
P7654 HW3

Due Wednesday Feb 6, 2013

Problem 1. Elementary Calculation of linear response of harmonic oscillator Here we will use under-

graduate level physics to calculate the linear response of asimple Harmonic Oscillator. As always, if this is

trivial for you, then skip it.

As discussed in class, we consider a system described by Hamiltonian

H =
p2

2
+

1

2
ω2

0x
2 + xF (t).

1.1. Use the Heisenberg equations of motion,i∂tA = [A,H], derive a second order inhomogeneous equa-

tion of motion for the operatorx.

We will use Greens functions to solve this equation. Supposeχ(t − t0) is a solution to this differential

equation withF (t) = δ(t− t0). A solution to the generic inhomogeneous equation is then

x(t) =

∫

dtχ(t− t0)F (t0). (1)

As is indicated by this careful wording, the Greens functionis not unique.

1.2. Explain in a couple sentences why it is not unique. Given one particularχ, how do you generate the

most general Greens function? Hint: what is the most generalthing we could write in Eq. 1?

The physically most useful Greens function is the ”retarded” oneχR, which is characterized byχR(t) = 0

for t < 0.

1.3. Use your differential equation to show that

χR(t) = θ(t)
eiω0t − e−iω0t

4iω0

is the retarded Greens function for this equation.

1.4. Fourier transform this expression to get

χR(ω)

.

As a final connection to your undergraduate physics, consider the caseF (t) = F cos(ωt),and use the fact

that

x(t) = x0(t) +

∫

dt0χ(t− t0)F (t0),
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wherex0(t) is the solution to the homogeneous equation. I’d like to knowthe RMS value of the position is

in steady state:

σ =

√

1

T

∫ T

0
〈x(t)2〉dt.

1.5. What is the natural value ofT to use for our integration window?

1.6. Assumingω 6= ω0, findσ. The result should be familliar.

Assume that before the probe was applied the system was in thermal equilibrium, so

〈(1/2)ω2
0x0(t)

2〉 =
~ω

4
coth

(

βω

2

)

.

〈x0(t)〉 = 0

Note: you do not need to prove these (but they are not hard). Wewill give a derivation in Prob. 3

Problem 2. Sophisticated Calculation of linear response ofharmonic oscillator

Recall from class

χR(t) = iθ(t)〈[x(t), x(0)]〉 (2)

where the expectation values are taken in the absence of the probe.

2.1. Findx(t) in terms ofx(0) andp(0).

2.2. Substitute this result into Eq. (2). Use the commutation relationships. Compare with the result in the

previous question.

Problem 3. Equilibrium fluctuations of harmonic oscillator

We know that in thermal equilibrium

χ<(ω) = 2f(ω)ImχR(ω),

wheref(ω) = 1/(eβω − 1). In the time domain,

χ<(t) = 〈x(0)x(t)〉.

3.1. Use your explicit expression forχR(ω) to calculate the equilibrium RMS equilibrium fluctuations

σ =
√

〈x(t)2〉.

Problem 4. Lindhard Response functionHere we give an elementary ”semiclassical” derivation of the

density response function of an ideal gas. In the next question, we will give a diagrammatic argument.
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We will start with the phase space distribution functionf(r, p, t) – this is the density of particles in phase

space. I.E.f(r, p, t)d3rd3p is the number of particles in a small element of phase spaced3rd3p at timet.

Clearly the very existence of this function is at odds with quantum mechanics. We won’t worry about such

minor issues.

The equation of motion obeyed by this distribution functionis the Boltzmann equation

(∂t +
p

m
· ∇r − (∇rV ) · ∇p)f(r, p, t) = 0.

We will imagine thatV (r, t) is an arbitrary function of space and time. It turns out that this is a good

description as long asV varies slowly in space compared to the interparticle spacing, and slowly in time

compared to the ”Fermi energy.”

To first order inV (r, t) we want to know what the density is at positionr′ and timet′. Since there are no

interactions, this should be doable – the only hard work is book-keeping. We begin by writingf(r, p, t) =

f0(r, p, t) + δf(r, p, t) where

f0(r, p, t) =
1

eβ(p2/2m−µ) ∓ 1
.

In the classical limit we can just usef0(r, p, t) = e−β(p2/2m−µ). For most of this problem we will not worry

about the exact form.

Linearizing the Boltzmann equation, we get

(∂t +
p

m
· ∇r)δf = ((∇rV ) · ∇p)f0 (3)

4.1. Fourier transform Eq. (3) and solve for

δf(k, p, ω) =

∫

drdte−i(kr−ωt)δf(r, p, t).

If we integrate this expression overp we can find the density fluctuations:

δn(k, ω) =

∫

dp

(2π)3
δf(k, p, ω).

The resulting expression will be of the form

δn(k, ω) = χ(k, ω)V (k, ω),

which by now should feel comfortable.

4.2. What isχ(k, ω)? Don’t do thep-integral yet.

If you doublek and doubleω, you should find thatχ(k, ω) is unchanged. This means that

χ(k, ω) = χ(ω/k)
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There are lots of things one can do with this function. The most important result is what happens for zero

temperature Fermions, where

∇pf0 = −p̂δ(|p| − kF ).

