P7654 HW3

Due Wednesday Feb 6, 2013

Problem 1. Elementary Calculation of linear response of harmonic osdiator Here we will use under-
graduate level physics to calculate the linear responsesiofiple Harmonic Oscillator. As always, if this is
trivial for you, then skip it.

As discussed in class, we consider a system described byltidaizun
2

1
H= % + iwng—mF(t).

1.1. Use the Heisenberg equations of motiath,A = [A, H|, derive a second order inhomogeneous equa-
tion of motion for the operatar.

Solution 1.1.
x4 wiz = F(t)

We will use Greens functions to solve this equation. Suppdse- ty) is a solution to this differential
equation withF'(t) = (¢t — to). A solution to the generic inhomogeneous equation is then

o(t) =~ [ dix(t = o) F(t). 1)

As is indicated by this careful wording, the Greens funct®onot unique.The "-" that | just added gives the
convention we used in class where we calculate the resporsspdtential rather than a response to a force.

1.2. Explain in a couple sentences why it is not unique. Given aréqulary, how do you generate the
most general Greens function? Hint: what is the most geti@rad we could write in Eq. 17?

Solution 1.2. We can always add the homogenous solution to the Green'sidunio generate another
one,

XA (t —to) = x (t — to) + Asin (wo (t —to)) + B cos (wo (t — to)) (2)

as (07 +wd) xAB (t —to) = (07 + wd) x (t —to) =5 (t — to).

The physically most useful Greens function is the "retatdet x*, which is characterized by?(¢) = 0
fort < 0.

1.3. Use your differential equation to show that

is the retarded Greens function for this equation.
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Solution 1.3. Obviously this function hag” (t < 0) = 0. It's left to verify that

(07 + W) X (t—to) =6 (t —to). (3)

The least confusing approach is to check

/d (0 +w?) XE (t — to) £ (to)

sin (wp (t — to))
wo

{ (t — to) W—i—%(zﬁ—to)cos(wo (t—to))] £ (to) (4)

0 (87 +wi) 0 (t —to) [ (to)

Il
\\\

{5 £ — t9) cos (wo (£ — t0)) f (fo) 4@4@%2_“))]“ (to)]

having used integration by parts in the next-to last lindng driginal factor of 2 error in the question came
from the fact | erroneously threw away theterm.]

1.4. Fourier transform this expression to get
Fw)

Solution 1.4. Anywhere above the real ling,” (w) is well defined by

T (w) = /dt ety (1) :/0 dt & S ]
1 [ 1 1 } 1 ®)

i(w+wo)t _ ei(w—wo)t

= 2

= — — -
20 |w+wyg w—wp we — wp

As a final connection to your undergraduate physics, condiecasel’(t) = F cos(wt),and use the fact
that

2(t) = zo(t) + / dtox(t — to)F(to),

wherex(t) is the solution to the homogeneous equation. I'd like to ktleeRMS value of the position is

in steady state:
1 T
= e 2
o T/o (z(t)2)dt.

1.5. What is the natural value df to use for our integration window?

Solution 1.5. At equilibrium we expect the system to oscillate at the feagpy of the driving forcew,
and so the natural period to integrate over'is- 27 /w.




1.6. Assumingw # wy, find 0. The result should be familliar.

Assume that before the probe was applied the system wasrmahequilibrium, so

((1/2)wizo(t)?) % coth (%) .
(zo(t)) = 0

Note: you do not need to prove these (but they are not hard)vigive a derivation in Prob. 3

Solution 1.6. Let
zF (t) = /dtox (t — to) F (to) = / dto

taking the oscillations & — —oo to cancel out.
We have, given that the homogenous and inhomogenous s@uisve different periods,

<:£ (t)2> - <a:0 (t)2> +2(x () 2" (1)) + <xF (t)2>
= (20 (1) + (a7 ().

Takingz!" to be classical, we have

oz W 2m/w cos (wt) 7 ’ F?
xa)—§A \ =)~

SO

I F?

2

0° = — coth (fwy/2) + ————.
= 2 (wf — )’

As i — 0 the result approaches the familiar resonance peak for addrarmonic oscillator.

¢ sin (wo (t — to)) cos (wt)
o wo (w3 — w?)

(6)

(7)

(8)

9)

Problem 2. Sophisticated Calculation of linear response of harmonic scillator

Recall from class
X(t) = i0(t)([(t), 2(0)])

where the expectation values are taken in the absence ofdhe.p

(10)

2.1. Write the equations of motion for the operataig) andp(t) (in the absence of any perturbation).

A~

Solution 2.1. These are given b, A = [fl, H} and so

idyx (t) = ip (t)
0 () = —iwda (t)

(11)
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2.2. The solution of these equations will be of the form
z(t) = a(t)z(0) + b(t)p(0). (12)

Finda(t) andb(t).

