P7654 HW1

Due Friday Jan 25, 2013

There are 4 problems here — but the first two should be revidip tBem if they are trivial for you. Also
skip the last one if you have seen it before (for example in QFTou need extra time, | can give you an
extension, but you will find the lectures easier to followauwdo these for Friday.

Problem 1. Second Quantization for Bosons One of the most convenient ways to describe the many-body
problem is through field operators. Here is a quick refresiifeyou know this stuff cold, then skip this
guestion.

First we need to define a basis for n-particle states. A caemene for bosons is to specify how many
particles have each possible momentum,

[{nk}) = |no,na,...).

A convenient way to manipulate these states is to borrowlddder” operators from harmonic oscillators.
The raising (or creation) operaté)]; is defined by

d;i\no,nl,...,nk,...} =vng+ 1\n0,n1,...,nk—|— 1,...>.
Its Hermitian conjugate, the lowering (or annihilation)eogtor is defined by
dk]no,nl, ey Ny - > = \/nk\no,nl, e, N — 17 .o >

1.1. Prove the following relationship for the commutatm,&;g] =1.

Solution 1.1.

[amaﬂ |no, M1 Ngy ) = (aka;i - al%) Ing,m1 - Nk, )

= apVng + Lng,ny g+ 1,0+ ) — af /g [ng,na - omg — 1,0+
= (ng + 1) [no,n1 - ng, ) — g [ng,my - ngy o) 1)
:|n0’n1--.nk’--->

= [ak,aH =1

1.2. Prove that ifk # k' that[ay, al,] = 0.



Solution 1.2.
[ak,a&)} Ino -+ gy gy <+ ) = (aka&) —azk)ak) Ino- - nimgey )
=ak\/mlno~-nk,n(k)+1,--->—a}k)\/@\no'-'nk—l,n(zf)- .

=0

= [ak,azk)] =0

2)
1.3. Show that
&L&k\no,nl, ey Ny v > = nk]no,nl, ey Ny - >
In other words, the operatar, = a,a;, counts the number of bosons with momentim
Solution 1.3.
alay, [no,ny - -ng, -+ ) = al/ag |ng, g — 1,0 ) 3)
Next we define the “field operator”
R eik~r
P(r) = ag,
=2
which removes a particle from position
1.4. Show thatly)(r), i ()] = 6(r — 7).
Solution 1.4.
1 ik-r [ r
) 0 ()] = 37 [0 a3 e M Oal,
k (k)
1 ik r—i(k)-(r T
zvze ()()[ak a()}
k, (k)
1 ik-r—i(k)-(r (4)
:VZe ()()5k7(k)
k,(k)
1 ik-(r—(r
=7 Ze (r=(r))
k
=0(r—(r))




We now introduce the "vacuum statg’ac) = |0- - - ), which is the state containing no particles. Using our
field operators we can then readily define the position b#sies

ryeorn) =T (ry) -t (ry) [vac),

which is the state with particles at postion ro,...,rn. The wavefunctions of elementary quantum me-
chanics ares(ry,...,rn) = (r1---ry|o).

Problem 2. Second Quantization for Fermions. Again, if you know this stuff cold, then skip this question.

For fermions there are signs to worry about, so we will usesasba;, ko, - - - k), corresponding to the
wavefunction

1

¢(T1, . TN) _ ezk1~rlezk2~r2 . elk’N'TN _ ezkg-mezkl-rg . eZkN'TN I

VNIVN

where you take all permutations weighted with the signatirde permutation. [We will at first neglect
spin.] Clearly if you change the order of tiés you get the same state but withtacorresponding to the
signature of the permutation.

