P683 HW1

Due Friday Jan 29, 2010

Problem 1. Ideal Gas Consider an ideal gas with Hamiltonian

$$H = \sum_{k} \epsilon_k a_k^{\dagger} a_k$$

where $\epsilon_k = k^2/2m - \mu$.

1.1. Use the Heisenberg's equations of motion for a_k to calculate $a_k(t)$ in terms of $a_k(0)$. Do this for both Bosons and Fermions.

Solution 1.1. Heisenberg equations of motion read

$$i\partial_t a_k = [a_k, H]$$

= $\epsilon_k a_k$,

so $a_k(t) = a_k(0)e^{-i\epsilon_k t}$. The same argument yields $a_k^{\dagger}(t) = a_k^{\dagger}(0)e^{i\epsilon_k t}$.

1.2. Write an explicit expression for

$$G_k^{>}(\omega) = \int dt \, e^{i\omega t} \, \langle a_k(t) a_k^{\dagger}(0) \rangle$$

$$G_k^{<}(\omega) = \int dt \, e^{i\omega t} \, \langle a_k^{\dagger}(0) a_k(t) \rangle$$

in terms of $n_k = \langle a_k^{\dagger}(0) a_k(0) \rangle$. You should use that $\int dt \, e^{i\nu t} = 2\pi \delta(\nu)$.

1.3. In class we showed that in equilibrium $G_k^{>}(\omega) = e^{\beta \omega} G_k^{<}(\omega)$. Use this to find n_k .

1.4. Find $A_k(\omega) = G_k^{>}(\omega) - G_k^{<}(\omega)$