
P7654 HW1

Due Friday Jan 25, 2013

There are 4 problems here – but the first two should be review. Skip them if they are trivial for you. Also

skip the last one if you have seen it before (for example in QFT). If you need extra time, I can give you an

extension, but you will find the lectures easier to follow if you do these for Friday.

Problem 1. Second Quantization for Bosons One of the most convenient ways to describe the many-body

problem is through field operators. Here is a quick refresher. If you know this stuff cold, then skip this

question.

First we need to define a basis for n-particle states. A convenient one for bosons is to specify how many

particles have each possible momentum,

|{nk}〉 = |n0, n1, . . .〉.

A convenient way to manipulate these states is to borrow the “ladder” operators from harmonic oscillators.

The raising (or creation) operatorâ†k is defined by

â†k|n0, n1, . . . , nk, . . .〉 =
√
nk + 1|n0, n1, . . . , nk + 1, . . .〉.

Its Hermitian conjugate, the lowering (or annihilation) operator is defined by

âk|n0, n1, . . . , nk, . . .〉 =
√
nk|n0, n1, . . . , nk − 1, . . .〉.

1.1. Prove the following relationship for the commutator,[âk, â
†
k] = 1.

Solution 1.1.
[

ak, a
†
k

]

|n0, n1 · · ·nk, · · · 〉 =
(

aka
†
k − a†kak

)

|n0, n1 · · ·nk, · · · 〉

= ak
√
nk + 1 |n0, n1 · · ·nk + 1, · · · 〉 − a†k

√
nk |n0, n1 · · ·nk − 1, · · · 〉

= (nk + 1) |n0, n1 · · ·nk, · · · 〉 − nk |n0, n1 · · ·nk, · · · 〉
= |n0, n1 · · · nk, · · · 〉

⇒
[

ak, a
†
k

]

= 1

(1)

1.2. Prove that ifk 6= k′ that [âk, â
†
k′ ] = 0.
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Solution 1.2.
[

ak, a
†
(k)

]

∣

∣n0 · · · nk, n(k) · · ·
〉

=
(

aka
†
(k) − a†(k)ak

)

∣

∣n0 · · ·nk, n(k) · · ·
〉

= ak

√

n(k) + 1
∣

∣n0 · · ·nk, n(k) + 1, · · ·
〉

− a†(k)
√
nk

∣

∣n0 · · ·nk − 1, n(k) · · ·
〉

=
√

nk
(

n(k) + 1
)
∣

∣n0 · · ·nk − 1, n(k) + 1, · · ·
〉

−
√

nk
(

n(k) + 1
) ∣

∣n0 · · ·nk − 1, n(k) + 1, · · ·
〉

= 0

⇒
[

ak, a
†
(k)

]

= 0

(2)

1.3. Show that

â†kâk|n0, n1, . . . , nk, . . .〉 = nk|n0, n1, . . . , nk, . . .〉.

In other words, the operator̂nk = â†kâk counts the number of bosons with momentumk.

Solution 1.3.

a†kak |n0, n1 · · ·nk, · · · 〉 = a†k
√
nk |n0, n1 · · ·nk − 1, · · · 〉

= nk |n0, n1 · · · nk, · · · 〉
(3)

Next we define the ”field operator”

ψ̂(r) =
∑

k

eik·r√
V
âk,

which removes a particle from positionr.

1.4. Show that[ψ̂(r), ψ̂†(r′)] = δ(r − r′).

Solution 1.4.

[

ψ(r), ψ†((r))
]

=
1

V





∑

k

eik·rak,
∑

(k)

e−i(k)·(r)a†(k)





=
1

V

∑

k,(k)

eik·r−i(k)·(r)
[

ak, a
†
(k)

]

=
1

V

∑

k,(k)

eik·r−i(k)·(r)δk,(k)

=
1

V

∑

k

eik·(r−(r))

= δ (r − (r))

(4)
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We now introduce the ”vacuum state”|vac〉 = |0 · · · 〉, which is the state containing no particles. Using our

field operators we can then readily define the position basis states:

|r1 · · · rN 〉 = ψ†(r1) · · ·ψ†(rN )|vac〉,

which is the state with particles at postionr1, r2, . . . , rN . The wavefunctions of elementary quantum me-

chanics areφ(r1, . . . , rN ) = 〈r1 · · · rN |φ〉.

