
Chapter 4

Canonical Forms

A. Equivalent Representations of Matrix Product States

We are now going to develop some more machinery about matrix product states.

I think it is pretty intuitive that any quantum state can be written as a MPS if one takes the bond

dimension high enough. We will shortly present an algorithm for this. The MPS representation of a quantum

state is not unique. For example, imagine taking a set of square invertable matrices U and inserting UU�1

between each matrix:

| i =
σ1 σ2 σ3 σ4 σ5

r1 r2 r3 r4s1 s2 s3 s4t1 t2 t3 t4M1 M5M2 M3 M4U1 U2 U3 U4U-1
1 U-1

2 U-1
3 U-1

4 (4.1)

Grouping the matrices as shown by dashed lines:

Mj ! U�1
j�1MjUj , (4.2)

one gets a new representation of the same state. This is often referred to as a “Gauge” freedom. We will

use it to convert our Matrix Product States into Canonical forms. There are four forms worth considering:

the left, right, mixed, and symmetric forms.

I will introduce the left canonical form, by showing how to convert an arbitrary state  (�1,�2, · · · ,�n)
into it. We will then convert it to the other canonical forms. Without any loss of generality, I will assume

that the state is normalized. I begin at the left, and think of  as a matrix with two indices: �1 and a
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composite index {�2, · · ·�n}. I then perform a SVD:

| i =

σ1 σ2 σ3 σ4 σ5

ψ
(4.3)

=

σ1
σ2 σ3 σ4 σ5

s1t1 ψ1RΛ1L1
.(4.4)

The t’th left Schmidt state is: Lt. The s’th right Schmidt state is ( 1
R)

S . One can think of L as the matrix

which transforms from the Schmidt basis to the left physical basis, and ditto on the right. One then combines

⇤ with  , generating the expression:

| i =

σ1
σ2 σ3 σ4 σ5

s1t1 ψ1RΛ1L1 (4.5)

=

σ1
σ2 σ3 σ4 σ5

s1t1 ψ1RΛ1L1 ψ1 .(4.6)

To expand on this, let me give an alternative way to carry out this procedure. Namely first calculate the

reduced density matrix of the left hand side of the system,

⇢1 =

σ1

σ'1

σ2 σ3 σ4 σ5

ψ

ψ*

(4.7)
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Here ⇢1 is a d⇥ d matrix, where d is the size of the local Hilbert Space. Diagonalize ⇢1,

⇢1 =

σ1 σ′
1

s1t1 (Λ1)2L1 L*1
. (4.8)

We then use those eigenstates to create a “resolution of the identity” that we insert into the wavefunction

| i =

σ1
σ2 σ3 σ4 σ5

σ'1t1 ψL*1L1 (4.9)

=

σ1
σ2 σ3 σ4 σ5

σ'1t1 ψL*1L1 (4.10)

=

σ1
σ2 σ3 σ4 σ5

s1t1 ψ1RΛ1L1 ψ1 , (4.11)

which gives an identical decomposition.

What we see is that we could have put any resolution of the identity in Eq. (4.9). What is special about

the Schmidt basis is that its reduced density matrix is diagonal. The other feature is that we make no error

in throwing away the zero singular values. So the dimension of t1 is the number of non-zero Schmidt values.

An important approximation scheme is that we can truncate the decomposition – taking only singular

values above some threshold. This compresses the quantum state, and is the basis for the DMRG. I have read

that this truncation is optimal in the sense that it is the one which minimizes the deviation
P

{�j} | �1···�n �
 t
�1···�n

|2. IE. If one takes L1 to be a d ⇥ m left-orthogonal matrix, (with m < d fixed matrix), then the

optimal L1 is the one generated by this scheme.

We can now repeat this scheme on  1. This time we treat t1 and �2 as one index, and �3 · · ·�5 as the
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other. This gives

| i =

σ1 σ2
σ3 σ4 σ5

t1 t2 ψ2L1 L2
. (4.12)

Again t2 has the meaning of indexing the Schmidt vectors: L2 converts this index into a wavefunction on

the first two sites. Again we can compress the wavefunction by keeping only the larges Schmidt values.

