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D. Homework 2 – Due Jan 31

Problem 6. Do the second notebook on using tensors in Mathematica. – no need to hand anything in.

Problem 7. For Credit: A gas of fermions hopping on a 1D lattice can be mapped onto a spin model –

and then analyzed using the techniques in this module. The approach for doing this is the “Jordan-Wigner”

transform. For simplicity we will work with spinless Fermions, but adding spin is straightforward. Note, it

is a non-local transformation, so local order in the spin language may be non-local in the Fermi language,

and vice-versa.

Consider a single spin 1/2, and define the down-spin state to be |0i – which will map onto the absence of

a Fermion, while the up-spin state |1i will be the presence of a fermion. It is natural to define

f† = �+ (2.32)

f = �� (2.33)

where �± are Pauli operators on the spin basis.

7.1. Express �z in terms of f and f†.

Solution 7.1.

�z = 2f†f � 1 (2.34)

Problem 7. cont...

7.2. Show that f and f† obey fermion anticommutation relations.

Solution 7.2. If we use the basis (|1i, |0i),

{f, f†} =

 
0 1

0 0

! 
0 0

1 0

!
+

(
0 0

1 0

! 
0 1

0 0

!
(2.35)

=

 
1 0

0 1

!
. (2.36)
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Problem 7. cont...

7.3. If we have more sites, we run into the problem that the f ’s defined this way commute on di↵erent

sites. To fix this, we define

a†j = (�1)
P

k<j f†
kfkf†

j (2.37)

= (�1)N<jf†
j (2.38)

aj = (�1)
P

k<j f†
kfkfj (2.39)

= (�1)N<jfj , (2.40)

where N<j is the total number of particles on sites to the left of j. Show that these a’s obey fermionic

anticommutation relations.

Solution 7.3. Suppose i > j, then

aia
†
j = (�1)N<ifi(�1)N<jf

†
j (2.41)

= (�1)N[j,i)fif
†
j (2.42)

where N[j,i) is the number of particles on sites j through i� 1. Conversely

a†jai = (�1)N<jf
†
j (�1)N<ifi (2.43)

= (�1)N[j,i)�1fif
†
j . (2.44)

Adding these gives 0.

The same argument works when j < i. When i = j the (�1)N terms cancel.

Problem 7. cont...

7.4. Write a†iai+1 in terms of the f ’s.
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Problem 7. cont...

7.5. Map the XXZ model onto a Fermi model,

H =
X

j

Jx(�
x
j �

x
j+1 + �y

j �
y
j+1) + Jz(�

z
j�

z
j+1). (2.45)

Solution 7.5. Recall: �x = �+ + �� = f + f† and �y = (�+ � ��)/i, so

(�x
j �

x
j+1 + �y

j �
y
j+1) = (fj + f†

j )(fj+1 + f†
j+1) +

fj � f†
j

i

fj+1 � f†
j+1

i
(2.46)

= 2fjf
†
j+1 + 2f†

j fj+1 (2.47)

= 2(f†
j+1fj + f†

j fj+1). (2.48)

If we write this in terms of the a’s

(�x
j �

x
j+1 + �y

j �
y
j+1) = 2((�1)Nja†j+1aj + a†j(�1)Njaj+1) (2.49)

In the first term, we can replace the Nj with zero, since it is to the left of a aj operator. Similarly, in the

second term we can replace the Nj with zero since it is to the right of a a†j operator. Consequently,

(�x
j �

x
j+1 + �y

j �
y
j+1) = 2(a†j+1aj + a†jaj+1). (2.50)

The other term is easy, and we have

H =
X

j

2Jx(a
†
j+1aj + a†jaj+1) + Jz(2aj † aj � 1)(2a†j+1aj+1 � 1), (2.51)

which is a model of spinless fermions hopping on a 1D lattice, with a nearest-neighbor interaction and a

chemical potential.



CHAPTER 2. MANIPULATING TENSOR NETWORKS 22

Problem 7. cont...

7.6. Map the transverse field Ising model onto a Fermi model, using the basis perpendicular to the one we

used in the last homework

H =
X

j

�h�z
j � J�x

j �
x
j+1. (2.52)

The resulting Hamiltonian has the structure of a model of superconductivity. (It is a 1D p-wave super-

conductor, sometimes refered to as the “Kitaev chain” – Alexi Kitaev has a famous paper where he shows

that it has “Majorana” edge modes.)

