P683 HW3

Due Friday Feb 5, 2010

Problem 1. harmonic oscillator

The canonical example to learn about path integrals is the harmonic oscillator, $H = \hat{a}^{\dagger} \hat{a}$. [We set the oscillator frequency to one, and neglect the +1/2 that one usually includes.] We will introduce "coherent states" defined by $\hat{a}|a\rangle = a|a\rangle$ which obey $\langle a|b\rangle = \exp(a^*b - (|a|^2 + |b|)/2)$ and for which the resolution of the identity is $\mathbf{1} = \int \frac{da^* da}{2\pi i} |a\rangle \langle a|$. [Here $da^* da/(2\pi i) = dx dy/\pi$, where a = x + iy.]

We are going to make an approximation to the partition function $Z = \text{Tr}e^{-\beta H} = \int \frac{da^* da}{2\pi i} e^{-|a|^2} \langle a|e^{-\beta \hat{H}}|a\rangle$.

1.1. Primitive Approximation As the simplest approximation (good at high temperature) we write

$$\langle a|e^{-\beta\hat{H}}|a\rangle \approx \langle a|(1-\beta\hat{H})|a\rangle \approx \exp(-\beta\langle a|H|a\rangle).$$

Calculate Z and $\langle \hat{a}^{\dagger} \hat{a} \rangle$ in this classical "primitive approximation".

1.2. Two time-slice Approximation The next level of sophistication involves breaking up the exponential into two pieces:

$$Z = \int \frac{da^* \, da}{2\pi i} \frac{db^* \, db}{2\pi i} \langle a | e^{-\beta \hat{H}/2} | b \rangle \langle b | e^{-\beta \hat{H}/2} | a \rangle.$$

Here the primitive approximation becomes

$$\langle a|e^{-\beta \hat{H}/2}|b\rangle \approx \langle a|(1-\beta \hat{H}/2)|b\rangle \approx \exp[-\beta \langle a|H|b\rangle/2 - (\beta/2)(a^*(b-a) + (a^*-b^*)b)].$$

Calculate Z, $\langle \hat{a}^{\dagger}(0)\hat{a}(0)\rangle$, $\langle \hat{a}^{\dagger}(-i\beta/2)\hat{a}(0)\rangle$, and $\langle \hat{a}^{\dagger}(0)\hat{a}(-i\beta/2)\rangle$ within the two time-slice approximation.

1.3. The exact partition function is $Z = 1/(1 - e^{-\beta})$, and the exact mean occupation number is $\langle \hat{a}^{\dagger} \hat{a} \rangle = 1/(e^{\beta} - 1)$. Expand these to second order in β . How do they compare with the results of the primitive and two time-slice approximations?

1.4. (bonus) Calculate $\langle a^{\dagger}a \rangle$ in the *n*-time-slice approximation. In the limit $n \to \infty$ this is the path integral we discussed in class, and is exact.