n = 1 is
connected to that in the BCS limit by a line of tricritical
points that passes through a maximum somewhere in the
‘unitarity’ regime −1 < 1/kF a < 1. Moreover, for any

−5 0 5 10
0

0.5

1
0

0.2

0.4

0.6

SFM

−δ/εF

m/n

T/
ε F

N PS

FIG. 3: Finite temperature phase diagram for the two-channel
model of a narrow Feshbach resonance, where the coupling
between open and closed channels is weak: γ = 0.1. The
effective interaction is parameterised by the detuning δ/εF .
The colour scheme for tricritical lines is the same as in Fig. 2.

given value of 1/kF a ≤ 2.368, the (T/εF , m/n) phase di-
agram is highly reminiscent of the 3He-4He system, with
m/n playing the role of the fraction of 3He. This is not
surprising, as the finite m system corresponds in general
to a mixture of bosonic pairs and fermionic quasiparti-
cles. Note that even the gapped superfluid can be mag-
netised at finite temperature due to thermal excitation
of quasiparticles. Of course, at m = 0 the transition into
the superfluid state is second order at any point in the
BCS-BEC crossover.

It is interesting to examine how the FFLO phase fits in
with the basic topology of the phase diagram. In the BCS
limit, we already know that the point where the FFLO-
normal phase boundary meets the normal-superfluid
boundary asymptotes to the tricritical point [34]. As-
suming that the transition from the FFLO state to the
normal state is second-order (although Ref. [35] found it
to be weakly first order, this will make a relatively small
difference), and performing a mean-field analysis, we find
that the FFLO point of intersection leaves the finite tem-
perature tricritical point with increasing interaction (see
Fig. 2), leading eventually to the extinction of the FFLO
phase at kF a = −0.35. Note that although this treat-
ment is somewhat approximate, as we have taken the
SF-FFLO boundary to be the same as the SF-N bound-
ary in the absence of FFLO, the point of intersection
will coincide with that derived from a complete mean-
field analysis. Moreover, despite all our assumptions, we
expect the detachment of the point of intersection from
the tricritical point and the eventual disappearance of
FFLO to be robust features, since in the BEC regime we
essentially have a mixture of bosons and fermions.

The inclusion of the fluctuation contribution Eq. (3)
is crucial for recovering the extreme BEC limit, where