Solution 7.6. Following the arguments in the last problem,

�x
j �

x
j+1 = (fj + f†

j )(fj+1 + f†
j+1) (2.53)

= (aj + a†j)(�1)Nj (aj+1 + a†j+1) (2.54)

= (a†j � aj)(a
†
j+1 + aj+1) (2.55)

= a†jaj+1 + a†j+1aj + a†ja
†
j+1 + aj+1aj (2.56)

Which gives

H =
X

j

�h(2a†jaj � 1)� J(a†jaj+1 + a†j+1aj + a†ja
†
j+1 + aj+1aj). (2.57)

This model can be solved exactly using a Bogoliubov transformation.

7.7. In the last homework we distinguished the phases of the transverse field Ising model by the order

parameter h�xi (recall we have rotated by 90 degrees). Show that this is a non-local operator in the

Fermi language. Hence the Fermi analog of the ordered phase is topological – in fact it is an example of a

symmetry protected topological phase.

Solution 7.7. This is straightforward,

h�x
j i = h(�1)

P
i<j Ni(aj + a†j)i. (2.58)

This is non-local because it depends on an infinite number of sties.
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Problem 8. (For Credit) Derive Eq. (2.22).

Solution 8.1. Following the argument for the local operator,

hXiYji =

M

M*

M

M*

M

M*

M

M*

M

M*

Y

M*

XL+ · · ·

M

M*

M

M*

M

M*

M

M*

M

M*

Y R+

M*

M

M*

M

M*

M

M*

M

M*

M
L+ · · ·

M*

M

M*

M

M*

M

M*

M

M*

M
R+

(2.59)

In the denominator there are j � i + 1 factors of EI , so the denominator is �j�i+1
+ hL+|R+i. In the

numerator there are j � i� 1 factors of EI . We use the decomposition in Eq. (2.29),

EI =
X

j

|Rji�jhLj |
hLj |Rji

. (2.60)

Therefore,

En
I =

X

j

|Rji�nj hLj |
hLj |Rji

. (2.61)

In the present case there are just two terms in the sum: either + or �, so we have

hXiYji =
hL+|EX |R+ihL+|EY |R+i�j�i�1

+ /hL+|R+i+ hL+|EX |R�ihL�|EY |R+i�j�i�1
� /hL�|R�i

�j�i+1
+ hL+|R+i

(2.62)

Where EX and EY are the tensors formed from MXM † and MYM†. A little reordering gives the desired

expression.
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Problem 9. (For Credit) In the lecture notes we produced an expression for hXiYji when |i � j| > 1.

Find a similar result for the cases where j = i+ 1 and j = i.

Solution 9.1. When j = i+ 1,

hXiYi+1i =

M M
L+

M* M*

R+
X Y

�2+ R+L+

(2.63)

When j = i this is just a special case of the on-site expectation value, and we can use that expression.

Problem 10. (For Credit) Here you will complete the calculation of the properties of the matrix product

state described by Eq. (2.1). We will take ✏ to be real throughout. I recommend using a computer algebra

system.

10.1. Show that the right eigenvectors of the EI in Eq. (2.18), corresponding to �� = 1 � ✏2 and

�+ = 1 + ✏2 are (1 � ✏2, 0, 0, ✏2 � 1), (1 + ✏2, 2✏, 2✏, 1 + ✏2). Similarly, show that the left eigenvectors

are (�1, 0, 0, 1), (1, 0, 0, 1).

Solution 10.1. This is just matrix multiplication.
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Problem 10. cont...

10.2. Calculate

EX =

M

X

s

t

s'

t' M*

(2.64)

as a 4⇥ 4 matrix, where X = �x is the Pauli matrix. (Same indices as we used for EI).

