P683 HW2

Due Wednesay Feb 3, 2010

Problem 1. Typical Spectral Density One is typically interested in A, but can most easily
calculate G. Here we will imagine we did a calculation of GG, and want to know what A looks like.

Let us take )

- w—€—A—w/2

where € and A are real. We will derive this G in a future class. It is typical of an atomic state.

G(w)

By v/ we mean the principle branch of the square root. Thus if Im(w) > 0 and Re(w) > 0, then

Im(v/—w) > 0.

Define Fj(w) = i[G(w +id) — G(w — id)], so that A(w) = lims_,g Fs(w).
1.1. Plot Fj(w) for 6 = 0.0001, A = 0.02,€¢ = 1, over the range —1 < w < 2. Take the vertical axis
to go from 0 to 200. Play a bit with the parameters. What happens as one takes § — 07

1.2. Plot Fs(w) for § = 0.0001, A = 4,e¢ = —1, over the range —1 < w < 2. Take the vertical axis to
go from 0 to 2. Play a bit with the parameters. What happens as one takes § — 07 What happens

as one makes A bigger? You will need to adjust the vertical scale.

Solution 1.1 (and 1.1). For ¢ > 0, the function Fjs is independent of ¢ for small . There is
a single, roughly Lorentzian, peak, centered at w = €, whose width is set by A: bigger A\ means
wider peak.

For € < 0, there is a sharp peak for w < 0 and a continuum of states for w > 0. As § — 0 the
peak sharpens into a delta function, but the continuum stays largely unchanged. As one makes
A larger, the peak approaches the continuum, which develops a sharper edge and longer tails.
Although it might not look like it on this scale, the total spectral weight in the continuum grows
as A becomes larger (go ahead and numerically do the integral and you will see). The total weight

in the delta-function simultaneously drops as A grows.
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1.3. (bonus) Analytically calculate A. Its not that hard — but the expression is not as revealing as

making the previous plots.



Solution 1.2. We separately consider w > 0 and w < 0. When w > 0 the square roots are purely
imaginary, but one uses a different branch for G(w + id) and G(w — id)], which yields

AVw
(w—€)2+wA2/4

Alw > 0) =

For w < 0, the only possible singularity of G is a simple pole. The location of the pole is found
by setting G~! = 0, which gives a quadratic equation for /—w. We only want solutions of this
quadratic where we are on the principle branch of the square root: ie where \/—w is real and
positive. If € > 0 there are no such physical solutions, and A(w < 0) = 0. If € < 0 there is one
such solution (the other is on a separate Rieman sheet with y/—w < 0). The pole is at

(\2)2/4 — ) — /4.

The residue of G at w = £ is
7 = ! )
14+ N/(4e”

Putting this together we have

Aw) = 00 L 02280 —

where 0(w) is the Heavyside step function.

Problem 2. Analytic Structure of G The greens function is related to the spectral density by

Glw) = [ £

Qrw—2z

2.1. Let A(z) = 276(z — €), where € is real. What is G7 Is it analytic away from the real axis?

[Note, since any A can be written as some limit of delta-functions, this immediately gives us a

“physicist proof” of the analyticity of G away from the real axis. |

Solution 2.1.

2.2. Suppose
r

(z — €2+ ([/2)?

with real e and I'. What is G(w). Note G is discontinuous across the real w axis, so one has to

A(z) =

separately consider the case Im(w) > 0 and Im(w) < 0



Solution 2.2. One can either decompose A(w) into it’s poles and do contour integrals for Imw >
0,Imw < 0(doesn’t matter whether one closes the contour in the upper or lower half plane) or
guess G(w) (as I did) the result and check via the relation from Problem 1 that it gives the right
A(w). The result is

1
- w—e+i(I'/2)sign(Imw)

G(w)

Problem 3. By using the definition A(w) = G”(w) F G<(w), show that A(w) is real [for real w].

Solution 3.1. The spectral representations for Gy (w) = Z! > e PEi (i) 2210 (w — (B; —
E;)), Gy (w) =21 Do e PEi (i} ) |22m 0 (w — (B — E;)) derived in class are manifestly real for

real w. This implies that A(w) is real for real w.




