P7654 HW3

Due Wednesday Feb 6, 2013

Problem 1. Elementary Calculation of linear response of hamonic oscillator Here we will use under-
graduate level physics to calculate the linear responsesiofiple Harmonic Oscillator. As always, if this is
trivial for you, then skip it.

As discussed in class, we consider a system described byitidaizun

P 1
H= > + §w§x2 + zF(t).

1.1. Use the Heisenberg equations of motian,A = [A, H], derive a second order inhomogeneous equa-
tion of motion for the operatat.

We will use Greens functions to solve this equation. Suppdse- ty) is a solution to this differential
equation withF'(t) = (¢t — to). A solution to the generic inhomogeneous equation is then

ot) = [ dixtt o) F (). 1)
As is indicated by this careful wording, the Greens funct®not unique.

1.2. Explain in a couple sentences why it is not unique. Given aréiqulary, how do you generate the
most general Greens function? Hint: what is the most getigiraj we could write in Eq. 1?

The physically most useful Greens function is the "retatdet x*, which is characterized by?(¢) = 0
fort < 0.

1.3. Use your differential equation to show that

is the retarded Greens function for this equation.

1.4. Fourier transform this expression to get
Fw)

As a final connection to your undergraduate physics, considecasel’(t) = F cos(wt),and use the fact
that

x(t) = zo(t) + /dtox(t —t0)F'(to),
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wherex(t) is the solution to the homogeneous equation. I'd like to ktle&RMS value of the position is

in steady state:
1 T
— 2
o= /0 (x(t)?)dt.

1.5. What is the natural value d&f to use for our integration window?

1.6. Assumingw # wy, find 0. The result should be familliar.

Assume that before the probe was applied the system wasrmahequilibrium, so

(1/2)wlzo(t)?) = %coth (%“)

(zo(t)) = 0

Note: you do not need to prove these (but they are not hard)vigive a derivation in Prob. 3

Problem 2. Sophisticated Calculation of linear response diarmonic oscillator

Recall from class
X () = i0(1)([=(t), 2(0)]) 2

where the expectation values are taken in the absence ofdhe.p
2.1. Find z(t) in terms ofz(0) andp(0).

2.2. Substitute this result into Eq. (2). Use the commutatioati@hships. Compare with the result in the
previous question.

Problem 3. Equilibrium fluctuations of harmonic oscillator

We know that in thermal equilibrium

3.1. Use your explicit expression foy’'(w) to calculate the equilibrium RMS equilibrium fluctuations

o= /2()?).

Problem 4. Lindhard Response functionHere we give an elementary "semiclassical” derivation &f th
density response function of an ideal gas. In the next questie will give a diagrammatic argument.



We will start with the phase space distribution functipfr, p, t) — this is the density of particles in phase
space. |.Ef(r,p,t)drd®p is the number of particles in a small element of phase sgaeé’p at timet.
Clearly the very existence of this function is at odds witlagtum mechanics. We won't worry about such
minor issues.

The equation of motion obeyed by this distribution functisthe Boltzmann equation
@+ -V, = (V,V) - Vp)f(r,p,t) = .

We will imagine thatV (r,t) is an arbitrary function of space and time. It turns out tiwg s a good
description as long ag varies slowly in space compared to the interparticle sgaamd slowly in time
compared to the "Fermi energy.”

To first order inV (r,¢t) we want to know what the density is at positiohand timet’. Since there are no
interactions, this should be doable — the only hard work keeping. We begin by writing (r, p,t) =

fo(r,p,t) + 8f(r, p,t) where
1

Plem—m) 71

t) =
fO(T7p7 ) 65(

In the classical limit we can just ugg(r, p, t) = e~#®*/2m=1) For most of this problem we will not worry
about the exact form.

Linearizing the Boltzmann equation, we get
@+ 2V, = (V:V) - VD)o ®3)

4.1. Fourier transform Eq. (3) and solve for

3f (k,p,w) = / drdte" =05 f (r,p, ).

If we integrate this expression oveme can find the density fluctuations:

dp
= [ —=0f(k .
The resulting expression will be of the form
on(k,w) = x(k,w)V(k,w),

which by now should feel comfortable.

4.2. What isx(k,w)? Don't do thep-integral yet.

If you doublek and doublev, you should find thak (£, w) is unchanged. This means that
x(k,w) = x(w/k)

-3



There are lots of things one can do with this function. Thetriraportant result is what happens for zero
temperature Fermions, where

Vpfo=—pi(|p| — k).

