Competing Ferroic Orders
The magnetoelectric effect

Craig J. Fennie
School of Applied and Engineering Physics
finnie@cornell.edu

Module Outline (Extremely tentative)

1. **Overview and Background**
 - Ferro ordering, the magnetoelectric effect
 - Complex oxides basics: Types of insulators (i.e., ZSA classifications), Coordination chemistry

2. **Structure and Ferroelectricity**
 - Basics of space groups
 - Soft mode theory, lattice dynamics, group theoretic methods
 - Competing lattice instabilities
 - microscopic mechanisms, improper FE
 - Modern theory of polarization (Berry Phase)

3. **Magnetism**
 - Basics, exchange interactions, superexchange, Dzyaloshinskii-Moria
 - How spins couple to the lattice! Phenomenology and microscopics (spin-phonon, spin-lattice, etc)
 - Competing magnetic orders

4. **Lets start putting things together**
 - Phase competition: magnetic and polar orders and colossal magnetoelectric responses
 - Magnetic order induced ferroelectricity
 - Ferroelectric induced ferromagnetism, switching magnetism 180° with an electric field aren’t these forbidden by some symmetry? NO!

5. **Finish up loose ends and recent papers I wish I understood better**
 - Toroidal moments
Ab initio Yes a play on what I do.

➢ What does my title mean?

"ferro" derived from the Latin "ferrum" → Iron

- Iron is the sixth most abundant element in the Universe
- While it makes up about 5% of the Earth’s crust, the Earth’s core is believed to consist largely of an iron-nickel alloy constituting 35% of the mass of the Earth as a whole.
- Iron is consequently the most abundant element on Earth, but only the fourth most abundant element in the Earth’s crust.
- Most of the iron in the crust is found combined with oxygen as iron oxide minerals such as hematite and magnetite.

Ferromagnetism

Ordering of spins → spontaneous magnetization

\[M \equiv \sum_i \langle S_i \rangle \neq 0 \]

Spontaneous time-reversal, \(R \), symmetry breaking

\[\mathcal{F}(M) = \alpha M^2 + \beta M^4 - MH \]

Symmetry properties \(M(-t) = -M(t) \)

- Time inversion \(R \) \(t \rightarrow -t \)
- Space inversion \(I \) \(t \rightarrow -r \)
- Mirror reflection \(m \)

M and H are Axial vectors
Ferroelectricity

Spontaneous polarization \(\rightarrow \) Dipole moment per unit volume

Ordering of polar mode

\(P_\alpha \approx \sum \Gamma_{\alpha,\beta}^{*} \langle u_{\beta}; i \rangle \neq 0 \)

Spontaneous space-inversion, \(I \), symmetry breaking

Symmetry properties \(P(-x) = -P(x) \)

AntiFerromagnetism

\(q \neq 0 \), Ordering of spins

\(M \equiv \sum_i \langle S_i \rangle = 0 \)

e.g., two sublattice spin system

\(L = S_1 - S_2 \)

Symmetry properties

\(L(-t) = -L(t) ; L(-x) = \pm L(x) \)

Does the AFM ordering of spins spontaneously break time-reversal, \(R \), symmetry breaking?

First, what does the question mean?

Does the point group of the space group contain \(R \)?

\(\mathcal{F}(M) = \alpha M^2 + \beta M^4 - L H_q \)

Depends on details of crystallographic structure!

Cant ignore structure!!

i.e., LATTICE + BASIS (don’t just pick your favorite sublattice and ignore the rest!!!)
AntiFerromagnetism

Symmetry properties $L(-t) = -L(t)$; $L(-x) = \pm L(x)$

e.g., two sublattice spin system (in the ordered phase)

$$L = S_1 - S_2$$

Example 1: two spins sit in the same unit cell in the paramagnetic phase,
Yes! R is not a symmetry element.

Example 2: two spins sit in different unit cells in the paramagnetic phase,
No! the space group contains $\{R|\tau\}$ ⇒ the point group, $\tau \rightarrow 0$ contains $\{R|0\}$.

Ab initio

Yes a play on what I do.

➢ What does my title mean?

Def: Linear magnetoelectric effect

Landau and Lifshitz, “Electrodynamics of continuous media”

Dzyaloshinskii, JETP 1957; Astrov JETP 1960 → Cr$_2$O$_3$

Hans Schmid, Geneva; Smolenskii USSR

Requirements: 1) broken space-inversion symmetry
2) broken time-reversal symmetry

\[
\mathcal{F} = \mathcal{F}_0 + P_s E + M_s H + \epsilon E^2 + \mu H^2 + \gamma EH
\]

\[
P = \left. \frac{\partial \mathcal{F}}{\partial E} \right|_{E=0} = P_s + \gamma H
\]

\[
M = \left. \frac{\partial \mathcal{F}}{\partial H} \right|_{H=0} = M_s + \gamma E
\]

γ = linear magnetoelectric coefficient
Crystal structure of Cr_2O_3

\[\text{AFM order parameter} \quad T_N = 306\text{K} \]

\[\text{L} = M_1 - M_2 + M_3 - M_4 \quad \text{L}_z \neq 0 \]

Symmetries of paramagnetic phase

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>2_x</th>
<th>3_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_z</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>E_z</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>H_z</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

Point group $\overline{3}m$

- $1, \ 3(2\perp), \ \pm 3_z$
- $\overline{1}, \ 3(m\perp), \ \pm \overline{3}_z$

Invariants:

\[\lambda L_z E_z H_z = \alpha_{\parallel} E_z H_z \]

\[L_z (E_x H_x + E_y H_y) = \alpha_{\parallel}, \alpha_{\perp} \propto L_z \]
Basic Training 2009– Lecture 01

Cr₂O₃

magnetic point group

$$3'm'$$

Symmetries of low-T phase:

$$1, 3(2_\perp), ± 3_z, 1'/3, 3(m'_\perp), ± 3'z$$

<table>
<thead>
<tr>
<th></th>
<th>$$I'$$</th>
<th>$$2_x$$</th>
<th>$$3_z$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$E_x$$</td>
<td>$$\begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$$</td>
<td>$$\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$</td>
<td>$$R_{2\pi/3}$$</td>
</tr>
<tr>
<td>$$E_z$$</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

Inversion combined with time reversal:

$$I' = IT$$

120°-rotation

$$R_{2\pi/3} = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$$

Invariants:

$$F_{me} = -\alpha_\parallel E_z H_z - \alpha_\perp (E_x H_x + E_y H_y)$$

Linear magnetoelectric effect

From Max Mostovoy

$$\text{Cr}_2\text{O}_3$$

I. E. Dzyaloshinskii JETP 10 628 (1959),
D. N. Astrov, JETP 11 708 (1960)

$$P = \chi_e E + \alpha H$$

$$M = \alpha E + \chi_m H$$

From Max Mostovoy

Cr₂O₃

I. E. Dzyaloshinskii JETP 10 628 (1959),
D. N. Astrov, JETP 11 708 (1960)

$$P = \chi_e E + \alpha H$$

$$M = \alpha E + \chi_m H$$

G.T. Rado PRL 13 335 (1964)
Next time

ME revisited, and basic oxide physics

• ME effect revisited: Toroidal moments
• Complex oxides basics: Types of insulators (i.e., ZSA classifications), Coordination chemistry