
Chapter 5

Optimizing Matrix Product States –

iDMRG

A. Infinite DMRG

Our first algorithm will be the “Infinite Density Matrix Renormalization Group” or iDMRG. If I understand

my history correctly, this was the first “Density Matrix Renormalization Group.” It is a beautiful algorithm.

It is easy to code though, and introduces all of the structure that we need..

It is an iterative technique. Imagine that we have a wavefunction which is a good estimate to the ground

state of the six-site problem

| 6i =

σ1 σ2 σ3 τ1τ2τ3

s1s2s3t1 t2 t3L1 L2 L3 R3 R2 R1Λ3 . (5.1)

Here we have indexed the left three spins as �1,�2,�3, and the right three as ⌧3, ⌧2, ⌧1. Our goal is to find

the L4, R4,⇤4 which give us the best approximation to the ground state on 8-sites

| 8i =

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

s1s2s3s4t1 t2 t3 t4L1 L2 L3 L4 R4 R3 R2 R1Λ4 ,

(5.2)

with some constraint on the bond dimension �. The idea is that we keep repeating this procedure, we will

find that it converges to a fixed point Lj , Rj ,⇤j = Lj�1, Rj�1,⇤j�1 = L,R,⇤. At that point we have

constructed the optimal infinite matrix product state with fixed �.
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We will first solve a slightly bigger problem, optimizing a wavefunction of the form

| ̃8i =

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

s1s2s3t1 t2 t3L1 L2 L3 R3 R2 R1Q4 . (5.3)

Once we have found Q, we use a singular value decomposition to produce L,R, and ⇤.

Our optimization criterion will be energy – that is we want to find Q which minimizes

hHi =

s'1s'2s'3t'1 t'2 t'3

σ'1 σ'2 σ'3 σ'4 τ'1τ'2τ'3τ'4

s1s2s3t1 t2 t3

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

L1 L2 L3 R3 R2 R1Q4

L*1 L*2 L*3 R*
3 R*

2 R*
1

Q*
4

H (5.4)

subject to the constraint

h | i = 1. (5.5)

The normalization can be written

h | i =

s'1s'2s'3t'1 t'2 t'3

s1s2s3t1 t2 t3

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

L1 L2 L3 R3 R2 R1Q4

L*1 L*2 L*3 R*
3 R*

2 R*
1

Q*
4

(5.6)

= s3
t3

σ4 τ4

Q4

Q*
4

. (5.7)

We group together the tensors in red to make a matrix H4, and tie the indices s3, t3,�4, ⌧4 together to make

one index

Q†H4Q =

s'1s'2s'3t'1 t'2 t'3

σ'1 σ'2 σ'3 σ'4 τ'1τ'2τ'3τ'4

s1s2s3t1 t2 t3

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

L1 L2 L3 R3 R2 R1Q4

L*1 L*2 L*3 R*
3 R*

2 R*
1

Q*
4

H . (5.8)
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Here Q is interpreted as a vector of length�⇥�⇥ d⇥ d, where � is the number of values taken on by each of

t and s, while d is the number of values taken on by each of � and ⌧ . Clearly H4 is a �2d2 ⇥�2d2 Hermitian

matrix. In this notation, the normalization condition is

Q†Q = 1. (5.9)

You should be familiar with the idea that if you minimize Q†H4Q with the constraint Q†Q = 1, that is

equivalent to solving the eigenvalue problems

H4Q = EQ, (5.10)

where the eigenvalue E is the energy.

The only other thing we need to think about is calculating H4. Lets specialize to the case of the transverse

field Ising Model

H = �J
X

j

ZjZj+1 � h
X

j

Xj , (5.11)

where Zj = �z
j , and Xj = �j

x are Pauli matrices.

