
Quantum Monte Carlo Methods
for Abinitio Hamiltonians in Chemistry and Physics

Cyrus Umrigar

Physics Department, Cornell University, Ithaca.

Email: CyrusUmrigar@cornell.edu

Mar 21 - Mar 30, 2018, Basic Training

Cyrus J. Umrigar



Outline
Subject 1: Basics

1. Quantum Monte Carlo in a nutshell.
2. Basics of Monte Carlo Methods

Subject 2: Variational Monte Carlo

1. Metropolis-Hastings algorithm
2. Forms of wave functions
3. Optimization of many-body wave functions

Subject 3: Projector Monte Carlo

1. Diffusion Monte Carlo
2. Full Configuration Interaction Quantum Monte Carlo
3. Auxiliary Field Quantum Monte Carlo / Determinantal Monte Carlo
4. Fermion Sign Problem

Cyrus J. Umrigar



Solving the Many-Body Schrödinger Equation

Straightforward approach:

1. Expand the many-body wavefunction as a linear combination of
(possibly nonorthogonal) basis states (determinants for Fermions).

2. Compute Hamiltonian and overlap matrices, H and S in this basis
3. Solve the generalized eigenvalue problem Hc = ESc

Problem:
The number of many-body states grows combinatorially in the number of
single particle basis states and the number of particles,

(Norb
N↑

)
×
(Norb

N↓

)
, e.g.

Half-filled 2D Hubbard model on 8× 8 lattice:
(64

32

)2
= 3.3× 1036

Half-filled 2D Hubbard model on 16× 16 lattice:
(256

128

)2
= 3.3× 10151

Molecules with 20 electrons in 200 orbitals:
(200

10

)2
= 5.0× 1032

(Partial) Solutions:

1. If only a small fraction, say 1010 of these states are important, then one
can use smart methods for finding these states and diagonalizing.

2. Use Quantum Monte Carlo methods.
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What is Quantum Monte Carlo?
Stochastic implementation of the power method for projecting out the
dominant eigenvector of a matrix or integral kernel.

“Dominant state” means state with largest absolute eigenvalue.

If we repeatedly multiply an arbitrary vector, not orthogonal to the dominant state,
by the matrix, we will eventually project out the dominant state.
Power method is an iterative method for eigenvalue problems (less efficient than
Lanczos or Davidson). However, stochastic power method, QMC, is powerful.

QMC methods are used only when the number of states is so large (> 1010) that it
is not practical to store even a single vector in memory. Otherwise use exact
diagonalization method, e.g., Lanczos or Davidson. At each MC generation, only a
sample of the states are stored, and expectation values are accumulated.

QMC methods are used not only in a large discrete space but also in a continuously
infinite space. Hence “matrix or integral kernel” above. In the interest of brevity I
will use either discrete or continuous language (sums and matrices or integrals and
integral kernels), but much of what is said will apply to both situations.
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Zoo of Quantum Monte Carlo methods
There are a large number of QMC methods with a bewildering array of
names, but just like a Chipotle wrap they are comprised of a few ingredients.

Chipotle wrap
white rice or brown rice

mild or medium or hot salsa
steak or carnitas or chicken or sofritas

QMC
zero temperature or finite temperature
linear projector or exponential projector

first quantized or second quantized
discrete time or continuous time

finite basis (site, Gaussian, planewave, ...) or infinite basis (real-space)
fixed-node or release-node

constrained-path or phaseless or free projection
finite path with Metropolis or open-ended walk with branching

pure estimator or mixed estimator or extrapolated estimator
single site or cluster or loop or worm updates

In these lectures we will see what all of the above mean (except the last line).
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Definitions
Given a complete or incomplete basis: {|φi 〉}, either discrete or continuous

Exact |Ψ0〉 =
∑
i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial |ΨT 〉 =
∑
i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding |ΨG 〉 =
∑
i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

(If basis incomplete then “exact” means “exact in that basis”.)