4.3. By writing thep integral in spherical coordinates, findk,w) for a zero temperature Fermi gas. It may
help organize things if you note (by dimensional analysis)

X(k’w) = kfmf (%) s

1
1
/dc ¢ :wlog<w+ >—2
1 T—c z—1

Plot the real and imaginary parts fz). Don’t worry too much about which branch of the log to use + jus
be consistent.

and use the result

4.4. For largew, this response function falls off as the square of frequeneyw—2. Verify this result, and
calculate the coefficient.

We will use this in Question 6

Problem 5. Lindhard function from single particle Greens Functions Here we will again calculate the
density response function of a non-interacting gas, bsttihie we will use the formalism developed in
class:

X (rt) = () {[p(r, ), p(r, 0)]) (4)
where
p(r,t) = 1 (r, ) (r,1).
It is often more convenient to work with the time-orderedo@sse function

X(T7 t) = <Tp(7“, t)p(?“, O)>

5.1. Apply Wick’s theorem, and come up with a "diagram” fqr Why is this called a "particle-hole
bubble”.

There are many ways to calculate this bubble. One can useubfats sums (see Coleman’s text) but the
simplest is actually to work with Eqg. (4).

5.2. Using Wick’s Theorem, express
(r,t) = ([p(r, 1), p(r, 0)])

in terms of G~ (r, t) andG<(r, ).



Recall

G<(k,w) = npo(w —ex) (5)
G”(k,w) = (1£ng)d(w —ex). (6)

Also, note that one can Fourier transform Eq. (4) to get

dz 1
TW — 2

X(k},w) =

II(k,w)

5.3. Write x(k,w) as an integral over momenta. If you linearize this resulsfoall £, you will reproduce
your results from the semiclassical arguments.

Problem 6. Random Phase ApproximationNow we will use our previous result to approximate the den-
sity response function of an interacting gas. We will firstlois by continuing our semiclassical argument.

The idea is that we will include interactions in our Boltzmaaguation, by taking the intuitive approximation
Viryt) = Vi(r,t) + /dr'U(r —rn(r'),

whereU (r) is the inter-particle interactions and stands for "eXternal”. This is the "Hartree” approxima-
tion, where each patrticle interacts with the "average dgh8ubstituting this into our Boltzmann equation,
and linearizing, one has

(w—p-km)df(k,p,w) = [Va(k) + U(k)on(k)] (k- Vp)fo(p,w)
As before, we solve fof f to get

(k - Vp)fo(p,w)
w—p-km

5 (k,p,w) = [Va(k) + U(k)on(k)]

Summing ovep gives
on(k,t) = xo(k,w) [Va(k) + U(k)on(k)]

whereyq is the susceptability of the noninteracting gas. A littlaigthtforward manipulation then gives

Xxo(k,w)
X ) = T o)

6.1. Write a set of diagrams which corresponds to this statement.

6.2. PlasmonsSuppose our particles are interacting with a Coulomb piatefit k) = ¢2/k2. Use the large
w approximation you derived foyg to show thaty has a simple pole. What is the frequency of this "plasma
resonance”? This is an example of a "collective mode”.



Problem 7. What is so random about the Random Phase Approxim@n? This problem is just for
fun — it belongs in a solid state physics class, or a histoags;lrather than this module on diagrams. Its
entire purpose is to explawhy we call the approximation in the previous question the "Remd’hase
Approximation.” This is the original argument of Bohm ana&%, and it is kind of cheesy.

We begin by introducing the Fourier transform of the densjigrator:
_ T
Pk = Zaq+k/2aq—k/2-
q
We can also introduce the Fourier transform of the curreetatpr:
. q i
Je =7 Z m Ltk /2% —k/2:
q
As usual, we will work with a set of particles interacting @gairwise interaction:
1
H= Z ekalak + 3 Z UqaLa;ap_qakJrq,
k kpq
with e = k?/2m — p.
7.1. Write the Heisenberg equations of motion fgr. Can you relate this to a continuity equation?

7.2. If we repeat this process we get

(k-q)? ; (q-k)

—0tpr, = Z o Ogyn/a%a—k/2 Z TV(Q)pk—qPq
q q

For the plasma oscillations we can neglect the first terns (ghianalogous to using the large frequency
expansion to the Lindhard function). In the second term wiklitterally make a "random phase approxi-
mation” arguing that the, has a random phase. On average all the terms in this sum wiktaxcept the
one wheré: = ¢. Thus we approximate

2 k?
—0i pe = ——V(k)popu
m

wherepg, the density is a constant.

SubstituteV (k) = €2 /k?, and find the plasma frequency.