Solution 10.2. The non-zero elements of EX are

E
s0s

0
0

t1t01
= M"

s0s00
(M#

t1t01
)⇤ = 1 (2.65)

E
s0s

0
1

t1t01
= M"

s0s01
(M#

t1t01
)⇤ = ✏ (2.66)

E
s0s

0
0

t1t00
= M"

s0s00
(M#

t1t00
)⇤ = ✏ (2.67)

E
s0s

0
1

t1t00
= M"

s1s01
(M#

t1t00
)⇤ = ✏2 (2.68)

E
s1s

0
1

t0t00
= M#

s1s01
(M"

t0t00
)⇤ = 1 (2.69)

E
s1s

0
0

t0t00
= M#

s1s00
(M"

t0t00
)⇤ = ✏ (2.70)

E
s1s

0
1

t0t01
= M#

s1s01
(M#

t0t01
)⇤ = ✏ (2.71)

E
s1s

0
0

t0t01
= M#

s1s00
(M#

t0t01
)⇤ = ✏2. (2.72)

Which then can be reshaped into

0

BBBBB@

E
s0s

0
0

t0t00
E

s0s
0
0

t1t00
E

s1s
0
0

t0t00
E

s1s
0
0

t1t00

E
s0s

0
0

t0t01
E

s0s
0
0

t1t01
E

s1s
0
0

t0t01
E

s1s
0
0

t1t01

E
s0s

0
1

t0t00
E

s0s
0
1

t1t00
E

s1s
0
1

t0t00
E

s1s
0
1

t1t00

E
s0s

0
1

t0t01
E

s0s
0
1

t1t01
E

s1s
0
1

t0t01
E

s1s
0
1

t1t01

1

CCCCCA
=

0

BBB@

✏ ✏

1 ✏2

✏2 1

✏ ✏

1

CCCA
. (2.73)
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Problem 10. cont...

10.3. Show that

hL+|EX |R+i = 8✏2 (2.74)

Solution 10.3.

hL+|EX |R+i =
⇣

1 0 0 1
⌘

0

BBB@

✏ ✏

1 ✏2

✏2 1

✏ ✏

1

CCCA

0

BBB@

1 + ✏2

2✏

2✏

1 + ✏2

1

CCCA
(2.75)

= 8✏2. (2.76)

Problem 10. cont...

10.4. Show that hL+|R+i = 2(1 + ✏2).

Solution 10.4. This is just vector multiplication

Problem 10. cont...

10.5. Calculate h�xi.

Solution 10.5.

h�xi =
1

�+

hL+|EX |R+i
hL+|R+i =

4✏2

(1 + ✏2)2
. (2.77)

This result makes sense: It is bounded below 0, which it achieves at ✏ = 0,1. The former corresponds

to the ferromagnetic state, the latter the antiferromagnet. It is bounded above by 1, which it achieves

when ✏ = 1.
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Problem 10. cont...

10.6. Calculate

EZ =

M

Z

s

t

s'

t' M*

(2.78)

as a 4⇥ 4 matrix, where Z = �Z is the Pauli matrix.

Solution 10.6.

EZ =

0

BBB@

1 �✏2

✏ �✏
✏ �✏
✏2 �1

1

CCCA
, (2.79)
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Problem 10. cont...

10.7. Show that

hL+|EZ |R+i = 0 (2.80)

hL+|EZEZ |R+i = 2(1 + ✏2)2(1� ✏2) (2.81)

hL+|EZ |R�i = 2(1� ✏4) (2.82)

hL�|EZ |R+i = �2(1� ✏4) (2.83)

(2.84)

Solution 10.7. This is just matrix multiplication

10.8. Calculate the correlation function h�i
z�

j
zi in this state. Separately consider the case |i� j| = 1 and

|i� j| > 1.

Solution 10.8. The nearest-neighbor correlation as

h�i
z�

i+1
z i =

hL+|EZEZ |R+i
�2+hL+|R+i

(2.85)

=
1� ✏2

1 + ✏2
. (2.86)

This makes sense. It is bounded above by 1 – which is reached when ✏ = 0 – which is the Ferromagnetic

state. It is bounded below by -1 – which is reached when ✏ = 1. It vanishes at ✏ = 1.

For larger distances, we use

h�i
z�

i+d
z i =

✓
��
�+

◆d�1 hL+|EZ |R�ihL�|EZ |R+i
�2+hL+|R+ihL�|R�i

(2.87)

=

✓
1� ✏2

1 + ✏2

◆d+1

(2.88)
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Problem 10. cont...

10.9. Calculate the expectation value hHi in this state, where H is given by Eq. (1.28). Minimize with

respect to ✏ to optimize the wavefunction. Plot the resulting E/(NJ) as a function of h/J . Compare it with

the mean field prediction. Note this ansatz has the opposite problem of the product state we previously

used – it overestimates the stability of paramagnetic state – so you should find the phase transition at

smaller h/J .