Solution 2.2. This leads to the classical equations of motion,

x (t) = z (0) cos (wot) + pu(JO)

sin (wot) (13)

p(t) = —wox (0) sin (wot) + p (0) cos (wot) .

2.3. Substitute this result into Eq. (10). Use the computatidatienships. Compare with the result in the
previous question.

Solution 2.3.
[z (t),2(0)] = |2 (0) cos (wot) + pu(JO) sin (wot) ,z (0)| = _wi sin (wot) (14)
0 0
SO
B eiwot _ e—iwot
t) = 15
X (1) =0(0) (15)
The same result.

Problem 3. Equilibrium fluctuations of harmonic oscillator

We know that in thermal equilibrium

3.1. Use your explicit expression foy*(w) to calculate the equilibrium RMS equilibrium fluctuations

o= +/(z(t)?).



Solution 3.1.
/ ax 1@ (16)
Tr —a
Using
) = ijo - w_lwo] — P T 5w wn) — 8w wo)] (a7)
we have
XS (@) = 5 f (@) 0 (@~ w0) =8 (w -+ wo)]
o ‘ (18)
X< (t) = o [e7 08 f (wo) — €' f (—wp)]
and so
() = (2 (07) = x* (0) = £ coth (Bua/2). (19)

Problem 4. Lindhard Response functionHere we give an elementary "semiclassical” derivation &f th
density response function of an ideal gas. In the next quesive will give a diagrammatic argument.

We will start with the phase space distribution functipfr, p, t) — this is the density of particles in phase
space. L.Ef(r,p,t)d*rd®p is the number of particles in a small element of phase sgé&eé’p at timet.
Clearly the very existence of this function is at odds witlagtum mechanics. We won't worry about such
minor issues.

The equation of motion obeyed by this distribution functisthe Boltzmann equation
@+ -V = (V,V) - Vo) f(rp,t) = 0.

We will imagine thatV (r,t) is an arbitrary function of space and time. It turns out tiwg ts a good
description as long ag varies slowly in space compared to the interparticle sgacmd slowly in time
compared to the "Fermi energy.”

To first order inV (r, ¢t) we want to know what the density is at positiohand timet’. Since there are no
interactions, this should be doable — the only hard work keeping. We begin by writing (r, p,t) =

fo(r,p,t) + 8f(r, p,t) where
1

Plem—m) 1

t) =
fO(T7p7 ) 65(

In the classical limit we can just ugig(r, p,t) = e~B®?*/2m=1) For most of this problem we will not worry
about the exact form.

Linearizing the Boltzmann equation, we get

@+ - V.)5f = ((V,V) - Vp) fo (20)
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4.1. Fourier transform Eq. (20) and solve for

51 (kpw) = [ drate™ 051 (1)

Solution 4.1. Substitutingdy (r,p,t) = fdJkdw i(kr—wt) § f (k,p,w) and similar forV, and noting
fo(r,p,t) = fo(p), we have
(<itw + 2 1) 8f (ko) = (KV (k,w)) - (Vo) (2)
or
k-V,fo
of (k =_ = PU Yk w).
flhopw) = b gV ) (22)

If we integrate this expression ovemwe can find the density fluctuations:

5n(k,w):/(;f) of(k,p,w).

The resulting expression will be of the form
on(k,w) = x(k,w)V(k,w),
which by now should feel comfortable.

4.2. What isx(k,w)? Don't do thep-integral yet.

Solution 4.2. Integrating ovep on both sides we find

d k-V,f
X (K, w) :/(25)3 (—w+%?k). (23)

If you doublek and doublev, you should find thak (£, w) is unchanged. This means that

x(k,w) = x(w/k)

There are lots of things one can do with this function. Thetnmaportant result is what happens for zero
temperature Fermions, where

Vpfo=—pi(p| — k).

4.3. By writing thep integral in spherical coordinates, findk,w) for a zero temperature Fermi gas. It may
help organize things if you note (by dimensional analysis)

(k) = kym§ (“"]’f)
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and use the result

1
1
/dc ¢ ::U10g<$+ >—2
1 xT—cC z—1

Plot the real and imaginary parts fx). Don’t worry too much about which branch of the log to use + jus
be consistent.

Solution 4.3. Rewrite our equation, for zero temperature fermions,

2dpd (cosB) |k|cos6 (p — k
x(/aw):/p 10(2 ) K| 1 (P — k)
(27) (w— Lpk|cosb)

% d (cos ) cos 6 (24)
B fm/ (2m)?  (wm/ksk — cosb)
to find
f(w):xlog<zi_1>—2. (25)

Letting Mathematica pick the log branch, we have the graptuges in Fig. 1.

f(x)
5p

4L

3F

0.5 1.0 15 2.0

_1:,

_2:
Figure 1: The real (blue) and imaginary (magneta-ish) partg of).

4.4. For largew, this response function falls off as the square of frequeneyw—2. Verify this result, and
calculate the coefficient.