Problem 2. Second Quantization for Fermions: Again, if you know this stuff cold, then skip this question.

For fermions there are signs to worry about, so we will use a basis |k1, k2, · · · kN 〉, corresponding to the

wavefunction

φ(r1, · · · rN ) =
1√

N !V N

[

eik1·r1eik2·r2 · · · eikN ·rN − eik2·r1eik1·r2 · · · eikN ·rN + · · ·
]

where you take all permutations weighted with the signatureof the permutation. [We will at first neglect

spin.] Clearly if you change the order of thek′s you get the same state but with a± corresponding to the

signature of the permutation.

The ladder operators are now defined byψ†(q)|k1, k2, · · · kN 〉 = |k1, k2, · · · kN , q〉, andψ(q)|k1, k2, · · · kN , q〉 =

|k1, k2, · · · kN 〉.

2.1. Show that the fermionic ladder operators obey the anticommutation relations

{âk, â†q} = δkq

{âk, âq} = 0
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Solution 2.1. Let’s start withk = q.

aka
†
k |n0, · · ·nk = 0, · · · 〉 = |n0, · · ·nk = 0, · · · 〉 anda†kak |n0, · · ·nk = 0, · · · 〉 = 0

⇒
{

ak, a
†
k

}

|n0, · · ·nk = 0, · · · 〉 = |n0, · · ·nk = 0, · · · 〉

aka
†
k |n0, · · · nk = 1, · · · 〉 = 0 anda†kak |n0, · · ·nk = 1, · · · 〉 = |n0, · · ·nk = 0, · · · 〉

⇒
{

ak, a
†
k

}

|n0, · · ·nk = 1, · · · 〉 = |n0, · · ·nk = 1, · · · 〉

⇒
{

ak, a
†
k

}

= 1

(5)

The first line does not have permutation factors like(−1)P because it takes as many steps to getnk to

the rightmost position as it takes to bring it back to its original position, so the total permutation is always

even. On the other hand, if it takesP swaps to getnk (or k) to the right, then whenk 6= q,

aka
†
q |· · · , k, · · · 〉 = ak |· · · , k, · · · , q〉 = (−1)P+1 |· · · , q〉

a†qak |· · · , k, · · · 〉 = (−1)P |· · · 〉 = (−1)P |· · · , q〉

⇒
{

ak, a
†
q

}

= 0

(6)

The other cases (i.e., whennk = 0 or nq = 1 to start with) can be worked out trivially. Combining the

above two, we have
{

ak, a
†
q

}

= δk,q (7)

The second part is even easier;k has to occur either before or afterq in a state ket. That means when

annihilating both successively, we either have to swap the two or we don’t, depending on the order of

annihilation. That is the only difference between acting with akaq andaqak. Since a single swap brings

one minus sign, and the resulting states are the same (viz., without k and q), we have

{ak, aq} = 0 (8)

As with the bosonic case, one again defines an operator which removes a particle from positionr,

ψ̂(r) =
∑

k

eik·r√
V
âk.

2.2. Show that{ψ̂(r), ψ̂†(r′)} = δ(r − r′).
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Solution 2.2.
{

ψ(r), ψ†((r))
}

=
1

V

∑

k,(k)

eik·r−i(k)·(r)
{

ak, a
†
(k)

}

=
1

V

∑

k,(k)

eik·r−i(k)·(r)δk,(k)

=
1

V

∑

k

eik·(r−(r))

= δ (r − (r))

(9)

Problem 3. Ideal Gas Consider an ideal gas with Hamiltonian

H =
∑

k

ǫka
†
kak

whereǫk = k2/2m− µ.

3.1. Use the Heisenberg equations of motion forak to calculateak(t) in terms ofak(0). Do this for both

Bosons and Fermions.

