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in Fig. 1c, normalized to the separation between two
diffraction peaks for convenience. The data confirms the
tFF/t scaling, indicating that the far-field asymptote is
not reached even after the longest expansion time avail-
able in the experiment.

We now discuss briefly the effect of interactions on the
expansion, and show that this is negligible compared to
the finite ToF effect. When the cloud has just been re-
leased from the lattice potential, each on-site wavefunc-
tion Wµ expands independently with a characteristic ex-
pansion time ω−1

L , until t ≈ t∗ =
√

!/(ωLER) where
the wavefunctions expanding from neighboring sites start
to overlap. At this time, in the usual situation where
ωLt∗ " 1, the local density has dropped dramatically by
a factor (ωLt)−3 # 1. Hence, the interaction energy con-
verts into kinetic energy on the time scale of a few oscilla-
tion periods only, and expansion becomes rapidly ballis-
tic. The parameter controlling the importance of interac-

tions is given by η = U
!ωL

≈
√

8π asn0
λL

(

V0
ER

)1/4
, with U

being the on-site interaction energy. For typical parame-
ters, η is small (for instance η ≈ 0.05 for V0 = 10 ER and
the experimental parameters of [3]). Hence, we expect
only small corrections to the non-interacting picture of
ballistic expansion. This has been confirmed using a vari-
ational model of the expanding condensate wavefunction
[15]. This model predicts that the ”Wannier” envelope
expands faster as compared to the non-interacting case,
which does not affect the interference pattern, and picks
up a site-dependent phase factor formally similar to the
Fresnel term discussed previously, but with a very weak
prefactor η # 1 which has negligible influence in prac-
tice. We conclude that interactions essentially contribute
to the expansion of the on-site wavefunctions, without
significant dephasing of the interference pattern.

The discussion so far focused on fully phase-coherent
systems, which only applies to the weakly-interacting
regime at low lattice depths. To investigate how the
interference pattern is affected for strongly interacting
systems (i.e., on approaching the Mott transition and be-
yond), we have performed large-scale three-dimensional
quantum Monte Carlo (QMC) simulations accounting
for the external trapping potential using the worm al-
gorithm [16, 17] in the implementation of Ref. [18]. The
calculations were performed for N = 8 × 104 atoms, us-
ing exactly the same parameters and system sizes (up to
∼ 2003) as in the experiments reported in [3]. The simu-
lation was done at low constant temperature T = J/kB,
where J is the hopping amplitude. Although simulations
at constant entropy would be closer to the experimental
situation, the temperature turns out to be approximately
constant in this parameter regime [19].

The ToF distribution calculated for finite and infinite
expansion times are shown in Fig. 2. The simulations
confirm explicitly the analysis made above: the interfer-
ence pattern is strongly affected in the superfluid phase,

FIG. 2: Results from Quantum Monte Carlo simulations. On
the left column, we show a horizontal cut through the ToF
distributions for a finite expansion time t = 14 ms (solid line),
compared to a cut through the profile calculated for t → ∞

(dashed line). Units for n⊥ are arbitrary. The insets show
directly the two-dimensional ToF distributions for t = 14 ms.
On the right column, we show the in-trap density profiles for
reference. The lattice depths are V0 = 12ER (a,d), 15ER

(b,e) and 17ER (c,f), respectively.

and the effect becomes less and less pronounced as the
lattice depth is increased and the Mott transition crossed.
Note finally that the Fresnel phase suppresses the contri-
bution from the edges of the cloud, thus favoring the con-
tribution of the central region to the ToF pattern. This
is especially important when superfluid rings surround a
central MI region with lower coherence [20].

The interference pattern is often characterized by its
visibility [3, 4, 5, 6, 7],

V =
nToF(kmax) − nToF(kmin)

nToF(kmax) + nToF(kmin)
, (6)

with the choice kmaxd = (2π, 0) and kmind =
√

2(π, π) to
cancel out the Wannier envelope in the division. We first
evaluate the sensitivity of V to the Fresnel phase by plot-
ting in Fig. (3) two theoretical ”benchmark” curves as-
suming perfect experimental resolution (dashed and dot-
dashed lines for t = 14 ms and t → ∞, respectively). We
find little difference between the two curves when T/J is
kept constant and small. Indeed, the Fresnel terms only
matter for systems with large coherence length, where the
visibility is by construction very close to unity. We con-
clude that a detailed investigation of the superfluid side
of the transition is better achieved by directly measuring


