This is a rank 4 tensor, each index taking on one of two values. It is however, natural to group the left two indices and the right two indices to write this as a 4×4 matrix. That is, we create a matrix whose rows correspond to $s t=00,01,10,11$. One usually just does this in one's head, but one can also formally add graphical "combiners"

where the rank 3 tensors have non-zero elements:

$$
\begin{equation*}
\Gamma_{v_{00}}^{s_{0} t_{0}}=\Gamma_{v_{10}}^{s_{1} t_{0}}=\Gamma_{v_{01}}^{s_{0} t_{1}}=\Gamma_{v_{11}}^{s_{1} t_{1}} \tag{1.24}
\end{equation*}
$$

It is just a trivial relabeling of two indices as one composite index. In fact, when we write computer programs, we will make functions which exactly do that.

The reason for calculating E_{I} is that if we use periodic boundary conditions the norm is just $\langle\psi \mid \psi\rangle=$ $\operatorname{Tr}\left(E_{I}\right)^{N}$. That means if λ is the largest eigenvalue of E_{I}, the norm is $\langle\psi \mid \psi\rangle=\lambda^{N}$. The state can then be normalized by dividing each M by $1 / \sqrt{\lambda}$.

I. HW 1 - Due : Jan 29

Problem 1. (For Credit) Consider the "spin singlet": $\uparrow \downarrow-\downarrow \uparrow$. Write this as a matrix product state. Hint the matrices are 1×2 and 2×1 (so I guess this could be called a "vector product state.")
Solution 1.1.

$$
|\uparrow \downarrow-\downarrow \uparrow\rangle=\left(\begin{array}{ll}
|\uparrow\rangle & -|\downarrow\rangle \tag{1.25}
\end{array}\right)\binom{|\downarrow\rangle}{|\uparrow\rangle}
$$

Problem 2. (For Credit) The "GHZ" or "cat" state of five spins is $|\uparrow \uparrow \uparrow \uparrow \uparrow\rangle+|\downarrow \downarrow \downarrow \downarrow \downarrow\rangle$. Write this as a matrix product state.
Solution 2.1.

$$
|\psi\rangle=\left(\begin{array}{ll}
|\uparrow\rangle & |\downarrow\rangle
\end{array}\right)\left(\begin{array}{ll}
|\uparrow\rangle & \tag{1.26}\\
& |\downarrow\rangle
\end{array}\right)\left(\begin{array}{ll}
|\uparrow\rangle & \\
& |\downarrow\rangle
\end{array}\right)\left(\begin{array}{ll}
|\uparrow\rangle & \\
& |\downarrow\rangle
\end{array}\right)\left(\begin{array}{l}
|\uparrow\rangle \\
\\
\\
\\
\\
\\
\\
\end{array} \downarrow\right\rangle
$$

Problem 3. (For Credit) The "W"-state is $|\uparrow \downarrow \downarrow \downarrow \downarrow\rangle+|\downarrow \uparrow \downarrow \downarrow \downarrow\rangle+|\downarrow \downarrow \uparrow \downarrow \downarrow\rangle+|\downarrow \downarrow \downarrow \uparrow \downarrow\rangle+|\downarrow \downarrow \downarrow \downarrow \uparrow\rangle$, Write this as a matrix product state. Hint: It is the same as what we used for the single-particle state.
Solution 3.1.

$$
|\psi\rangle=\left(\begin{array}{ll}
|\downarrow\rangle_{1} & |\uparrow\rangle_{1}
\end{array}\right)\left(\begin{array}{cc}
|\downarrow\rangle_{2} & |\uparrow\rangle_{2} \tag{1.27}\\
0 & |\downarrow\rangle_{2}
\end{array}\right)\left(\begin{array}{cc}
|\downarrow\rangle_{3} & |\uparrow\rangle_{3} \\
0 & |\downarrow\rangle_{3}
\end{array}\right)\left(\begin{array}{cc}
|\downarrow\rangle_{4} & |\uparrow\rangle_{4} \\
0 & |\downarrow\rangle_{4}
\end{array}\right)\binom{|\uparrow\rangle_{5}}{|\downarrow\rangle_{5}}
$$

Problem 4. (For Credit) The ferromagnetic 1D transverse field Ising Model is a spin model, defined by a Hamiltonian

$$
\begin{equation*}
H=\sum_{j}\left[-J \sigma_{z}^{j} \sigma_{z}^{j+1}-h \sigma_{x}^{j}\right] \tag{1.28}
\end{equation*}
$$