Solution 4.4. Usinglog [1 + z] ~ = — 2%/2 + 23 /3, we have
14+ 1/z 21
f(w)—xlog<1_1/w>—2~§ﬁ (26)
and
2k} (k2
v~ 28 <_> . (27)
3m \w
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We will use this in Question 6

Problem 5. Lindhard function from single particle Greens Functions Here we will again calculate the

density response function of a non-interacting gas, bsttime we will use the formalism developed in
class:

X t) = i0(t){[p(r, ), p(0,0)]) (28)
where
P(ﬁ t) = TZJT(n tW(Ta t)'

It is often more convenient to work with the time-orderedom@sse function

X(Tv t) = <Tp(7‘, t)p(07 0)>

5.1. Apply Wick’s theorem, and come up with a "diagram” fgr Why is this called a "particle-hole
bubble”.

Solution 5.1.

x(rt) = (01 ) v () (0110,0)0,0)) = (T (1) ¥ (0,0)) (T¥! (0,000 (1)) (29)

(0,0) (r,t)

There are many ways to calculate this bubble. One can useubfats sums (see Coleman’s text) but the
simplest is actually to work with Eqg. (28).

5.2. Using Wick’s Theorem, express

H(T7 t) = <[p(7“, t)a P(07 O)]>

in terms of G~ (r, t) andG<(r, ).

Solution 5.2. RecallingG™ (r,t) :< (r, ) ¥t (0,0) > < (0,0) ¢ (r,t )>,we have simply
I (r, 1) = (& (r,6) 6 (1) &1 (0,00 (0,0) ) — (47 (0 0) 4 (r, ) (r,1))
= (91 ()0 (0,0)) (4 (1) 61 (0,0)) — <w <o,0>zz3<r, 1) (40,04 (1)) (@0)
=G~ (=1, =) G” (r,t) = G~ (r,1) G~ (=1, -1).
Recalling Feynman’s interpretation of antiparticles agiglas moving backwards in time, we can see this
again as a particle-antiparticle diagram.




Recall

G<(k,w) = np2m6(w — ;) (31)
G (kyw) = (1d£np)276(w — €g). (32)

Also, note that one can Fourier transform Eq. (28) to get

x(k,w) /——szw)

2mw —

5.3. Write x(k,w) as an integral over momenta. If you linearize this resulsfoall £, you will reproduce
your results from the semiclassical arguments.

Solution 5.3. In Fourier spacell (k,w) is
/ / (k= /2,0 — w/2) G (k + p/2, 7+ w/2) -
—GS(k+p/2,n+w/2)G” (k—p/2,n—w/2).
Using the explicit expressions, we have
1T (k,w) / / Lk (Mh—py2(1 £ Npppya) = M2 (1 £ g y2)) X (34)
2m6(n — w/2 — €_py2)2m0(N +W/2 — €41p/2)
One of the delta functions can be used to get rid ofitirgegral — that still leaves one more,
d®k
I (k,w) = / 2n)? (Mk—pj2 = Mtpy2) 270(w — (€p—pj2 = €htp/2))- (35)

Problem 6. Random Phase ApproximationNow we will use our previous result to approximate the den-
sity response function of an interacting gas. We will firstloig by continuing our semiclassical argument.

The idea is that we will include interactions in our Boltzmaaguation, by taking the intuitive approximation
V(r,t) = Vy(r,t) + /dr’U(r —1"n(r'),

whereU (r) is the inter-particle interactions and stands for "eXternal”. This is the "Hartree” approxima-
tion, where each patrticle interacts with the "average dgh§ubstituting this into our Boltzmann equation,
and linearizing, one has

(W =p-km)of(k,p,w) = [Vo(k) + U(k)on(k)] (k - Vp)fo(p,w)

As before, we solve fof f to get

(k : vp)fO(pv OJ) )

Of(k,p,w) = [Vy(k) + U(k)on(k)] w—p km
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Summing ovep gives
on(k,t) = xo(k,w) [Va(k) + U(k)on(k)]

whereyq is the susceptability of the noninteracting gas. A littl@igthtforward manipulation then gives

 xolk,w)
x(k,w) = 1— U?k)xo(/%w)

6.1. Write a set of diagrams which corresponds to this statement.

Solution 6.1. Rewriting

o X0 o — n
X= T 0w => x0(Uxo) (36)

n=0

we can interpret the sum as

elelelelolels

6.2. PlasmonsSuppose our particles are interacting with a Coulomb piatefit k) = ¢2/k2. Use the large
w approximation you derived foy, to show thaty has a simple pole. This corresponds to a propegating
mode. What is its frequency?

Solution 6.2. Using the largev approximation we have simply

X (k,w) = [ _gk_ji <£>2]_12k_§: <E>2 (37)

3m \w 3m \w

which has a simple pole at

f (38)

-10



