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This is a rank 4 tensor, each index taking on one of two values. It is however, natural to group the left two

indices and the right two indices to write this as a 4 ⇥ 4 matrix. That is, we create a matrix whose rows

correspond to st = 00, 01, 10, 11. One usually just does this in one’s head, but one can also formally add

graphical “combiners”

EI =

M s

t

s'

t'
νν'

M*

ΓΓ' (1.23)

where the rank 3 tensors have non-zero elements:

�s0t0
v00 = �s1t0

v10 = �s0t1
v01 = �s1t1

v11 (1.24)

It is just a trivial relabeling of two indices as one composite index. In fact, when we write computer programs,

we will make functions which exactly do that.

The reason for calculating EI is that if we use periodic boundary conditions the norm is just h | i =

Tr (EI)
N . That means if � is the largest eigenvalue of EI , the norm is h | i = �N . The state can then be

normalized by dividing each M by 1/
p
�.

I. HW 1 – Due : Jan 29

Problem 1. (For Credit) Consider the “spin singlet”: "# � #". Write this as a matrix product state.

Hint the matrices are 1⇥ 2 and 2⇥ 1 (so I guess this could be called a “vector product state.”)

Solution 1.1.

| "# � #"i =
⇣

| "i �| #i
⌘ | #i

| "i

!
(1.25)

Problem 2. (For Credit) The “GHZ” or “cat” state of five spins is | """""i+ | #####i. Write this as a

matrix product state.

Solution 2.1.

| i =
⇣

| "i | #i
⌘ | "i

| #i

! 
| "i

| #i

! 
| "i

| #i

! 
| "i
| #i

!
(1.26)
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Problem 3. (For Credit) The “W”-state is |"####i+ |#"###i+ |##"##i+ |###"#i+ |####"i, Write this

as a matrix product state. Hint: It is the same as what we used for the single-particle state.

Solution 3.1.

| i =
⇣

| #i1 | "i1
⌘ | #i2 | "i2

0 | #i2

! 
| #i3 | "i3
0 | #i3

! 
| #i4 | "i4
0 | #i4

! 
| "i5
| #i5

!
(1.27)

Problem 4. (For Credit) The ferromagnetic 1D transverse field Ising Model is a spin model, defined by

a Hamiltonian

H =
X

j

⇥
�J�j

z�
j+1
z � h�j

x

⇤
. (1.28)

Here �z and �x are the regular Pauli matrices. We can get a simple understanding of how this model

works through a variational calculation. The simplest variational wavefunction we can use is a product:

| i = ⌦j | ji – where | ji is a two-component spinor. In the ẑ basis we can parametrize | ji as

| ji = cos(✓/2)| "i+ sin(✓/2)| #i, (1.29)

so that

h j |�j
z| ji = cos(✓) (1.30)

h j |�j
x| ji = sin(✓). (1.31)

4.1. Show that up to boundary terms (which are irrelevant in the thermodynamic limit),

h |H| i = �JN cos2 ✓ � hN sin(✓), (1.32)

where N is the total number of sites.

Solution 4.1. This is trivial. Each spin is independent, and there are N terms.
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Problem 4. cont...

4.2. Write x = sin(✓). Minimize h |H| i with respect to x (with the constraint that �1 < x < 1). Make

a plot of the magnetization m = h�j
zi =

p
1� x2 as a function of the ratio h/J .

You should see two phases – a “ferromagnetic” phase where m 6= 0, and a “paramagnetic” one where

m = 0. This is the simplest example of what is referred to as a “quantum phase transition.” Note, the

mean-field theory over-estimates the stability of the ordered phase, so you should not take the numbers too

seriously.

Solution 4.2. The we scale the energy, and write

Ē =
E

JN
= �(1� x2)� h

J
x. (1.33)

The slope dĒ/dx = 2x� h/J vanishes at x = h/(2J). If h/2J < 1 the energy is minimized at x = h/2J ,

otherwise it is minimized at x = 1. Thus the magnetization is

m =

( q
1� h2

4J2 h < 2J

0 h > 2J
(1.34)
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Problem 5. Challenge – not for Credit

If I have N hard core bosons on M sites, and use the algorithm in Sec. D for parameterizing the states, how

big is the m’th matrix? As we will see later, this is related to the entanglement entropy of a generic state.

Hint: the m’th matrix in this product has d1 rows and d2 columns. Express d1 and d2 as sums over

binomial coe�cients. Separately consider the cases m < N and m > N .

For m < N you should be able to do the sums. For m > N there is no closed form.



11

Solution 5.1. The matrix has d1 rows and d2 columns.

Case 1: If m < N then

d1 =
NX

n=0

 
m� 1

n

!
(1.35)

and

d2 =
NX

n=0

 
m

n

!
. (1.36)

The logic is that each row corresponds to a di↵erent configuration of the previous m� 1 sites, while each

column corresponds to a configuration of the first m sites. We therefore just count the number of ways of

putting n particles on m� 1 sites, then sum over n.

These sums are elementary, and d1 = 2m�1 and d2 = 2m. You can verify that this works for the case N = 2

that we explicitly did in class.

Case 2: If m > N , then we have to modify this slightly, since the configuration with N particles just gives

a single row. Therefore

d1 = 1 +
N�1X

n=0

 
m� 1

n

!
(1.37)

and

d2 = 1 +
N�1X

n=0

 
m

n

!
. (1.38)

As stated in the question there is no closed form for these sums.