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/ 〈ΨT|ΨT〉 , 〈ΨT|Â|Ψ0〉/ 〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G in VMC, ΨGΨ0 in

PMC.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. Reasons to have ΨG 6= ΨT are: a) rapid
evaluation of “local energy”, b) have finite-variance estimators. To simplify
expressions, we sometimes use ΨG = ΨT or ΨG = 1 in what follows.
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Variational MC

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj∑Nst

k t2
k

=
Nst∑
i

t2
i∑Nst

k t2
k

∑Nst

j Hij tj

ti

=
Nst∑
i

t2
i∑Nst

k t2
k

EL(i) =

[∑NMC

i EL(i)
]

Ψ2
T

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)2

EL(i)

]
Ψ2

G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

Sample probability density function
g2
i∑Nst

k
g2
k

using Metropolis-Hastings, if ΨG complicated.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.

Energy bias and statistical error vanish as ΨT → Ψ0.

For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
In fact ΨG 6= ΨT needed when optim. to get finite variance.

ΨG = ΨT allows simple unbiased estimator. Ratio of expec. val. 6= expec. val. of ratios.
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj∑Nst

k ektk
=

Nst∑
i

ei ti∑Nst

k ektk

∑Nst

j Hij tj

ti

=
Nst∑
i

ei ti∑Nst

k ektk
EL(i) =

[∑NMC

i EL(i)
]

ΨTΨ0

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

Sample eigi/
∑Nst

k ekgk using importance-sampled projector.

For exact PMC, value indep. of ΨT, ΨG, statistical error depends on ΨT, ΨG.
(For FN-PMC, value depends on ΨG, statistical error on ΨT,ΨG.)
(For FN-DMC, value depends on nodes of ΨG, statistical error on ΨT,ΨG.)
Statistical error vanishes as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Variational and Projector MC

EV =

[∑NMC
i

(
ti
gi

)2
EL(i)

]
Ψ2

G[∑NMC
k

(
tk
gk

)2
]

Ψ2
G

(Value depends on ΨT, error ΨT,ΨG)

E0 =

[∑NMC
i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(Value exact†. Error depends on ΨT,ΨG.)

EL(i) =

∑Nst
j Hij tj

ti

In both VMC and PMC weighted average of the configuration value of Ĥ aka
local energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉, gi = 〈φi |ΨG〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (if space discrete)
or semi-diagonal (if space continuous).

† In practice, usually necessary to make approximation (e.g. FN) and value depends on ΨG.
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Variational Monte Carlo in Real Space
W. L. McMillan, Phys. Rev. 138, A442 (1965)

Real space =⇒ |φi 〉 = |R〉. Monte Carlo is used to perform the many-dimensional

integrals needed to calculate quantum mechanical expectation values. e.g.

ET =

∫
dR Ψ∗T(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

∑
i

HΨT(Ri )

ΨT(Ri )
=

1

N

∑
i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from ψ2

T(R) using a generalization of
the Metropolis method. If ψT is an eigenfunction, the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ψT(R).
Diffusion MC does better by projecting onto ground state.
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Rest of this lecture
Now that you know the essence of quantum Monte Carlo methods, for the
rest of this lecture we will discuss basic concepts that underlie both classical
and quantum Monte Carlo methods, e.g., the central limit theorem,
techniques for sampling various distributions, importance sampling for
reducing statistical error, calculation of unbiased estimators, ...

Then in the rest of the lectures we will continue our study of quantum
Monte Carlo methods.

Cyrus J. Umrigar



When to use Monte Carlo Methods
Monte Carlo methods: A class of computational algorithms that rely on
repeated random sampling to compute results.
A few broad areas of applications are:

1. physics
2. chemistry
3. engineering
4. finance and risk analysis

When are MC methods likely to be the methods of choice?

1. When the problem is many-dimensional and approximations that factor
the problem into products of lower dimensional problems are inaccurate.

2. A less important reason is that if one has a complicated geometry, a MC
algorithm may be simpler than other choices.

Obvious drawback of MC methods: There is a statistical error.
Frequently there is a tradeoff between statistical error and systematic error
and one needs to find the best compromise.
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MC Simulations versus MC calculations
One can distinguish between two kinds of algorithms:

1. The system being studied is stochastic and the stochasticity of the
algorithm mimics the stochasticity of the actual system. e.g. study of
neutron transport and decay in nuclear reactor by following the
trajectories of a large number of neutrons. Such problems are suitable
for MC algorithms in a very obvious way.

