
P7654 HW3

Due Wednesday Feb 6, 2013

Problem 1. Elementary Calculation of linear response of harmonic oscillator Here we will use under-

graduate level physics to calculate the linear response of asimple Harmonic Oscillator. As always, if this is

trivial for you, then skip it.

As discussed in class, we consider a system described by Hamiltonian

H =
p2

2
+

1

2
ω2
0x

2−xF (t).

1.1. Use the Heisenberg equations of motion,i∂tA = [A,H], derive a second order inhomogeneous equa-

tion of motion for the operatorx.

Solution 1.1.
∂2t x+ ω2

0x = F (t)

We will use Greens functions to solve this equation. Supposeχ(t − t0) is a solution to this differential

equation withF (t) = δ(t− t0). A solution to the generic inhomogeneous equation is then

x(t) = −

∫

dtχ(t− t0)F (t0). (1)

As is indicated by this careful wording, the Greens functionis not unique.The ”-” that I just added gives the

convention we used in class where we calculate the response to a potential rather than a response to a force.

1.2. Explain in a couple sentences why it is not unique. Given one particularχ, how do you generate the

most general Greens function? Hint: what is the most generalthing we could write in Eq. 1?

Solution 1.2. We can always add the homogenous solution to the Green’s function to generate another

one,

χAB (t− t0) = χ (t− t0) +A sin (ω0 (t− t0)) +B cos (ω0 (t− t0)) , (2)

as
(

∂2t + ω2
0

)

χAB (t− t0) =
(

∂2t + ω2
0

)

χ (t− t0) = δ (t− t0).

The physically most useful Greens function is the ”retarded” oneχR, which is characterized byχR(t) = 0

for t < 0.

1.3. Use your differential equation to show that

χR(t) = θ(t)
eiω0t − e−iω0t

2iω0

is the retarded Greens function for this equation.
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Solution 1.3. Obviously this function hasχR (t < 0) = 0. It’s left to verify that

(

∂2t + ω2
0

)

χR (t− t0) = δ (t− t0) . (3)

The least confusing approach is to check
∫

dt0
(

∂2t + ω2
0

)

χR (t− t0) f (t0)

=

∫

dt0
(

∂2t + ω2
0

)

θ (t− t0)
sin (ω0 (t− t0))

ω0
f (t0)

=

∫

dt0

[

δ′ (t− t0)
sin (ω0 (t− t0))

ω0
+ 2δ (t− t0) cos (ω0 (t− t0))

]

f (t0)

=

∫

dt0

[

δ (t− t0) cos (ω0 (t− t0)) f (t0)− δ (t− t0)
sin (ω0 (t− t0))

ω0
f ′ (t0)

]

= f (t) ,

(4)

having used integration by parts in the next-to last line. [The original factor of 2 error in the question came

from the fact I erroneously threw away theδ′ term.]

1.4. Fourier transform this expression to get

χR(ω)

.

Solution 1.4. Anywhere above the real line,χR (ω) is well defined by

χR (ω) =

∫

dt eiωtχR (t) =

∫ ∞

0
dt
ei(ω+ω0)t − ei(ω−ω0)t

2iω0

=
1

2ω0

[

1

ω + ω0
−

1

ω − ω0

]

= −
1

ω2 − ω2
0

.

(5)

As a final connection to your undergraduate physics, consider the caseF (t) = F cos(ωt),and use the fact

that

x(t) = x0(t) +

∫

dt0χ(t− t0)F (t0),

wherex0(t) is the solution to the homogeneous equation. I’d like to knowthe RMS value of the position is

in steady state:

σ =

√

1

T

∫ T

0
〈x(t)2〉dt.

1.5. What is the natural value ofT to use for our integration window?

Solution 1.5. At equilibrium we expect the system to oscillate at the frequency of the driving force,ω,

and so the natural period to integrate over isT = 2π/ω.
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1.6. Assumingω 6= ω0, findσ. The result should be familliar.

Assume that before the probe was applied the system was in thermal equilibrium, so

〈(1/2)ω2
0x0(t)

2〉 =
~ω

4
coth

(

βω

2

)

.

〈x0(t)〉 = 0

Note: you do not need to prove these (but they are not hard). Wewill give a derivation in Prob. 3

Solution 1.6. Let

xF (t) =

∫

dt0 χ (t− t0)F (t0) =

∫ t

−∞

dt0
sin (ω0 (t− t0))

ω0
F cos (ωt0) =

cos (ωt)
(

ω2
0 − ω2

)F (6)

taking the oscillations att0 → −∞ to cancel out.