Repeating several more times gives a Matrix Product State in the ”Left Normal Form”

| i =

σ1 σ2 σ3 σ4 σ5

t1 t2 t3 t4L1 L2 L3 L4 L5
. (4.13)

We can now go through the same procedure from the right. After the first step we have

| i =

σ1 σ2 σ3 σ4 σ5

s4t1 t2 t3 t4L1 L2 L3 L4 R5Λ4 , (4.14)

which is one way of expressing the ”Mixed Canonical Form.” Recall ⇤4 is a diagonal matrix containing the

Schmidt values. The squares of the elements are the eigenvalues of the reduced density matrix if you trace

over all the sites to the left or the right. We can repeat to move the boundary:

| i =

σ1 σ2 σ3 σ4 σ5

s3 s4t1 t2 t3L1 L2 L3 R4 R5Λ3 , (4.15)

until we get to the right canonical form,

| i =

σ1 σ2 σ3 σ4 σ5

s1 s2 s3 s4R1 R2 R3 R4 R5
. (4.16)
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Comparing the various steps of the mixed canonical form, it is clear that

Lj⇤j = ⇤j�1Rj , (4.17)

so converting between the forms is as easy as rescaling the rows or columns. An alternative description of

the mixed canonical form is to introduce

Mj = Lj⇤j = ⇤j�1Rj , (4.18)

so that

| i =

σ1 σ2 σ3 σ4 σ5

s4t1 t2 t3L1 L2 L3 R5M4 . (4.19)

Another common representation involves introducing �j given by

�j = ⇤�1
j�1Lj = Rj⇤

�1
j , (4.20)

or equivalently

⇤j�1�j = Lj (4.21)

�j⇤j = Rj . (4.22)

For notational simplicity we treat �0 and �n+1 as identity operators. That is �1 = L1 and �n = Rn. In

terms of these � matrices, the matrix product state looks more symmetrical

| i =

σ1 σ2 σ3 σ4 σ5

a1 a2 a3 a4b1 b2 b3 b4Γ1 Γ2 Γ3 Γ4 Γ5Λ1 Λ2 Λ3 Λ4 . (4.23)

I have nice physical pictures for the L and R matrices – they are just basis changes. The ⇤’s are the Schmidt

values. I don’t have a really good physical intuition about the �’s.

These canonical forms are useful for many reasons. The first property is that expectation values are
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simple. Because of the left and right orthogonality,

h |O| i =

σ'3

σ1 σ2

σ3

σ4 σ5

ψ

ψ*

O (4.24)

=

σ'3

s3 s4t1 t2

u3 u4v1 v2

σ1 σ2

σ3

σ4 σ5

L1 L2 R4 R5M3

(L1)* (L2)* (R4)* (R5)*
(M3)*

O (4.25)

=

σ'3

s3

t2

σ3

M3

(M3)*

O . (4.26)

Draw the diagram expressing the expectation value of a local operator on site j,

Oj in terms of Lj (the left canonical matrix on site j) and the diagonal matrix of

singular values, ⇤j .

Draw the diagram expressing the expectation value hAjBj+1i in terms of Lj , Rj+1

and ⇤j .

Complete the fourth tensor intro notebook.
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B. Canonical Forms for Infinite Matrix Product States

The same reasoning can can clearly be applied to infinite matrix product states – and the same Canonical

forms can be defined. What is less clear is how to transform an arbitrary state into the form. Here we are

going to focus on transforming a given Matrix Product State into the canonical forms. As in our previous

class, the key is to work with the transfer matrix,

E0
I =

s

t'

s'

t

σ

M

M*

. (4.27)

The superscript 0 denotes that it is given. We can assume that the largest eigenvalue of E0
I is 1. If not we

divide M by
p
�. The quantum state is unchanged if we transform this to

EL
I =

s

t'

s'

tu

u'

v

v'

σ

M

M*

U-1U

(U*)-1U*

. (4.28)

If we want the new ML = UMU�1 to be left normalized, we require

t'

t

s

u

u'

v

v'

σ

M

M*

U-1

(U*)-1U*

U

= (4.29)

That is, the identity matrix is a left-eigenvector of the transfer matrix with eigenvalue 1. Note: despite the

bad notation, U is not unitary.