Solution 3.1. The Heisenberg equation of motion forak is

d

dt
ak = i [H,ak] = i

[

∑

p

ǫpa
†
pap, ak

]

= iǫk

[

a†k, ak
]

ak. (10)

For bosons this is simply

d

dt
ak = −iǫkak, (11)

while for fermions we can write out explicitly

d

dt
ak = iǫk

(

a†kak − aka
†
k

)

ak = iǫk

(

2a†kak −
{

ak, a
†
k

})

ak = −iǫkak. (12)

In both cases, then

ak (t) = e−iǫktak (0) . (13)

3.2. Write an explicit expression for

G>k (ω) =

∫

dt eiωt 〈ak(t)a†k(0)〉

G<k (ω) =

∫

dt eiωt 〈a†k(0)ak(t)〉

in terms ofnk = 〈a†k(0)ak(0)〉. You should use that
∫

dt eiνt = 2πδ(ν).
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Solution 3.2. Inserting the previous result we find

G<k (ω) =

∫

dt ei(ω−ǫk)t 〈a†k(0)ak(0)〉 = 2πδ (ω − ǫk)nk (14)

while

G>k (ω) =

∫

dt ei(ω−ǫk)t 〈ak(0)a†k(0)〉 = πδ (ω − ǫk) 〈ak(0)a†k(0)〉

=







2πδ (ω − ǫk) 〈ak(0)a†k(0) +
[

a†k(0), ak(0)
]

〉 Bosons

2πδ (ω − ǫk) 〈−ak(0)a†k(0) +
{

a†k(0), ak(0)
}

〉 Fermions

= 2πδ (ω − ǫk) (1 ± nk)

(15)

where the plus sign is for bosons and the minus for fermions.

3.3. If the system is in thermal equilibrium at timet = 0 we know

nk =
1

eβǫk ∓ 1
.

Use this to showG>k (ω) = eβωG<k (ω).

Solution 3.3. Plugging in the Bose-Einstein and Fermi-Dirac distributions we find

G>k (ω) = 2πδ (ω − ǫk) (1 ± nk) = 2πδ (ω − ǫk)
eβǫk ∓ 1 ± 1

eβǫk ∓ 1

= 2πδ (ω − ǫk) e
βǫknk = eβǫkG<k (ω).

(16)

3.4. FindAk(ω) = G>k (ω) −G<k (ω)

Solution 3.4.

Ak(ω) = G>k (ω) −G<k (ω) =
(

eβǫk − 1
)

G<k (ω) = 2πδ (ω − ǫk)
eβǫk − 1

eβǫk ∓ 1
. (17)

Problem 4. Wick’s Theorem: In class we introduced ”Wick’s Theorem.” Here you will convince yourself

that it is right. I won’t walk you through the full proof – there are lots of great books on it.

Wick’s theorem is a theorem about expectation values of linear operators (ie. Matrices) in a Gaussian

ensemble. It says that the expectation value of a product of operators is the sum of all pairwise contractions.

For fermionic operators the contractions are weighted by(−1)s wheres is the signature of the permutation

which brings the pairs together. For bosonic operators, allcontractions are equally weighted.

Consider a system with Hamiltonian

H =
∑

k

ǫka
†
kak.
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We will think aboutk being momentum states, andǫk = k2/2m−µ, but formally any quadratic Hamiltonian

can be written in this form. The operatorsak can be either Bosonic or Fermionic. We wish to calculate

expectation values of the form

〈a†k1 · · · a
†
kn
aqn · · · aq1〉 =

1

Z
Tre−βHa†k1 · · · a

†
kn
aqn · · · aq1.

The trace can be done using any complete set of states: we willuse momentum number states, where there

are a definite number of particles in each momentum.

4.1. We will first do a calculation you are familiar with from Statistical Mechanics. Findnk = 〈a†kak〉. Do

it for both Bosons and Fermions. Hint: note that the modek decouples from the others, so this is either just

a sum of two terms (Fermi), or a geometric series (Bose).

Solution 4.1. Let’s begin by reminding ourselves that

TrA =
∑

{ψ}
〈ψ|A |ψ〉 (18)

whereψ is a complete set of the states describing the system. In thiscase, we can use the set of states

|{nk}〉 =
∏

k

“

a
†
k

”nk

√
nk!

|vac〉 to expand

TrA =
∑

{nk}
〈{nk}|A |{nk}〉 . (19)

For fermions, we sum overnk = 0, 1 while for bosons we sum over all non-negative integers.