We have, given that the homogenous and inhomogenous solutions have different periods,
〈

x (t)2
〉

=
〈

x0 (t)
2
〉

+ 2
〈

x (t)xF (t)
〉

+
〈

xF (t)2
〉

=
〈

x0 (t)
2
〉

+
〈

xF (t)2
〉

,
(7)

TakingxF to be classical, we have

xF (t)2 =
ω

2π

∫ 2π/ω

0
dt

(

cos (ωt)
(

ω2
0 − ω2

)F

)2

=
F 2

2
(

ω2
0 − ω2

)2
(8)

so

σ2 =
~

2ω0
coth (βω0/2) +

F 2

2
(

ω2
0 − ω2

)2 . (9)

As ~ → 0 the result approaches the familiar resonance peak for a forced harmonic oscillator.

Problem 2. Sophisticated Calculation of linear response of harmonic oscillator

Recall from class

χR(t) = iθ(t)〈[x(t), x(0)]〉 (10)

where the expectation values are taken in the absence of the probe.

2.1. Write the equations of motion for the operatorsx̂(t) andp̂(t) (in the absence of any perturbation).

Solution 2.1. These are given byi∂tÂ =
[

Â, Ĥ
]

, and so

i∂tx (t) = ip (t)

i∂tp (t) = −iω2
0x (t)

(11)

-3



2.2. The solution of these equations will be of the form

x̂(t) = a(t)x̂(0) + b(t)p̂(0). (12)

Finda(t) andb(t).

Solution 2.2. This leads to the classical equations of motion,

x (t) = x (0) cos (ω0t) +
p (0)

ω0
sin (ω0t)

p (t) = −ω0x (0) sin (ω0t) + p (0) cos (ω0t) .

(13)

2.3. Substitute this result into Eq. (10). Use the computation relationships. Compare with the result in the

previous question.

Solution 2.3.

[x (t) , x (0)] =

[

x (0) cos (ω0t) +
p (0)

ω0
sin (ω0t) , x (0)

]

= −
i

ω0
sin (ω0t) (14)

so

χR (t) = θ (t)
eiω0t − e−iω0t

2ω0
. (15)

The same result.

Problem 3. Equilibrium fluctuations of harmonic oscillator

We know that in thermal equilibrium

χ<(ω) = 2f(ω)ImχR(ω),

wheref(ω) = 1/(eβω − 1). In the time domain,

χ<(t) = 〈x(0)x(t)〉.

3.1. Use your explicit expression forχR(ω) to calculate the equilibrium RMS equilibrium fluctuations

σ =
√

〈x(t)2〉.
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Solution 3.1.
∫

dx
f (x)

x− a
= (16)

Using

χR (ω) =
1

4ω0

[

1

ω + ω0
−

1

ω − ω0

]

= P −
iπ

4ω0
[δ (ω + ω0)− δ (ω − ω0)] (17)

we have

χ< (ω) =
π

2ω0
f (ω) [δ (ω − ω0)− δ (ω + ω0)]

χ< (t) =
1

4ω0

[

e−iω0tf (ω0)− eiω0tf (−ω0)
]

(18)

and so

〈

x (t)2
〉

=
〈

x (0)2
〉

= χ< (0) =
1

4ω0
coth (βω0/2) . (19)

Problem 4. Lindhard Response functionHere we give an elementary ”semiclassical” derivation of the

density response function of an ideal gas. In the next question, we will give a diagrammatic argument.

We will start with the phase space distribution functionf(r, p, t) – this is the density of particles in phase

space. I.E.f(r, p, t)d3rd3p is the number of particles in a small element of phase spaced3rd3p at timet.

Clearly the very existence of this function is at odds with quantum mechanics. We won’t worry about such

minor issues.

The equation of motion obeyed by this distribution functionis the Boltzmann equation

(∂t +
p

m
· ∇r − (∇rV ) · ∇p)f(r, p, t) = 0.

We will imagine thatV (r, t) is an arbitrary function of space and time. It turns out that this is a good

description as long asV varies slowly in space compared to the interparticle spacing, and slowly in time

compared to the ”Fermi energy.”

To first order inV (r, t) we want to know what the density is at positionr′ and timet′. Since there are no

interactions, this should be doable – the only hard work is book-keeping. We begin by writingf(r, p, t) =

f0(r, p, t) + δf(r, p, t) where

f0(r, p, t) =
1

eβ(p2/2m−µ) ∓ 1
.

