
P7654 HW1

Due Friday Jan 25, 2013

There are 4 problems here – but the first two should be review. Skip them if they are trivial for you. Also

skip the last one if you have seen it before (for example in QFT). If you need extra time, I can give you an

extension, but you will find the lectures easier to follow if you do these for Friday.

Problem 1. Second Quantization for Bosons One of the most convenient ways to describe the many-body

problem is through field operators. Here is a quick refresher. If you know this stuff cold, then skip this

question.

First we need to define a basis for n-particle states. A convenient one for bosons is to specify how many

particles have each possible momentum,

|{nk}〉 = |n0, n1, . . .〉.

A convenient way to manipulate these states is to borrow the “ladder” operators from harmonic oscillators.

The raising (or creation) operatorâ†k is defined by

â†k|n0, n1, . . . , nk, . . .〉 =
√
nk + 1|n0, n1, . . . , nk + 1, . . .〉.

Its Hermitian conjugate, the lowering (or annihilation) operator is defined by

âk|n0, n1, . . . , nk, . . .〉 =
√
nk|n0, n1, . . . , nk − 1, . . .〉.

1.1. Prove the following relationship for the commutator,[âk, â
†
k] = 1.

1.2. Prove that ifk 6= k′ that [âk, â
†
k′ ] = 0.

1.3. Show that

â†
k
âk|n0, n1, . . . , nk, . . .〉 = nk|n0, n1, . . . , nk, . . .〉.

In other words, the operator̂nk = â†
k
âk counts the number of bosons with momentumk.

Next we define the ”field operator”

ψ̂(r) =
∑

k

eik·r√
V
âk,

which removes a particle from positionr.

1.4. Show that[ψ̂(r), ψ̂†(r′)] = δ(r − r′).

We now introduce the ”vacuum state”|vac〉 = |0 · · · 〉, which is the state containing no particles. Using our

field operators we can then readily define the position basis states:

|r1 · · · rN 〉 = ψ†(r1) · · ·ψ†(rN )|vac〉,
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which is the state with particles at postionr1, r2, . . . , rN . The wavefunctions of elementary quantum me-

chanics areφ(r1, . . . , rN ) = 〈r1 · · · rN |φ〉.

Problem 2. Second Quantization for Fermions: Again, if you know this stuff cold, then skip this question.

For fermions there are signs to worry about, so we will use a basis |k1, k2, · · · kN 〉, corresponding to the

wavefunction

φ(r1, · · · rN ) =
1√

N !V N

[

eik1·r1eik2·r2 · · · eikN ·rN − eik2·r1eik1·r2 · · · eikN ·rN + · · ·
]

where you take all permutations weighted with the signatureof the permutation. [We will at first neglect

spin.] Clearly if you change the order of thek′s you get the same state but with a± corresponding to the

signature of the permutation.

The ladder operators are now defined byψ†(q)|k1, k2, · · · kN 〉 = |k1, k2, · · · kN , q〉, andψ(q)|k1, k2, · · · kN , q〉 =

|k1, k2, · · · kN 〉.

2.1. Show that the fermionic ladder operators obey the anticommutation relations

{âk, â
†
q} = δkq

{âk, âq} = 0

As with the bosonic case, one again defines an operator which removes a particle from positionr,

ψ̂(r) =
∑

k

eik·r√
V
âk.

2.2. Show that{ψ̂(r), ψ̂†(r′)} = δ(r − r′).

Problem 3. Ideal Gas Consider an ideal gas with Hamiltonian

H =
∑

k

ǫka
†
kak

whereǫk = k2/2m− µ.

3.1. Use the Heisenberg equations of motion forak to calculateak(t) in terms ofak(0). Do this for both

Bosons and Fermions.

3.2. Write an explicit expression for

G>
k (ω) =

∫

dt eiωt 〈ak(t)a
†
k
(0)〉

G<
k (ω) =

∫

dt eiωt 〈a†
k
(0)ak(t)〉

in terms ofnk = 〈a†k(0)ak(0)〉. You should use that
∫

dt eiνt = 2πδ(ν).
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3.3. If the system is in thermal equilibrium at timet = 0 we know

nk =
1

eβǫk ∓ 1
.

Use this to showG>
k (ω) = eβωG<

k (ω).

3.4. FindAk(ω) = G>
k
(ω) −G<

k
(ω)

Problem 4. Wick’s Theorem: In class we introduced ”Wick’s Theorem.” Here you will convince yourself

that it is right. I won’t walk you through the full proof – there are lots of great books on it.

Wick’s theorem is a theorem about expectation values of linear operators (ie. Matrices) in a Gaussian

ensemble. It says that the expectation value of a product of operators is the sum of all pairwise contractions.

For fermionic operators the contractions are weighted by(−1)s wheres is the signature of the permutation

which brings the pairs together. For bosonic operators, allcontractions are equally weighted.

Consider a system with Hamiltonian

H =
∑

k

ǫka
†
kak.

We will think aboutk being momentum states, andǫk = k2/2m−µ, but formally any quadratic Hamiltonian

can be written in this form. The operatorsak can be either Bosonic or Fermionic. We wish to calculate

expectation values of the form

〈a†k1
· · · a†kn

aqn
· · · aq1

〉 =
1

Z
Tre−βHa†k1

· · · a†kn
aqn

· · · aq1
.

The trace can be done using any complete set of states: we willuse momentum number states, where there

are a definite number of particles in each momentum.

4.1. We will first do a calculation you are familiar with from Statistical Mechanics. Findnk = 〈a†kak〉. Do

it for both Bosons and Fermions. Hint: note that the modek decouples from the others, so this is either just

a sum of two terms (Fermi), or a geometric series (Bose).

4.2. Using the same elementary argument (ie. not Wick’s theorem), find 〈n2

k〉 = 〈a†kaka
†
kak〉. [You can do

this by summing the series again, or by differentiating withrespect toǫk]. Verify that this agrees with the

Wick’s theorem result

〈a†
k
aka

†
k
ak〉 = 〈a†

k
ak〉〈aka

†
k
〉 + 〈a†

k
ak〉〈a†kak〉.

What do you conclude about the fluctuations in the occupationof a mode〈n̂2

k〉 − 〈nk〉2? How does this

compare to what you would expect classically?

4.3. Now, use the same elementary argument to analyze〈a†kaka
†
qaq〉 wherek 6= q. Does this agree with

Wick’s theorem?
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