If we multiply this equation on the right by UU⇤, we get

t'

t

s

u

u'

σ

M

M*U*

U

=

t'

t

s

U*

U

. (4.30)
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This can only be true if (up to an un-important multiplicative constant)

t'

t

s

U*

U

=

t'

t

L . (4.31)

That is, considering the left eigenvector of M as a matrix, we want U to be the square root of that matrix.

The best way I know of constructing the square root of a matrix is to do an eigenvalue decomposition:

L = S†DS, (4.32)

where S is unitary. We can therefore clearly write

U = WD1/2S, (4.33)

where W is an arbitrary unitary matrix – which we will choose shortly. For arbitrary W , the tensor

ML = UMU�1 can be interpreted as a basis change: The left normalized condition is that the states are

orthonormal. The unitary matrix W simply rotates this basis. We will choose W so that it is the Schmidt

basis.

To proceed, we write our wavefunction as

| i = · · ·
tj-3

tj+3

σj-2 σj-1 σj σj+1 σj+2 σj+3

tj-2 tj-1 tj tj+1 tj+2
M M M M M M · · · (4.34)

= · · · sj-3

tj+3

σj-2 σj-1 σj σj+1 σj+2 σj+3

sj-2 sj-1 sj tj tj+1 tj+2ML ML ML M M MU · · · . (4.35)
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We then create the reduced density matrix, where we trace over all the spins whose index is bigger than j,

⇢ = · · ·

σ'j-2 σ'j-1 σ'j

sj-3

vj+3

tj+3

uj-3

σj-2 σj-1 σj

sj-2 sj-1 sj tj tj+1 tj+2

uj-2 uj-1 uj vj vj+1 vj+2

σj+1 σj+2 σj+3

ML ML ML M M MU

U*
(ML)* (ML)* (ML)*

M* M* M*

· · · (4.36)

= · · ·

σ'j-2 σ'j-1 σ'j

sj-3

uj-3

σj-2 σj-1 σj

sj-2 sj-1 sj tj

uj-2 uj-1 uj vj

ML ML ML U

U*
(ML)* (ML)* (ML)*

R (4.37)

But since ML is just a basis change (also referred to as an isometry), I can look at the reduced density

matrix in that basis

⇢̄ =

sj

uj

tj

vj

U

U*

R (4.38)

=

t

x

qrs

uvw

W D1/2 S

W * D1/2 S*

R . (4.39)

We now chooseW so that it diagonalizesD1/2S†RSD1/2, in order to turn the wavefunction into the Canonical

form. IE.

⇢ = W †D1/2S†RSD1/2W = ⇤2 (4.40)
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is a diagonal matrix. The entanglement entropy is

S = �
X

j

�j log(�j) (4.41)

where �j are the elements of ⇤.

I will leave it as an exercise to show that MR is right normalized, where

tj-1

tj

σj

MR
= tj-1

tj

σj

sj-1 sjML ΛΛ-1
(4.42)

and that the wavefunction can be expressed in the mixed cannonical form

| i = · · · sj-3

tj+3

σj-2 σj-1 σj σj+1 σj+2 σj+3

sj-2 sj-1 sj tj tj+1 tj+2ML ML ML MR MR MRΛ · · · (4.43)

To summarize, if you want to convert M to canonical form. You first find the left and right eigenvectors

L and R of the transfer matrix. You re-express these as matrices. You diagonalize L = S†DS. You then

diagonalize D1/2S†RSD1/2 = W †⇤2W . The entries of ⇤ are the Schmidt coe�cients. The canonical tensors

are

ML = WD1/2SMS†D�1/2W † (4.44)

MR = ⇤�1ML⇤ (4.45)

� = ⇤�1ML. (4.46)

Note, if you look in the literature, you will see mathematically equivalent varieats on this procedure – for

example you can do it with SVD’s. The original work was [Orus and Vidal, PRB 78, 155117 (2008)] but

there is also a nice discussion by McCulloch from around the same time [arXiv:0804.2509].
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C. Homework 4 – Due Feb 7

Problem 16. For Credit Consider the matrix product state defined by Eq. (1.1).