The ladder operators are now definedByq) |k1, ko, - - - kn) = |k1, ko, - - - kn, q), ande(q) |k, ko, - - - kn, q) =
|k17 k27 e kN>

2.1. Show that the fermionic ladder operators obey the anticotation relations

{ar.al} = Ok

{ag,aq} = 0



Solution 2.1. Let’s start withk = q.
aka2|no,---nk:0,--->:|n0,---nk:0,--->anda2ak|n0,---nk:0,--->:0
N {ak,az}lno,“'nkzow-)=|no,---nk=0,“'>
aka,z!no,'~nk=1,--->=0anda2ak!no,---nk=1,"'>=\no,~'nk=0,--->
N {ak’a£}|n07...nk:1,...>:|n0,...nk:17...>

= {ak,a};} =1
(5)

The first line does not have permutation factors likel )" because it takes as many steps togeto

even. On the other hand, if it takésswaps to get;. (or k) to the right, then whe# +# ¢,

ag |-k, 7q>:(_1)P+1|... .q)
“)P ) = (=D g) (6)

aka2|“'7k‘)>' >

abag |-+ ko)

= {ak,a:;} =0

above two, we have

{ak,a;} = St 7)

annihilating both successively, we either have to swap wwedr we don’t, depending on the order

one minus sign, and the resulting states are the same (¥aquvk and ¢), we have

{ak,aq} =0 (8)

As with the bosonic case, one again defines an operator wdinbves a particle from positian

ik-r

b)) =S .
2

2.2. Show that{¢)(r), T (')} = &(r — 7).

annihilation. That is the only difference between actinghwi,a, anda,ai. Since a single swap brings

the rightmost position as it takes to bring it back to its imvéd position, so the total permutation is always

The other cases (i.e., when, = 0 or n, = 1 to start with) can be worked out trivially. Combining the

The second part is even easiérhas to occur either before or afterin a state ket. That means when

of



Solution 2.2.

k, (k) 9)

Problem 3. Ideal Gas Consider an ideal gas with Hamiltonian
H = Z ekalak
k

wheree;, = k2/2m — p.

3.1. Use the Heisenberg equations of motion dgrto calculatea(t) in terms ofay(0). Do this for both
Bosons and Fermions.

Solution 3.1. The Heisenberg equation of motion fay is
d . . .
k=1 [H,a) =i [zp: epa;gap,ak] = ie, [az,ak} ay. (10)
For bosons this is simply
%ak = —iekak, (11)
while for fermions we can write out explicitly
d . . .
Eak = 1€k <a£ak - akaD ap = 1€k <2a£ak — {ak,al}) ap = —1€,A%. (12)
In both cases, then
ay, (t) = e~ *ay (0) . (13)

3.2. Write an explicit expression for
Giw) = [dte (el o)

Giw) = [ dte (Oar(t)

in terms ofny, = <a;(0)ak(0)>. You should use thaf dt ™! = 2r5(v).
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Solution 3.2. Inserting the previous result we find
GP(w) = / dt @R (al (0)ag (0)) = 276 (w — €x) 1y, (14)
while

270 (w — €) <ak(0)a2(0) + aL(O), ak(O)b Bosons (15)

=276 (w — Ek) (1 j:nk)

where the plus sign is for bosons and the minus for fermions.

3.3. If the system is in thermal equilibrium at tinie= 0 we know

1

np = ——.
kT ehear 11

Use this to show7; (w) = e Gy (w).

Solution 3.3. Plugging in the Bose-Einstein and Fermi-Dirac distribngiave find

ePee 141

Gy (w) =210 (w — ) (1 £ ng) = 276 (w — €) P (16)

=276 (w — eg) €7Fny, = 7RG (W).

34. Find Ay (w) = G} (w) — Gx (w)

Solution 3.4.
ePer — 1

- 17
T (17)

Ap(w) = GF (w) — G (w) = <eﬁ6’“ - 1) GE(w) = 276 (w — 1)

Problem 4. Wick’s Theorem: In class we introduced "Wick’s Theorem.” Here you will congé yourself
that it is right. | won't walk you through the full proof — theare lots of great books on it.

Wick’s theorem is a theorem about expectation values ofiliraperators (ie. Matrices) in a Gaussian
ensemble. It says that the expectation value of a produgteriadors is the sum of all pairwise contractions.
For fermionic operators the contractions are weighted-by)® wheres is the signature of the permutation

which brings the pairs together. For bosonic operatorgaaitractions are equally weighted.

