P683 HW4

Due Wednesday Feb 10, 2010

Problem 1. Lipman-Schwinger equation

As a practice with the equation of motion approach, consider the Hamiltonian

$$H = \sum_{k} a_k^{\dagger} a_k + \sum_{kq} a_k^{\dagger} a_q.$$

Write down the equations of motion for $a_k(t)$, and use them to derive an equation obeyed by $G_{kq}(t) = (1/i) \langle Ta_k(t) a_q^{\dagger}(0) \rangle$. Fourier transform with respect to time to arrive at the Lipman-Schwinger equation.

Problem 2. Analytic Structure of the Self-Energy In a few lectures we will encounter a self-energy of the form

$$\Sigma(p,t-t') = \pm i^2 \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} \frac{d^3p_3}{(2\pi)^3} \frac{1}{2} \left(V(p-p_2) \pm V(p-p_3) \right)^2 (2\pi)^3 \delta(p+p_1-p_2-p_3) \times G(p_1,t'-t)G(p_2,t-t')G(p_3,t-t').$$

This self-energy may be written as

$$\Sigma(p, t - t') = \frac{1}{i}\theta(t - t')\Sigma^{>}(p, t - t') \pm \frac{1}{i}\theta(t' - t)\Sigma^{<}(p, t - p').$$

2.1. Write $\Sigma^{>}(p, t - t')$ and $\Sigma^{<}(p, t - t')$ in terms of $G^{>}$ and $G^{<}$.

2.2. Following the arguments given in class we should have

$$\Sigma(p,\omega) = \int \frac{dz}{2\pi} \frac{1}{\omega - z} \Gamma(p,z)$$

How is $\Gamma(p, z)$ related to $\Sigma^{>}$ and $\Sigma^{<}$.

2.3. Using the fact that $G^{>}(p,\omega) = (1 \pm f(\omega))A_p(\omega)$ and $G^{<}(p,\omega) = f(\omega)A_p(\omega)$, and the result of 2.2, write an expression of $\Sigma(p,\omega)$ in terms of the occupations f and the spectral function A. Do not do any integrals.

2.4. Can you write an expression for $\Gamma(p, \omega)$ in terms of the discontinuity of Σ accross the real axis? What is that expression?