
P683 HW2

Due Wednesay Feb 3, 2010

Problem 1. Typical Spectral Density One is typically interested in A, but can most easily

calculate G. Here we will imagine we did a calculation of G, and want to know what A looks like.

Let us take

G(ω) =
1

ω − ǫ− λ
√
−ω/2 ,

where ǫ and λ are real. We will derive this G in a future class. It is typical of an atomic state.

By
√
x we mean the principle branch of the square root. Thus if Im(ω) > 0 and Re(ω) > 0, then

Im(
√−ω) > 0.

Define Fδ(ω) = i[G(ω + iδ) −G(ω − iδ)], so that A(ω) = limδ→0 Fδ(ω).

1.1. Plot Fδ(ω) for δ = 0.0001, λ = 0.02, ǫ = 1, over the range −1 < ω < 2. Take the vertical axis

to go from 0 to 200. Play a bit with the parameters. What happens as one takes δ → 0?

1.2. Plot Fδ(ω) for δ = 0.0001, λ = 4, ǫ = −1, over the range −1 < ω < 2. Take the vertical axis to

go from 0 to 2. Play a bit with the parameters. What happens as one takes δ → 0? What happens

as one makes λ bigger? You will need to adjust the vertical scale.

Solution 1.1 (and 1.1). For ǫ > 0, the function Fδ is independent of δ for small δ. There is

a single, roughly Lorentzian, peak, centered at ω = ǫ, whose width is set by λ: bigger λ means

wider peak.

For ǫ < 0, there is a sharp peak for ω < 0 and a continuum of states for ω > 0. As δ → 0 the

peak sharpens into a delta function, but the continuum stays largely unchanged. As one makes

λ larger, the peak approaches the continuum, which develops a sharper edge and longer tails.

Although it might not look like it on this scale, the total spectral weight in the continuum grows

as λ becomes larger (go ahead and numerically do the integral and you will see). The total weight

in the delta-function simultaneously drops as λ grows.

-1.0-0.5 0.0 0.5 1.0 1.5 2.0
0

20
40
60
80

100
120
140

Ω

A
HΩ
L

Problem 1.1, Λ=0.02, Ε=1

A HΩL HanalyticL

F∆ HΩL ∆=0.0001

-1.0-0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Ω

A
HΩ
L

Problem 1.2

F∆ HΩL, Λ=10
F∆ HΩL, Λ=6
F∆ HΩL, Λ=4

1.3. (bonus) Analytically calculate A. Its not that hard – but the expression is not as revealing as

making the previous plots.
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Solution 1.2. We separately consider ω > 0 and ω < 0. When ω > 0 the square roots are purely

imaginary, but one uses a different branch for G(ω + iδ) and G(ω − iδ)], which yields

A(ω > 0) =
λ
√
ω

(ω − ǫ)2 + ωλ2/4
.

For ω < 0, the only possible singularity of G is a simple pole. The location of the pole is found

by setting G−1 = 0, which gives a quadratic equation for
√
−ω. We only want solutions of this

quadratic where we are on the principle branch of the square root: ie where
√−ω is real and

positive. If ǫ > 0 there are no such physical solutions, and A(ω < 0) = 0. If ǫ < 0 there is one

such solution (the other is on a separate Rieman sheet with
√
−ω < 0). The pole is at

ω = ξ =
√

(λ/2)2/4 − ǫ) − λ/4.

The residue of G at ω = ξ is

Z =
1

1 + λ/(4ξ
).

Putting this together we have

A(ω) = θ(ω)
λ
√
ω

(ω − ǫ)2 + (λ/2)2ω
+ θ(−ω)2πZδ(ω − ξ)

where θ(ω) is the Heavyside step function.

Problem 2. Analytic Structure of G The greens function is related to the spectral density by

G(ω) =

∫

dz

2π

A(z)

ω − z
.

2.1. Let A(z) = 2πδ(z − ǫ), where ǫ is real. What is G? Is it analytic away from the real axis?

[Note, since any A can be written as some limit of delta-functions, this immediately gives us a

“physicist proof” of the analyticity of G away from the real axis. ]

Solution 2.1.

G(ω) =
1

ω − ǫ

2.2. Suppose

A(z) =
Γ

(z − ǫ)2 + (Γ/2)2

with real ǫ and Γ. What is G(ω). Note G is discontinuous across the real ω axis, so one has to

separately consider the case Im(ω) > 0 and Im(ω) < 0
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Solution 2.2. One can either decompose A(ω) into it’s poles and do contour integrals for Imω >

0, Imω < 0(doesn’t matter whether one closes the contour in the upper or lower half plane) or

guess G(ω) (as I did) the result and check via the relation from Problem 1 that it gives the right

A(ω). The result is

G(ω) =
1

ω − ǫ+ i(Γ/2) sign(Imω)

Problem 3. By using the definition A(ω) = G>(ω) ∓G<(ω), show that A(ω) is real [for real ω].

Solution 3.1. The spectral representations for G<
p (ω) = Z−1

∑

i,j e
−βEi |〈i|ψp|j〉|22πδ(ω − (Ei −

Ej)), G
>
p (ω) = Z−1

∑

i,j e
−βEj |〈i|ψ†

p|j〉|22πδ(ω− (Ei −Ej)) derived in class are manifestly real for

real ω. This implies that A(ω) is real for real ω.
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