Consider a system with Hamiltonian
H= Z ekalak.
k
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We will think aboutk being momentum states, and= k2 /2m— y, but formally any quadratic Hamiltonian
can be written in this form. The operatatg can be either Bosonic or Fermionic. We wish to calculate
expectation values of the form

1 H
<a£1---a2naqn- “q,) = ZTre B az . -aLLaqn---aql.

The trace can be done using any complete set of states: waseilnomentum number states, where there
are a definite number of particles in each momentum.

4.1. We will first do a calculation you are familiar with from Ststical Mechanics. Find; = (akak> Do
it for both Bosons and Fermions. Hint: note that the mbdiecouples from the others, so this is either just
a sum of two terms (Fermi), or a geometric series (Bose).

Solution 4.1. Let’s begin by reminding ourselves that
TFA:ZW’A’W (18)
{v}
where) is a complete set of the states describing the system. Irc#isis, we can use the set of states

Hne}) =11, ( Tn> |vac) to expand

TrA= Z ({rd A {ne}) - (19)
{nx}
For fermions, we sum over;, = 0, 1 while for bosons we sum over all non-negative integers.
Finally, we can also make use of the fact that operatorsimgléd different momenta commute to expand
e PH = emZalugfa, = ], ¢~Peahas The trace then cancels out with the partition function ie|th
denominator for ally # k.
Taking all this into account, we find

3, (il e Prtionalay ny) ¥, e Pany

T _
ng, = (ayak) = = —
‘ (gl ePerelan gy D e (20)
1 0
=———1 —Bern |
B Oey, 8 [Zn: © ]
For fermions we find
10 e Pex 1
f__19 [ —m] — _ 21
K B Oy, log[1+e 1+ePer  eber 1 1)

19 1 e Pk 1
b - Y _ _
ng = log [l—e—ﬁﬁk} =1 o Fa = BT (22)

4.2. Using the same elementary argument (ie. not Wick's thearéng) (n?) = <a£akakak> [You can do

this by summing the series again, or by differentiating withpect to;]. Verify that this agrees with the
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Wick’s theorem result
(afaralar) = (afar)(aral) + (afar)(afar).

What do you conclude about the fluctuations in the occupatfom mode(n2) — (ny)?? How does this
compare to what you would expect classically?

Solution 4.2. Similar to the previous calculation,

—Bexn,, 2 2
oy Dopt n® 1 10 —Ben
(k) = S e Pan S e—Pan <—ga—€k> > e, (23)

For fermions we see

2 1 19\ e~ Pex 1
Af — _ _IBEk f = 24
<<nk> ) 1+ ePer < g 8ek> (1 te ) 1+e P eber +17 (24)

matching

(afaralar) = (afar)(aral) + (afar)(alar)

(25)
= (afar)—afax + {ar,al }) + (a]ar)(afar) = (a]ar).
This is as expected because of course for fermiongthe 7.
For bosons
<(nf)2> = (1-e%) CLoN (L N 1+ 26)
k) = B ey, 1—eBex ) (efer — 1)2’
matching
(afarafar) = (ajar)(aral) + (afar)(alar)
= (afax) (afar + [ar. ol ]) + (afar) (o] ar) @7
1+ ePer
= 2(ny)? = .
<nk> + <7’Lk> (eﬁgk _ 1)2
It's easy to see that the fluctuation in particle number iggily
(Ak)? — (k) = 7 (). (28)

We see that aSe, > 1, i.e. when the temperature scale is large enough to wastheutiscreteness of
energy levels, we approach the classical resultigf?.

4.3. Now, use the same elementary argument to anady%ekaf]aq> wherek # ¢. Does this agree with
Wick’s theorem?



Solution 4.3. This is easy to calculate sinégq are uncoupled. For the direct calculation we have simply
<a£aka2aq> = (azak>(a2aq> = ngng. (29)

Wick’s theorem, on the other hand, tells us
(afarafag) = (alar)(alag) + (afag)(aral), (30)

and again since, ¢ are uncoupled the last term drops out and we have the sanie resu