2. Much more interesting are applications where the system being studied
is not stochastic, but nevertheless a stochastic algorithm is the most
efficient, or the most accurate, or the only feasible method for studying
the system. e.g. the solution of a PDE in a large number of variables,
e.g., the solution of the Schrödinger equation for an N-electron system,
with say N = 100 or 1000. (Note: The fact that the wavefunction has a
probabilistic interpretation has nothing to do with the stochasticity of
the algorithm. The wavefunction itself is perfectly deterministic.)

I prefer to use the terminology that the former are MC simulations whereas
the latter are MC calculations but not everyone abides by that terminology.
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Early Recorded History of Monte Carlo
1777 Comte de Buffon: If a needle of length L is

thrown at random onto a plane ruled with straight lines a
distance d(d > L) apart, then the probability P of the

needle intersecting one of those lines is P = 2L
πd .

Laplace: This could be used to compute π (inefficiently).

1930s First significant scientific application of MC: Enrico Fermi
used it for neutron transport in fissile material.
Segre: “Fermi took great delight in astonishing his Roman
colleagues with his ”too-good-to-believe” predictions of
experimental results.”

1940s Monte Carlo named by Nicholas Metropolis and Stanislaw Ulam

1953 Algorithm for sampling any probability density
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(generalized by Hastings in 1970)

1962,1974 First PMC calculations, Kalos, and, Kalos, Levesque, Verlet.
1965 First VMC calculations (of liquid He), Bill McMillan.
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Compte de Buffon

I gave an earlier verions of these
lectures at the University of Paris.
After my first lecture, my host
took me for a short walk to the
Jardin de Plantes to meet Buffon.

Here he is:

Among other things, he wrote a 36
volume set of books on the Natural
History of the Earth!
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Central Limit Theorem
de Moivre (1733), Laplace (1812), Lyapunov (1901), Pólya (1920)

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, and variance σ2. The central limit theorem states that as the sample size
N increases, the probability density of the sample average, X̄ , of these
random variables approaches the normal distribution,√

N
2πσ2 e−(x−µ)2/(2σ2/N), with mean µ, and variance σ2/N, irrespective of the

original probability density function, e.g.:
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The rate at which they converge will however depend on the original PDF.
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(Weak) Law of Large Numbers

Cardano, Bernouli, Borel, Cantelli, Kolmogorov, Khinchin

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, but not necessarily a finite variance σ2. Then for any ε > 0,

lim
N→∞

P(|X̄ − µ| ≥ ε) = 0

However, the rate at which it converges may be very slow.
So, employ distributions with a finite variance whenever possible.
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Lorentzian
Does the Central Limit Theorem or the Law of Large Numbers apply to a
Lorentzian (also known as Cauchy) probability density function

L(x) =
1

π

1

1 + x2
?
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Lorentzian
A Lorentzian (also known as Cauchy) probability density function

L(x) =
1

π

1

1 + x2

not only violates the conditions for the Central Limit Theorem but also the
conditions for the Law of Large Numbers, since not only the variance but
even the mean is undefined.∫ ∞

−∞
xL(x)dx =

(∫ a

−∞
+

∫ ∞
a

)
xL(x)dx

= −∞+∞

Averages over a Lorentzian have the same spread of values as the original
values!
So, although the Lorentzian looks much “nicer” than the other 3 functions
we showed, it is a problem!
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Chebychev Inequality
The Central Limit Theorem by itself does not tell you how quickly the averages
converge to a Gaussian distribution.

For an arbitrary distribution with finite mean µ and finite variance σ2, we have
much weaker bounds given by Chebychev’s inequality:

The probability of a variable lying between µ− nσ and µ+ nσ is > 1− 1/n2, as
compared to erf(n/

√
2) for a Gaussian.

Prob. of being within 1σ of µ is ≥ 0% versus 68.3% for Gaussian
Prob. of being within 2σ of µ is ≥ 75% versus 95.4% for Gaussian
Prob. of being within 3σ of µ is ≥ 89% versus 99.7% for Gaussian
Prob. of being within 4σ of µ is ≥ 94% versus 99.994% for Gaussian

The worst case occurs for a distribution with probability 1− 1/n2 at µ and
probability 1/2n2 at µ− nσ and µ+ nσ.