In the classical limit we can just usef0(r, p, t) = e−β(p2/2m−µ). For most of this problem we will not worry

about the exact form.

Linearizing the Boltzmann equation, we get

(∂t +
p

m
· ∇r)δf = ((∇rV ) · ∇p)f0 (20)

-5



4.1. Fourier transform Eq. (20) and solve for

δf(k, p, ω) =

∫

drdte−i(kr−ωt)δf(r, p, t).

Solution 4.1. Substitutingδf (r, p, t) =
∫

d3kdω
(2π)4

ei(kr−ωt)δf (k, p, ω) and similar forV , and noting

f0 (r, p, t) = f0 (p), we have

(

−iω + i
p

m
· k
)

δf (k, p, ω) = (ikV (k, ω)) · (∇pf0) (21)

or

δf (k, p, ω) =
k · ∇pf0

(

−ω + p

m · k
)V (k, ω) . (22)

If we integrate this expression overp we can find the density fluctuations:

δn(k, ω) =

∫

dp

(2π)3
δf(k, p, ω).

The resulting expression will be of the form

δn(k, ω) = χ(k, ω)V (k, ω),

which by now should feel comfortable.

4.2. What isχ(k, ω)? Don’t do thep-integral yet.

Solution 4.2. Integrating overp on both sides we find

χ (k, ω) =

∫

dp

(2π)3
k · ∇pf0

(

−ω + p

m · k
) . (23)

If you doublek and doubleω, you should find thatχ(k, ω) is unchanged. This means that

χ(k, ω) = χ(ω/k)

There are lots of things one can do with this function. The most important result is what happens for zero

temperature Fermions, where

∇pf0 = −p̂δ(|p| − kF ).

4.3. By writing thep integral in spherical coordinates, findχ(k, ω) for a zero temperature Fermi gas. It may

help organize things if you note (by dimensional analysis)

χ(k, ω) = kfmf

(

ωm

kpf

)

,

-6



and use the result
∫ 1

−1
dc

c

x− c
= x log

(

x+ 1

x− 1

)

− 2

Plot the real and imaginary parts off(x). Don’t worry too much about which branch of the log to use – just

be consistent.

Solution 4.3. Rewrite our equation, for zero temperature fermions,

χ (k, ω) =

∫

p2dpd (cos θ)

(2π)2
|k| cos θδ (p− kf )
(

ω − 1
mp |k| cos θ

)

= kfm

∫

d (cos θ)

(2π)2
cos θ

(ωm/kfk − cos θ)

(24)

to find

f (x) = x log

(

x+ 1

x− 1

)

− 2. (25)

Letting Mathematica pick the log branch, we have the graph pictures in Fig. 1.
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Figure 1: The real (blue) and imaginary (magneta-ish) parts off (x).

4.4. For largeω, this response function falls off as the square of frequencyχ ∼ ω−2. Verify this result, and

calculate the coefficient.

Solution 4.4. Using log [1 + x] ≈ x− x2/2 + x3/3, we have

f (x) = x log

(

1 + 1/x

1− 1/x

)

− 2 ≈
2

3

1

x2
(26)

and

χ ≈
2

3

k3f
m

(

k

ω

)2

. (27)
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We will use this in Question 6

Problem 5. Lindhard function from single particle Greens Functions Here we will again calculate the

density response function of a non-interacting gas, but this time we will use the formalism developed in

class:

χR(r, t) = iθ(t)〈[ρ(r, t), ρ(0, 0)]〉 (28)

where

ρ(r, t) = ψ†(r, t)ψ(r, t).

It is often more convenient to work with the time-ordered response function

χ(r, t) = 〈Tρ(r, t)ρ(0, 0)〉.

5.1. Apply Wick’s theorem, and come up with a ”diagram” forχ. Why is this called a ”particle-hole

bubble”.

Solution 5.1.

χ (r, t) =
〈

ψ† (r, t)ψ (r, t)
〉〈

ψ† (0, 0)ψ (0, 0)
〉

±
〈

Tψ† (r, t)ψ (0, 0)
〉〈

Tψ† (0, 0)ψ (r, t)
〉

(29)

(r, t)(0, 0)

There are many ways to calculate this bubble. One can use Matsubara sums (see Coleman’s text) but the

simplest is actually to work with Eq. (28).

5.2. Using Wick’s Theorem, express

Π(r, t) = 〈[ρ(r, t), ρ(0, 0)]〉

in terms ofG>(r, t) andG<(r, t).

