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crossover to the spin imbalanced gas. Variants of this
approximation have been used by several groups [19, 20].
We use the one described by Combescot et al [21, 22],
who have shown that this approximation gives remark-
ably good agreement with Monte-Carlo calculations in
the limit of vanishing downspin density. Specifically we
take

A↓(ω, k) = Im
(

ω − ε↓k − Σ↓(ω, k)
)−1

(2)

Σ↓(ω, k) =

∫

dz Γ↓(z, k)/(2π(ω − z)) (3)

Γ↓(ω, k) =

∫

0<εk<ω
d3q/(2π)3Λ(ω + ε↑q , k + q) (4)

Λ(ω, k) = 2ImT (ω, k) (5)

T (ω, k) = (4π!
2/m)/(a−1 + Θ(ω, k)) (6)

Θ(ω, k) =

∫

dz

2π(ω − z)

∫

d3q

(2π)3
(7)

[

1 − f↑
k/2+q − f↓

k/2−q

ω − ε↑k/2+q − ε↓k/2−q

−
m

k2

]

where εσ
k = k2/2m − µσ, and fσ

k = θ(−εσ
k). Note that

spectra used to calculate the self-energy are free spec-
tra. Self-consistency should not qualitatively change the
spectral density, and may actually make the theory less
accurate [23].

The resulting spectral density is shown in Fig. 2, where
the separation between a small momentum branch, un-
derdamped and parabolic, and a branch at higher mo-
menta, shifted upward, is clearly recognizable. This two
branch structure is similar to the mean-field spectral den-
sities in Fig. 1, except for the fact that the branches are
joined by an overdamped continuum. In the limit of van-
ishing N↓, (occuring at µ↓ = −0.6067) we find that the
lower branch is described by E(k) = k2/2m∗, with an
effective mass m∗ = 1.??. In this same limit, the quasi-
particle renormalization factor Z, corresponding to the
spectral weight in the low energy pole is ?? at k = 0. At
sufficiently large momenta, the damping of quasiparticles
is vanishingly small. This is because the fundamental in-
teraction is short-ranged, and unitarity of the S-matrix
requires that scattering becomes weak at large momenta.
Figure ?? shows the integrated density of states

ρ(ε) =
1

2π2

∫ ∞

0

dp p2A(p, ε) (8)

where a dip is clearly visible at energies close to the Fermi
level. Here, we mention that a similar dip is found in the
spectral density of cuprate superconductors [19].

In Figure 4, we use Eq. 1 to calculate the RF-
spectroscopy lineshape. Note that since we are using the
zero-temperature spectral density the finite temperature
line-shapes are at most qualitative. The general struc-
ture, however is generic. At the lowest temperatures only
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FIG. 2: Spectral density of spin down (minority species) par-
ticles A(ε, k) at zero temperature within the T-matrix ap-
proximation. From top to bottom corresponds to moving
away from unitarity towards the BCS side of the resonance:
a = ∞, µ↓ = −0.607µ↑; a = −4/

√
2mµ↑, µ↓ = −0.469;

a = −4/
√

2mµ↑, µ↓ = −0.469; a = −2/
√

2mµ↑, µ↓ = −0.377;
a = −1/

√
2mµ↑, µ↓ = −0.268. Note the logarithmic scale

shown in the inset.

the bottom branch of the spectrum is occupied, and one
sees only a single peak, shifted from δ = 0 by an amount
proportional to µ↑. In the limit of vanishing downspin
density this shift is directly equal to the downspin chemi-
cal potential µ↓ = Σ(k = 0, ω = 0), and provides a model
independent way to determine this quantity. As temper-
ature rises the upper branch becomes occupied, resulting
in a second peak. The weight in the second peak grows
with the temperature, eventually dwarfing the low tem-
perature peak.

We believe that in a finite temperature calculation of
A(k, ω) one would find that the separation between the
two branches would become smaller as temperature in-
creased. This would manifest itself in the low tempera-
ture peak slowly moving towards lower energy, merging
with the high temperature peak. The splitting should
vanish at a characteristic temperature T ∗ ∼ µ↑/kB.
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