What if the population variance σ2 =∞ but we do not know that beforehand? The
computed sample variance will ofcourse always be finite. The practical signature of
an infinite variance estimator is that the estimated σ increases with sample size, N
and tends to have upward jumps. So the estimated error of the sample mean,
σN = σ/

√
N, goes down more slowly than 1√

N
, or even does not go down at all.
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Monte Carlo versus Deterministic Integration
methods

Deterministic Integration Methods:
Integration Error, ε, using Nint integration points:
1-dim Simpson rule: ε ≤ cN−4

int , (provided derivatives up to 4th exist)

d-dim Simpson rule: ε ≤ cN
−4/d
int , (provided derivatives up to 4th exist)

This argument is correct for functions that are approximately separable.

Monte Carlo:
ε ∼ σ(Tcorr/Nint)

1/2, independent of dimension!, according to the central
limit theorem since width of gaussian decreases as (Tcorr/Nint)

1/2 provided
that the variance of the integrand is finite. (Tcorr is the autocorrelation
time.)

Very roughly, Monte Carlo becomes advantageous for d > 8.
For d = 30, even 2 grid points per dimensions gives Nint ≈ 109, so
deterministic integration not possible.
For a many-body wavefunction d = 3Nelec and can be a few thousand!
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Scaling with number of electrons

Simpson’s rule integration

ε ≤ c

N
4/d
int

=
c

N
4/3Nelec

int

Nint ≤
(c

ε

) 3Nelec
4

exponential in Nelec

Monte Carlo integration

ε = σ

√
Nelec

NMC

NMC =
(σ
ε

)2
Nelec linear in Nelec

(For both methods, computational cost is higher than this since the cost of
evaluating the wavefunction increases with Nelec, e.g., as N3

elec, (better if one
uses “linear scaling”; worse if one increases Ndet with Nelec.))
Cyrus J. Umrigar



Monte Carlo Integration

I =

∫
V

f (x)dx = V f ± V

√
f 2 − f

2

N − 1

where f =
1

N

N∑
i

f (xi ), f 2 =
1

N

N∑
i

f 2(xi )

and the points xi are sampled uniformly in V . Many points may contribute very little.

Importance sampling

I =

∫
V

g(x)
f (x)

g(x)
dx =

(
f

g

)
±

√√√√( f
g

)2

−
(

f
g

)2

N − 1

where the probability density function g(x) ≥ 0 and
∫
V
g(x)dx = 1.

If g(x) = 1/V in V then we recover original fluctuations but if g(x) mimics f (x) then the
fluctuations are much reduced. Optimal g is |f |. Need: a) g(x) ≥ 0, b) know integral of
g(x), and, c) be able to sample it.

Importance sampling can turn an ∞−variance estimator into a finite variance one!
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Illustration of Importance Sampling

f (x) is the function to be integrated. g(x) is a function that is “similar” to
f (x) and has the required properties: a) g(x) ≥ 0, b)

∫
dx g(x) = 1, and,

c) we know how to sample it.
∫

f (x)dx can be evaluated efficiently by
sampling g(x) and averaging f (x)/g(x).

-0.5
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x
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x

f(x)
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Pseudo-random vs quasi-random numbers
Terrible misnomers!
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(Pseudo) Random Sequence

4096 Points of (Pseudo) Random Sequence
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x(
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Quasi−Random Sobol Sequence

4096 Points of Quasi−Random Sobol Sequence

Reason why uniform grid is inefficient: Projection of N = nd points in d dimensions
onto a line maps nd−1 points onto a single point.
Reason why quasi-MC is more efficient than pseudo-MC in intermediate # of
dimensions (e.g. finance applications): Quasi-MC avoids clusters and voids.
Negatives for quasi-MC: Difficult to combine with importance sampling (needed for
spiky functions), cannot choose # of MC points freely.
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Sampling of arbitrary probability density functions

Infinite-variance estimators can be replaced by finite-variance estimators by
sampling the MC points from an appropriate probability density functions.