Solution 5.2. RecallingG> (r, t) =
〈

ψ̂ (r, t) ψ̂† (0, 0)
〉

, G< (r, t) =
〈

ψ̂† (0, 0) ψ̂ (r, t)
〉

, we have simply

Π(r, t) =
〈

ψ̂† (r, t) ψ̂ (r, t) ψ̂† (0, 0) ψ̂ (0, 0)
〉

−
〈

ψ̂† (0, 0) ψ̂ (0, 0) ψ̂† (r, t) ψ̂ (r, t)
〉

=
〈

ψ̂† (r, t) ψ̂ (0, 0)
〉〈

ψ̂ (r, t) ψ̂† (0, 0)
〉

−
〈

ψ̂† (0, 0) ψ̂ (r, t)
〉〈

ψ̂ (0, 0) ψ̂† (r, t)
〉

= G< (−r,−t)G> (r, t)−G< (r, t)G> (−r,−t) .

(30)

Recalling Feynman’s interpretation of antiparticles as particles moving backwards in time, we can see this

again as a particle-antiparticle diagram.
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Recall

G<(k, ω) = nk2πδ(ω − ǫk) (31)

G>(k, ω) = (1± nk)2πδ(ω − ǫk). (32)

Also, note that one can Fourier transform Eq. (28) to get

χ(k, ω) =

∫

dz

2π

1

ω − z
Π(k, ω)

5.3. Write χ(k, ω) as an integral over momenta. If you linearize this result forsmallk, you will reproduce

your results from the semiclassical arguments.

Solution 5.3. In Fourier space,Π(k, ω) is

Π(k, ω) =

∫

dη

2π

∫

d3k

(2π)3
G< (k − p/2, η − ω/2)G> (k + p/2, η + ω/2)

−G< (k + p/2, η + ω/2)G> (k − p/2, η − ω/2) .

(33)

Using the explicit expressions, we have

Π(k, ω) =

∫

dη

2π

∫

d3k

(2π)3
(

nk−p/2(1± nk+p/2)− nk+p/2(1± nk−p/2)
)

×

2πδ(η − ω/2− ǫk−p/2)2πδ(η + ω/2− ǫk+p/2)

(34)

One of the delta functions can be used to get rid of theη integral – that still leaves one more,

Π(k, ω) =

∫

d3k

(2π)3
(

nk−p/2 − nk+p/2

)

2πδ(ω − (ǫk−p/2 − ǫk+p/2)). (35)

Problem 6. Random Phase ApproximationNow we will use our previous result to approximate the den-

sity response function of an interacting gas. We will first dothis by continuing our semiclassical argument.

The idea is that we will include interactions in our Boltzmann equation, by taking the intuitive approximation

V (r, t) = Vx(r, t) +

∫

dr′U(r − r′)n(r′),

whereU(r) is the inter-particle interactions andVx stands for ”eXternal”. This is the ”Hartree” approxima-

tion, where each particle interacts with the ”average density.” Substituting this into our Boltzmann equation,

and linearizing, one has

(ω − p · km)δf(k, p, ω) = [Vx(k) + U(k)δn(k)] (k · ∇p)f0(p, ω)

As before, we solve forδf to get

δf(k, p, ω) = [Vx(k) + U(k)δn(k)]
(k · ∇p)f0(p, ω)

ω − p · km
.
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Summing overp gives

δn(k, t) = χ0(k, ω) [Vx(k) + U(k)δn(k)]

whereχ0 is the susceptability of the noninteracting gas. A little straightforward manipulation then gives

χ(k, ω) =
χ0(k, ω)

1− U(k)χ0(k, ω)

6.1. Write a set of diagrams which corresponds to this statement.

Solution 6.1. Rewriting

χ =
χ0

1− Uχ0
=

∞
∑

n=0

χ0 (Uχ0)
n (36)

we can interpret the sum as

+ + +· · ·

6.2. PlasmonsSuppose our particles are interacting with a Coulomb potential U(k) = e2/k2. Use the large

ω approximation you derived forχ0 to show thatχ has a simple pole. This corresponds to a propegating

mode. What is its frequency?

Solution 6.2. Using the largeω approximation we have simply

χ (k, ω) =

[

1−
2

3

k3f
m

( e

ω

)2
]−1

2

3

k3f
m

(

k

ω

)2

(37)

which has a simple pole at

ω =

√

2

3

e2k3f
m

. (38)
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