Hint: Define y = ✏2/(1 + ✏2). The minimization is easier in terms of y. Note, 0 < y < 1.

Solution 10.9. Plugging in our previous results

Ē =
E

NJ
= �1� ✏2

1 + ✏2
� h

J

4✏2

(1 + ✏2)2
(2.89)

= 2y � 1� 4
h

J
y(1� y). (2.90)

The slope is @Ē/@y = 2� 4(h/J) + 8(h/J)y, which vanishes at y = 1/2(1� J/2h). When J/h > 2, the

minimum is at y = 0, and this ansatz gives the phase transition at h/J = 1/2. Substituting that back in

gives

ĒMPS =

(
�1 h < J/2

� h
J � J

4h h > J/2
(2.91)

For comparison, the mean field result is

ĒMF =

(
�1� 1

4
h
J h < 2J

� h
J h > 2J

(2.92)

Plotting this gives

MPS Phase Transition

Mean Field Phase Transition

0.0 0.5 1.0 1.5 2.0 2.5 3.0
h/J

-2.5

-2.0

-1.5

-1.0

E/NJ

polarized z

polarized x

MPS

Product
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Problem 11. (Challenge – not for Credit) We can describe both the ordered and disordered phases

with the two-parameter matrix product state:

| i = · · ·
 

| "i ✏⌘| #i
✏| "i ⌘| #i

! 
| "i ✏⌘| #i
✏| "i ⌘| #i

! 
| "i ✏⌘| #i
✏| "i ⌘| #i

!
· · · (2.93)

Where ✏ and ⌘ are real and positive.

It would be nice to repeat the previous problem with this state. Unfortunately the algebra gets too messy

for paper and pencil – so this will be a partially numerical problem. I used Mathematica for it – which was

pretty e�cient. If you don’t already have good familiarity with Mathematica, it is probably more trouble

than it is worth. I also recommend naming your variables x and y instead of ✏ and ⌘. Will make entering

easier in the computer.

11.1. Generate the transfer matrix EI , using the same basis as the lecture.

Solution 11.1. Following the same logic from lecture:

EI =

0

BBB@

1 ✏2⌘2

✏ ✏⌘2

✏ ✏⌘2

✏2 ⌘2

1

CCCA
(2.94)

Problem 11. cont...

11.2. Write six di↵erent functions in some computer language that take ✏ and ⌘ produce each of:

�+(✏, ⌘),��(✏, ⌘), R+(✏, ⌘), R�(✏, ⌘), L+(✏, ⌘), L�(✏, ⌘). The latter 4 are length 4 vectors. You can debug

this by noting that when ⌘ = 1 you should get the same results as for the last question (with the caution

that the eigenvectors are only defined up to a multiplicative constant).

Solution 11.2. I used Mathematica:

EI = {{1, 0, 0, x^2 y^2}, {x, 0, 0, x y^2}, {x, 0, 0, x y^2}, {x^2, 0, 0, y^2}}

res = Eigensystem[EI]

les = Eigensystem[Transpose[EI]]

lambdap = res[[1, 4]]

lambdam = res[[1, 3]]

rp = res[[2, 4]]

lp = les[[2, 4]]

rp = res[[2, 3]]

lp = les[[2, 3]]
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Problem 11. cont...

11.3. Calculate

EX =

M

X

s

t

s'

t' M*

(2.95)

as a 4⇥ 4 matrix, where X = �x is the Pauli matrix.

Solution 11.3. The non-zero elements of EX are

EX
s0s

0
0

t1t01
= M"

s0s00
(M#

t1t01
)⇤ = ⌘ (2.96)

EX
s0s

0
1

t1t01
= M"

s0s01
(M#

t1t01
)⇤ = ✏⌘ (2.97)

EX
s0s

0
0

t1t00
= M"

s0s00
(M#

t1t00
)⇤ = ✏⌘ (2.98)

EX
s0s

0
1

t1t00
= M"

s0s01
(M#

t1t00
)⇤ = ✏2⌘ (2.99)

EX
s1s

0
1

t0t00
= M#

s1s01
(M"

t0t00
)⇤ = ⌘ (2.100)

