
P683 HW5

Due Wednesday Feb 17, 2010

Problem 1 (Viscocity). Viscocity is most simply defined in terms of an experiment where two

plates are separated by a distance L. The top plate is moved in the x̂ direction with speed v/2 and

the bottom plate is moved in the opposite direction with the same speed. The force F exerted by

the fluid on each plate is related to the shear viscosity by F = ηAv/L, where A is the area of each

plates.

A completely equivalent definition is to consider a fluid where the x-component of velocity is a

function of the z-position: v = v(z)x̂. Imagine putting an imaginary surface at height z, parallel to

the x-y plane. The momentum transfer per unit time per unit area through this surface is defined

to be is ηv′(z).

1.1. Show that these two definitions are equivalent.

Hint: take the former setup and break up the fluid into small pieces. Apply Newton’s laws to each

piece (which is clearly not accelerating).

Using the second definition, the shear viscosity can be written as

ηv′ =

∫

d3p

(2π)3
pz

m
(px − mv)f(p) (1)

where v′ is the derivatve of v with respect to z.

We will take the distribution function to be of the form f = f0 + δf , with

f0 = exp

(

−β

(

|p− mv(z)x̂|2
2m

− µ

))

being the local equilibrium form, where the velocity v = v(z)x̂ is a function of z, but points in the

x̂ direction. We will assume that δf is small, and solve the Boltzman equation:

p · ∇r

m
f = Ip(f).

Given that Ip(f0) = 0, we will can in principle linearize the right hand side, so it is just a linear

function of δf (ie. the convolution of δf and some kernel). We could then ignore δf on the left

hand side. Solving the resulting integral equation would give δf .
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1.2. Suppose we make a relaxation time approximation Ip(f) = −δf/τ . Solve for δf .

1.3. Perform the integral in Eq. (1) to relate η to the relaxation time τ . Express your answer in

terms of the density n =
∫ d3p

(2π)3 f0.

Hint: the equipartition theorem gives

∫

d3p

(2π)3
(pz)

2

2m

(px − mv)2

2m
f0(p) = n(kBT/2)2

1.4. The standard approximation for the relaxation time is τ = 1/(nσ̄v̄) where mv̄2/2 = kT and

σ̄ is the total scattering cross-section. What do you then get for η in terms of σ̄?

We will now go a little deeper into the expression for τ .

It turns out that the δf in problem 1.2 is not the exact solution to the integral equation, but is

still a reasonable approximation. A nice trick for estimating τ is to start with Ip(f) ≈ δf/τ and

then take moments. The integral over p of both sides vanishes, but the following integrals do not:

∫

d3p

(2π)3
pz(px − mv)Ip(f) ≈

∫

d3p

(2π)3
pz(px − mv)

δf

τ
.

Thus a good approximation to τ is

τ−1 ≈
∫ d3p

(2π)3 pz(px − mv)Ip(f)
∫ d3p

(2π)3
pz(px − mv)δf

(2)

Note that this is the viscosity relaxation time, and one will want slightly different expressions for

looking at the relaxation of different δf ’s.

For simplicity we will take the scattering to be isotropic so that to linear order the collision integral

is

Ip(f) =

∫

d3k

(2π)3
d3q

(2π)3
σ

m
2πδ

(

k2

2m
+

p2

2m
− (k + q)2

2m
− (p − q)2

2m

)

× [f0(k + q)δfp−q + f0(p − q)δfk+q − f0(k)δfp − f0(p)δfk]

Inserting δf from 1.2, one can use symmetry arguments to write

Ip(f) = −δfp

∫

d3k

(2π)3
d3q

(2π)3
σ

m
2πδ

(

k2

2m
+

p2

2m
− (k + q)2

2m
− (p − q)2

2m

)

f0(k).
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1.5. Explain the symmetry arguments.

Clearly if the integral right before question 1.5 was independent of p, then the relaxation time

approximation would be exact. It is not independent of p, so we must resort to Eq. 2, finding

1

τ
=

∫

d3k
(2π)3

d3q

(2π)3
d3p

(2π)3
σ
m

2πδ
(

k2

2m
+ p2

2m
− (k+q)2

2m
− (p−q)2

2m

)

f0(k)f0(p)p2
z(px − mv)2

∫ d3p

(2π)3
f0(p)p2

z(px − mv)

2

This is clearly independent of v, so we may set v = 0. By making the substitution m̄ = k/
√

2mT

(and similar substitutions for p and q), one can adimensionalize the integrals, writing

1

τ
= nσ

√
2mTI,

where I is just some number which can be expressed as a quotient of integrals.

1.6. What is the expression for I?

1.7. (bonus) Calculate I. (I believe it is doable analytically, but I couldn’t be bothered – it seemed

like more trouble than it is worth. If you do want to do this, some of the tricks are given in Reif

Section 14.8. In fact the whole calculation appears there, but since Reif uses slightly different

notation I couldn’t just pull the answer out. Reif also shows that the approximation in Eq. 2 can

be derived from a variational principle.)
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