4.3. By writing thep integral in spherical coordinates, findχ(k, ω) for a zero temperature Fermi gas. It may

help organize things if you note (by dimensional analysis)

χ(k, ω) = kfmf

(

ωm

kpf

)

,

and use the result
∫ 1

−1
dc

c

x− c
= x log

(

x+ 1

x− 1

)

− 2

Plot the real and imaginary parts off(x). Don’t worry too much about which branch of the log to use – just

be consistent.

4.4. For largeω, this response function falls off as the square of frequencyχ ∼ ω−2. Verify this result, and

calculate the coefficient.

We will use this in Question 6

Problem 5. Lindhard function from single particle Greens Functions Here we will again calculate the

density response function of a non-interacting gas, but this time we will use the formalism developed in

class:

χR(r, t) = iθ(t)〈[ρ(r, t), ρ(r, 0)]〉 (4)

where

ρ(r, t) = ψ†(r, t)ψ(r, t).

It is often more convenient to work with the time-ordered response function

χ(r, t) = 〈Tρ(r, t)ρ(r, 0)〉.

5.1. Apply Wick’s theorem, and come up with a ”diagram” forχ. Why is this called a ”particle-hole

bubble”.

There are many ways to calculate this bubble. One can use Matsubara sums (see Coleman’s text) but the

simplest is actually to work with Eq. (4).

5.2. Using Wick’s Theorem, express

Π(r, t) = 〈[ρ(r, t), ρ(r, 0)]〉

in terms ofG>(r, t) andG<(r, t).
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Recall

G<(k, ω) = nkδ(ω − ǫk) (5)

G>(k, ω) = (1 ± nk)δ(ω − ǫk). (6)

Also, note that one can Fourier transform Eq. (4) to get

χ(k, ω) =

∫

dz

2π

1

ω − z
Π(k, ω)

5.3. Write χ(k, ω) as an integral over momenta. If you linearize this result forsmallk, you will reproduce

your results from the semiclassical arguments.

Problem 6. Random Phase ApproximationNow we will use our previous result to approximate the den-

sity response function of an interacting gas. We will first dothis by continuing our semiclassical argument.

The idea is that we will include interactions in our Boltzmann equation, by taking the intuitive approximation

V (r, t) = Vx(r, t) +

∫

dr′U(r − r′)n(r′),

whereU(r) is the inter-particle interactions andVx stands for ”eXternal”. This is the ”Hartree” approxima-

tion, where each particle interacts with the ”average density.” Substituting this into our Boltzmann equation,

and linearizing, one has

(ω − p · km)δf(k, p, ω) = [Vx(k) + U(k)δn(k)] (k · ∇p)f0(p, ω)

As before, we solve forδf to get

δf(k, p, ω) = [Vx(k) + U(k)δn(k)]
(k · ∇p)f0(p, ω)

ω − p · km
.

Summing overp gives

δn(k, t) = χ0(k, ω) [Vx(k) + U(k)δn(k)]

whereχ0 is the susceptability of the noninteracting gas. A little straightforward manipulation then gives

χ(k, ω) =
χ0(k, ω)

1 − U(k)χ0(k, ω)

6.1. Write a set of diagrams which corresponds to this statement.

6.2. PlasmonsSuppose our particles are interacting with a Coulomb potential U(k) = e2/k2. Use the large

ω approximation you derived forχ0 to show thatχ has a simple pole. What is the frequency of this ”plasma

resonance”? This is an example of a ”collective mode”.
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Problem 7. What is so random about the Random Phase Approximation? This problem is just for

fun – it belongs in a solid state physics class, or a history class, rather than this module on diagrams. Its

entire purpose is to explainwhy we call the approximation in the previous question the ”Random Phase

Approximation.” This is the original argument of Bohm and Pines, and it is kind of cheesy.

We begin by introducing the Fourier transform of the densityoperator:

ρk =
∑

q

a†q+k/2aq−k/2.

We can also introduce the Fourier transform of the current operator:

jk =
1

i

∑

q

q

m
a†q+k/2aq−k/2.

As usual, we will work with a set of particles interacting viaa pairwise interaction:

H =
∑

k

ǫka
†
kak +

1

2

∑

kpq

Uqa
†
ka

†
pap−qak+q,

with ǫk = k2/2m− µ.

7.1. Write the Heisenberg equations of motion forρk. Can you relate this to a continuity equation?

7.2. If we repeat this process we get

−∂2
t ρk =

∑

q

(k · q)2

m
a†q+k/2aq−k/2 −

∑

q

(q · k)

m
V (q)ρk−qρq

For the plasma oscillations we can neglect the first term (this is analogous to using the large frequency

expansion to the Lindhard function). In the second term we will litterally make a ”random phase approxi-

mation” arguing that theρq has a random phase. On average all the terms in this sum will cancel, except the

one wherek = q. Thus we approximate

−∂2
t ρk ≈ −

k2

m
V (k)ρ0ρk

whereρ0, the density is a constant.

SubstituteV (k) = e2/k2, and find the plasma frequency.
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