Finally, we can also make use of the fact that operators relating to different momenta commute to expand

e−βH = e−
P

q βǫqa†qaq =
∏

q e
−βǫqa†qaq . The trace then cancels out with the partition function in the

denominator for allq 6= k.

Taking all this into account, we find

nk = 〈a†kak〉 =

∑

n 〈nk| e−βǫka
†
k
aka†kak |nk〉

∑

n 〈nk| e−βǫka
†
k
ak |nk〉

=

∑

n e
−βǫknn

∑

n e
−βǫkn

= − 1

β

∂

∂ǫk
log

[

∑

n

e−βǫkn
]

.

(20)

For fermions we find

nfk = − 1

β

∂

∂ǫk
log

[

1 + e−βǫk
]

=
e−βǫk

1 + e−βǫk
=

1

eβǫk + 1
(21)

while for bosons we have

nbk = − 1

β

∂

∂ǫk
log

[

1

1 − e−βǫk

]

=
e−βǫk

1 − e−βǫk
=

1

eβǫk − 1
. (22)

4.2. Using the same elementary argument (ie. not Wick’s theorem), find 〈n2
k〉 = 〈a†kaka

†
kak〉. [You can do

this by summing the series again, or by differentiating withrespect toǫk]. Verify that this agrees with the
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Wick’s theorem result

〈a†kaka
†
kak〉 = 〈a†kak〉〈aka

†
k〉 + 〈a†kak〉〈a

†
kak〉.

What do you conclude about the fluctuations in the occupationof a mode〈n̂2
k〉 − 〈nk〉2? How does this

compare to what you would expect classically?

Solution 4.2. Similar to the previous calculation,

〈n̂2
k〉 =

∑

n e
−βǫknn2

∑

n e
−βǫkn =

1
∑

n e
−βǫkn

(

− 1

β

∂

∂ǫk

)2
∑

n

e−βǫkn. (23)

For fermions we see

〈
(

n̂fk

)2
〉 =

1

1 + e−βǫk

(

− 1

β

∂

∂ǫk

)2
(

1 + e−βǫk
)

=
e−βǫk

1 + e−βǫk
=

1

eβǫk + 1
, (24)

matching

〈a†kaka
†
kak〉 = 〈a†kak〉〈aka

†
k〉 + 〈a†kak〉〈a

†
kak〉

= 〈a†kak〉〈−a
†
kak +

{

ak, a
†
k

}

〉 + 〈a†kak〉〈a
†
kak〉 = 〈a†kak〉.

(25)

This is as expected because of course for fermions then̂2
k = n̂k.

For bosons

〈
(

nfk

)2
〉 =

(

1 − e−βǫk
)

(

− 1

β

∂

∂ǫk

)2 (

1

1 − e−βǫk

)

=
1 + eβǫk

(eβǫk − 1)
2 , (26)

matching

〈a†kaka
†
kak〉 = 〈a†kak〉〈aka

†
k〉 + 〈a†kak〉〈a

†
kak〉

= 〈a†kak〉〈a
†
kak +

[

ak, a
†
k

]

〉 + 〈a†kak〉〈a
†
kak〉

= 2〈nk〉2 + 〈nk〉 =
1 + eβǫk

(eβǫk − 1)
2 .

(27)

It’s easy to see that the fluctuation in particle number is given by

〈n̂k〉2 − 〈n̂k〉 = eβǫk〈n̂k〉2. (28)

We see that asβǫk ≫ 1, i.e. when the temperature scale is large enough to wash out the discreteness of

energy levels, we approach the classical result of〈n̂k〉2.

4.3. Now, use the same elementary argument to analyze〈a†kaka
†
qaq〉 wherek 6= q. Does this agree with

Wick’s theorem?
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Solution 4.3. This is easy to calculate sincek, q are uncoupled. For the direct calculation we have simply

〈a†kaka†qaq〉 = 〈a†kak〉〈a†qaq〉 = nknq. (29)

Wick’s theorem, on the other hand, tells us

〈a†kaka†qaq〉 = 〈a†kak〉〈a†qaq〉 + 〈a†kaq〉〈aka†q〉, (30)

and again sincek, q are uncoupled the last term drops out and we have the same result.
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