Here σ_{z} and σ_{x} are the regular Pauli matrices. We can get a simple understanding of how this model works through a variational calculation. The simplest variational wavefunction we can use is a product: $|\psi\rangle=\otimes_{j}\left|\psi_{j}\right\rangle$ - where $\left|\psi_{j}\right\rangle$ is a two-component spinor. In the \hat{z} basis we can parametrize $\left|\psi_{j}\right\rangle$ as

$$
\begin{equation*}
\left|\psi_{j}\right\rangle=\cos (\theta / 2)|\uparrow\rangle+\sin (\theta / 2)|\downarrow\rangle, \tag{1.29}
\end{equation*}
$$

so that

$$
\begin{align*}
\left\langle\psi_{j}\right| \sigma_{z}^{j}\left|\psi_{j}\right\rangle & =\cos (\theta) \tag{1.30}\\
\left\langle\psi_{j}\right| \sigma_{x}^{j}\left|\psi_{j}\right\rangle & =\sin (\theta) \tag{1.31}
\end{align*}
$$

4.1. Show that up to boundary terms (which are irrelevant in the thermodynamic limit),

$$
\begin{equation*}
\langle\psi| H|\psi\rangle=-J N \cos ^{2} \theta-h N \sin (\theta), \tag{1.32}
\end{equation*}
$$

where N is the total number of sites.

Solution 4.1. This is trivial. Each spin is independent, and there are N terms.

Problem 4. cont...

4.2. Write $x=\sin (\theta)$. Minimize $\langle\psi| H|\psi\rangle$ with respect to x (with the constraint that $-1<x<1$). Make a plot of the magnetization $m=\left\langle\sigma_{z}^{j}\right\rangle=\sqrt{1-x^{2}}$ as a function of the ratio h / J.
You should see two phases - a "ferromagnetic" phase where $m \neq 0$, and a "paramagnetic" one where $m=0$. This is the simplest example of what is referred to as a "quantum phase transition." Note, the mean-field theory over-estimates the stability of the ordered phase, so you should not take the numbers too seriously.

Solution 4.2. The we scale the energy, and write

$$
\begin{equation*}
\bar{E}=\frac{E}{J N}=-\left(1-x^{2}\right)-\frac{h}{J} x \tag{1.33}
\end{equation*}
$$

The slope $d \bar{E} / d x=2 x-h / J$ vanishes at $x=h /(2 J)$. If $h / 2 J<1$ the energy is minimized at $x=h / 2 J$, otherwise it is minimized at $x=1$. Thus the magnetization is

$$
m=\left\{\begin{array}{cc}
\sqrt{1-\frac{h^{2}}{4 J^{2}}} & h<2 J \tag{1.34}\\
0 & h>2 J
\end{array}\right.
$$

Problem 5. Challenge - not for Credit

If I have N hard core bosons on M sites, and use the algorithm in Sec. D for parameterizing the states, how big is the m'th matrix? As we will see later, this is related to the entanglement entropy of a generic state. Hint: the m 'th matrix in this product has d_{1} rows and d_{2} columns. Express d_{1} and d_{2} as sums over binomial coefficients. Separately consider the cases $m<N$ and $m>N$.
For $m<N$ you should be able to do the sums. For $m>N$ there is no closed form.

Solution 5.1. The matrix has d_{1} rows and d_{2} columns.
Case 1: If $m<N$ then

$$
\begin{equation*}
d_{1}=\sum_{n=0}^{N}\binom{m-1}{n} \tag{1.35}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{2}=\sum_{n=0}^{N}\binom{m}{n} . \tag{1.36}
\end{equation*}
$$

The logic is that each row corresponds to a different configuration of the previous $m-1$ sites, while each column corresponds to a configuration of the first m sites. We therefore just count the number of ways of putting n particles on $m-1$ sites, then sum over n.
These sums are elementary, and $d_{1}=2^{m-1}$ and $d_{2}=2^{m}$. You can verify that this works for the case $N=2$ that we explicitly did in class.
Case 2: If $m>N$, then we have to modify this slightly, since the configuration with N particles just gives a single row. Therefore

$$
\begin{equation*}
d_{1}=1+\sum_{n=0}^{N-1}\binom{m-1}{n} \tag{1.37}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{2}=1+\sum_{n=0}^{N-1}\binom{m}{n} \tag{1.38}
\end{equation*}
$$

As stated in the question there is no closed form for these sums.