16.1. Show that the following corresponds to that wavefunction in the left canonical form,

| i =
⇣

|0i a|1i
⌘ |0i b|1i

c|0i

! 
|0i d|1i

e|0i

! 
|0i f |1i

g|0i

! 
h|1i
i|0i

!
(4.47)

where

a =
 1

| 1|
(4.48)

b =
 2p

| 1|2 + | 2|2
(4.49)

c =
p

1� |b|2 (4.50)

d =
 3p

| 1|2 + | 2|2 + | 3|2
(4.51)

e =
p

1� |d|2 (4.52)

f =
 4p

| 1|2 + | 2|2 + | 3|2 + | 4|2
(4.53)

g =
p

1� |f |2 (4.54)

h =
 5p

| 1|2 + | 2|2 + | 3|2 + | 4|2 + | 5|2
(4.55)

i =
p

1� |h|2 (4.56)

Problem 16. cont...

16.2. Find the Schmidt values corresponding to dividing the wavefunction in Eq. (4.47) between sites 1

and 2, between sites 2 and 3, between sites 3 and 4, and between sites 4 and 5.

Problem 17. For Credit Complete the exercise in the notebook ”TensorIntro4.nb.” I know the figures

don’t show up for everyone – it should be Eq. (4.15).
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Problem 18. Bonus For a chain of spin-1 objects with nearest-neighbor interactions, the most general

Hamiltonian which is invariant under rotating all spins:

H =
X

j

c0P
0
j,j+1 + c1P

1
j,j+1 + c2P

2
j,j+1, (4.57)

where PS is the projector of two neighboring sites into total spin S. Actually, this is redundant, since

P 0 + P 1 + P 2 is the identity matrix – so up to an unimportant constant,

H =
X

j

c1P
1
j,j+1 + c2P

2
j,j+1. (4.58)

It turns out that as you vary the parameters, there are di↵erent sectors with gapped ground states – some

of which have broken symmetries that distinguish them. There are also ones with no local order parameter

which are topologically distinct (at least under the condition that the rotational symmetry is maintained).

To understand some of this physics we need to construct the projectors. We can use Clebsch-Gordan

coe�cients, but a more elegant approach is to use the fact that they projector into the eigenspaces of the

operator S2
ij = |Si + Sj|2, with eigenvalues 0, 2, and 6. Therefore

P 0
ij =

(S2
ij � 2)(S2

ij � 6)

(0� 2)(0� 6)
(4.59)

P 1
ij =

S2
ij(S

2
ij � 6)

(2)(2� 6)
(4.60)

P 2
ij =

S2
ij(S

2
ij � 2)

(6)(6� 2)
. (4.61)

18.1. Write these projectors in terms of Si · Sj. [which is how these Hamiltonians are typically written].

Because of this structure, Eq (4.57) can described as the spin-1 bilinear-biquadratic model.
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Problem 18. cont...

18.2. One special case is the AKLT (A✏eck, Kennedy, Tasaki, and Lieb) Hamiltonian

H =
X

j

P 2
j,j+1, (4.62)

which is in a symmetry-protected topological phase. AKLT found an exact solution to this model, which

was central to the development of the concept of topological order, and forshadowed the development of

matrix product states.

The construction used by AKLT was elegant, and a future homework will likely walk you through it – it

gives one story about how to construct matrix product states. Right now we are just going to explore some

of the properties of the ground state:

| i =
⇣

|0i |+i
⌘
0

@
�1p
3
|0i

q
2
3 |+i

�
q

2
3 |�i 1p

3
|0i

1

A

0

@
�1p
3
|0i

q
2
3 |+i

�
q

2
3 |�i 1p

3
|0i

1

A

0

@
�1p
3
|0i

q
2
3 |+i

�
q

2
3 |�i 1p

3
|0i

1

A

0

@
�1p
3
|0i

�
q

2
3 |�i

1

A .

(4.63)

The generalization to more sites is obvious.

Show that this state is left-normalized.

Problem 18. cont...

18.3. Convert this state to the mixed canonical form, where the third site is the orthogonality center.

Problem 18. cont...

18.4. Find the entanglement spectrum if you split this state between the third and fourth state.

Problem 19. Bonus Consider the matrix product state defined by Eq. (2.1). Find the tensors ML, MR

and ⇤ used to represent this state in the left, right, and mixed canonical forms.

Problem 20. Bonus Consider a system described by an infinite matrix product state. Write the expec-

tation value of a local operator in terms of the canonical matrices ML and ⇤.

Problem 21. Bonus Prove Eqs. (4.42) and (4.43).