In the present case (where we are thinking about 8 spins) there are 15 terms, which are naturally grouped

into five categories, H = HLL +HLC +HCC +HCR +HRR. If we had longer range couplings, we may also

have HLR terms. The expectation values of the left terms are

hHLLi = �J

0

BBBBBBB@
t'1

t'2
t'3

σ'1 σ'2

s3

t1
t2

t3σ1 σ2

σ3 σ4 τ4

L1 L2
L3

L*1 L*2
L*3

Z1 Z2

Q4

Q*
4

+

t'1
t'2

t'3

σ'2 σ'3

s3

t1

t2
t3

σ1

σ2 σ3

σ4 τ4

L1
L2 L3

L*1
L*2 L*3

Z2 Z3

Q4

Q*
4

1

CCCCCCCA

(5.12)

�h

0
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t1
t2 t3σ1
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+
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X3

Q4

Q*
4

1

CCCCCCCA

=

t'3

s3

t3

σ4 τ4

Q4

Q*
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(HL)3 (5.13)
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which defines the matrix HL. The terms joining the left and central region are

hHLCi = �J

t'3

σ'3 σ'4

s3

t2

t3

σ3 σ4

τ4

Q4

Q*
4L*3

Z3 Z4

L3

(5.14)

= �J

t'3

σ'4

s3

t3

σ4

τ4

Q4

Q*
4

Z4(ZL)3 . (5.15)

The terms just involving the center are

hHCCi = �J

0

BBBBBBB@ σ'4 τ'4

s3

t3

σ4 τ4

Q4

Q*
4

Z4 Z4

1

CCCCCCCA

� h

0

BBBBBBB@ σ'4

s3

t3

σ4

τ4

Q4

Q*
4

Z4 +

τ'4

s3

t3

σ4

τ4

Q4

Q*
4

Z4

1

CCCCCCCA

. (5.16)

There is no need to draw the terms for the right, since they are just mirror images of the left.

Putting everything together, we start with the following matrices:

• HL
3 : A �⇥ � matrix which describes the Hamiltonian on the left, written in the Schmidt basis.

• ZL
3 : A � ⇥ � matrix which describes the Z operator acting on the third site, written in the Schmidt

basis.

• HR
3 : A �⇥� matrix which describes the Hamiltonian on the right, written in the Schmidt basis – note

that by symmetry this can typically be taken to be equal to HL
3

• ZR
3 : A �⇥� matrix which describes the Z operator acting on the third site from the right, written in

the Schmidt basis – note that by symmetry this can typically be taken to be equal to HL
3 .

Suppose we have symmetry, so we only need the first two. We use these to construct H4. We find the lowest
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energy state Q4 and energy E4. We then do a SVD to construct L4 and ⇤. We then construct

ZL
4 =

t'4

t4

σ'4
t3

σ4

L*4

Z4

L4

(5.17)

HL
4 =

t'4

t4

t'3

t3

σ4

L4

L*4

(HL)3 � h

t'4

t4

σ'4
t3

σ4

L*4

X4

L4

� J

t'4

t4

t'3

σ'4

t3

σ4

L*4

Z4(ZL)3

L4

� E4

2
1. (5.18)

Where the last term is proportional to the identity matrix. We subtract o↵ half the energy to keep the

operator bounded (it is only half, because the other half is absorbed by the right). E↵ectively this means

that when we calculate the next energy, we are just finding out how much energy is added by the two new

sites. After j iterations, our best estimate of the energy per site is Ej/2.

We now have everything we need for the next iteration. Note: We don’t even need to store the L matrices

(though we can store the latest L and use it to seed out eigenvalue solver – one of the homeworks describes

how to use it).

B. Starting Out

One good question is what to use for the first iteration. It turns out the best idea is to use a starting HL and

ZL which breaks the up-down symmetry. If you don’t you will end up with a Schrodinger cat state – which

requires twice the bond dimension, and is poorly behaved. A good choice is to start with bond dimension 1,

and use

HL = 0 (5.19)

ZL = 1. (5.20)

Spend the rest of class beginning to implementing this algorithm in Mathematica,

using the template notebook. Finishing it will be part of your homework. I’ll walk

around and help.

C. Homework 4

Problem 22. Finish writing the IDMRG Code that we started in class, and do the exercises at the end

of the notebook.