EX
s1s

0
0

t0t00
= M#

s1s00
(M"

t0t00
)⇤ = ✏⌘ (2.101)

EX
s1s

0
1

t0t01
= M#

s1s01
(M"

t0t01
)⇤ = ✏⌘ (2.102)

EX
s1s

0
0

t0t01
= M#

s1s00
(M"

t0t01
)⇤ = ✏2⌘. (2.103)

Which then can be reshaped into

0

BBBBB@

EX
s0s

0
0

t0t00
EX

s0s
0
0

t1t00
EX

s1s
0
0

t0t00
EX

s1s
0
0

t1t00

EX
s0s

0
0

t0t01
EX

s0s
0
0

t1t01
EX

s1s
0
0

t0t01
EX

s1s
0
0

t1t01

EX
s0s

0
1

t0t00
EX

s0s
0
1

t1t00
EX

s1s
0
1

t0t00
EX

s1s
0
1

t1t00

EX
s0s

0
1

t0t01
EX

s0s
0
1

t1t01
EX

s1s
0
1

t0t01
EX

s1s
0
1

t1t01

1

CCCCCA
=

0

BBB@

✏⌘ ✏⌘

⌘ ✏2⌘

✏2⌘ ⌘

✏⌘ ✏⌘

1

CCCA
. (2.104)

Problem 11. cont...

11.4. Write a computer program that will calculate Calculate h�xi as a function ✏ and ⌘.

Solution 11.4. My code:

EX = {{0, x y, x y, 0}, {0, y, x^2 y, 0}, {0, x^2 y, y, 0}, {0, x y, x y, 0}}

expsigx = Expand[lp.EX.rp]/Expand[( lambdap lp.rp)] // Simplify
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Problem 11. cont...

11.5. Calculate

EZ =

M

Z

s

t

s'

t' M*

(2.105)

as a 4⇥ 4 matrix, where Z = �Z is the Pauli matrix.

Solution 11.5.

EZ =

0

BBB@

1 �✏2⌘2

✏ �✏⌘2

✏ �✏⌘2

✏2 �⌘2

1

CCCA
(2.106)
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Problem 11. cont...

11.6. Write functions that will calculate h�i
zi and h�i

z�
i+1
z i as a function of ✏ and ⌘.

Solution 11.6. My code:

EZ = {{1, 0, 0, -x^2 y^2}, {x, 0, 0, -x y^2}, {x, 0, 0, -x y^2}, {x^2, 0, 0, -y^2}}

expsigz = Expand[lp.EZ.rp]/Expand[( lambdap lp.rp)] // Simplify

expsigzsigz = Expand[lp.EZ.EZ.rp]/Expand[( lambdap^2 lp.rp)] // Simplify

11.7. Combine your results to make a function that will give the energy Ē = hHi/(JN) from Eq. (1.28,

when given ✏, ⌘, and h/J . Feed this into a minimization routine, so that you optimize the parameters.

Plot the resulting h�zi as a function of h/J .

Solution 11.7. My code:

en[x_, y_, h_] = -expsigzsigz - h expsigx;

ic[h_] = If[h > 1, {{y, 0.99}, {x, Sqrt[(2 h - 1)/(2 h + 1)]}}, {{x, 0.99}, {y, (2 - Sqrt[4 - h^2])/h}}]

opt[h_?NumericQ] := FindMinimum[en[x, y, h], Evaluate@ic[h]]

splot = ListPlot[Table[{h, ez /. opt[h][[2]]}, {h, 0.1, 2, 0.01}], AxesLabel -> {"h/J", "m"}]

Gives

0.5 1.0 1.5 2.0
h/J

0.2

0.4

0.6

0.8

1.0

m

The exact result (which you can get by the techniques in question 7.6) has the phase transition at h/J = 1,

so this is closer than the previous two theories, but is far from exact.
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Problem 11. cont...

11.8. Plot the correlation length as a function of h/J .

Solution 11.8. I generated the plot with

xiplot = ListPlot[Table[{h, 1/Log[lambdap/lambdam] /. opt[h][[2]]},

{h, 0.1, 2, 0.01}], AxesLabel -> {"h/J", "\[Xi]"}]

0.5 1.0 1.5 2.0
h/J

0.2

0.4

0.6

0.8

1.0

ξ

In the exact theory the correlation length will diverge at the phase transition.