Techniques for sampling arbitrary probability density functions employ
standard random numbers generators that sample a uniform distribution in
[0, 1]. We study 3 techniques for sampling nonuniform distributions:

1. transformation method
2. rejection method
3. Metropolis-Hastings method

but first we say a few words about random number generators.
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Random Number Generators
Conventional random number generators generate random numbers
uniformly distributed on [0,1).
Of course no computer generated sequence of random numbers is truly
random. For one, the random numbers must repeat after a finite (though
hopefully very large) period. Also, if N bits are used to represent the random
numbers, then the number of different numbers generated can by no larger
than 2N .
Note however, that the period can be (and typically is for the better
generators) much larger than 2N .
Many different algorithms exist for generating random numbers, e.g., linear
congruential generators (with or without an additive constant), linear
feedback shift register, lagged Fibonacci generator, XORshift algorithm etc.
They are typically subjected to a battery of statistical tests, e.g., the Diehard
tests of Marsaglia. Of course no random number generator can pass all the
tests that one can invent, but hopefully the random number generator used
does not have correlations that could significantly impact the system being
studied.
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Random Number Generators
For many MC calculations it is the short-ranged correlations that matter
most, but one has to think for each application what is important. For
example, if one were studying an Ising model with a power of two number of
spins, it would be problematic to have random number generator that
generated numbers with bits that repeat at an interval of 2N .

In the old days, there were quite a few calculations that produced inaccurate
results due to bad random number generators. For example, the standard
generators that came with UNIX and with C were badly flawed. In the 1980s
a special purpose computer was built at Santa Barbara to study the 3-D
Ising model. However, at first it failed to reproduce the known exact results
for the 2-D Ising model and that failure was traced back to a faulty random
number generator. Fortunately, these days the standard random number
generators are much more reliable.
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Sampling random variables from nonuniform
probability density functions

We say x is sampled from f (x) if for any a and b in the domain,

Prob[a ≤ x ≤ b] =

∫ b

a

dx ′ f (x ′)

1) Transformation method (For many simple functions)
2) Rejection method (For more complicated functions)
3) Metropolis-Hastings method (For any function)

1) Transformation method: Perform a transformation x(ξ) on a uniform deviate ξ,
to get x sampled from desired probability density f (x).

|Prob(ξ)dξ| = |Prob(x)dx | conservation of probability

If we have sampled ξ from a uniform density (Prob(ξ) = 1) and we wish x to be
sampled from the desired density, f (x), then setting Prob(x) = f (x),∣∣∣∣dξdx

∣∣∣∣ = f (x)

Solve for ξ(x) and invert to get x(ξ), i.e., invert the cumulative distribution.
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Examples of Transformation Method
Example 1: f (x) = ae−ax , x ∈ [0,∞)∣∣∣∣dξdx

∣∣∣∣ = ae−ax , or, ξ = e−ax , i.e., x =
− ln(ξ)

a

Example 2: f (x) = x−1/2

2 , x ∈ [0, 1]∣∣∣∣dξdx

∣∣∣∣ =
x−1/2

2
, or ξ = x1/2, i.e., x = ξ2

Note that in this case we are sampling a probability density that is infinite
at 0, but that is OK!

Example 3: f (x) = xe−x
2/2, x ∈ [0,∞)∣∣∣∣dξdx

∣∣∣∣ = xe−x
2/2, or, ξ = e−x

2/2, i.e., x =
√
−2 ln(ξ)
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at 0, but that is OK!

Example 3: f (x) = xe−x
2/2, x ∈ [0,∞)∣∣∣∣dξdx

∣∣∣∣ = xe−x
2/2, or, ξ = e−x

2/2, i.e., x =
√
−2 ln(ξ)
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Examples of Transformation Method
Example 4a: f (x) = e−x2/2

√
2π

, x ∈ (−∞,∞) (using Box-Müller method)

1

2π
e−(

x2
1
2 +

x2
2
2 ) dx1 dx2 =

(
r e−

r2

2 dr
)(dφ

2π

)

r =
√
−2 log(ξ1), φ = 2πξ2

x1 =
√
−2 log(ξ1) cos(2πξ2) , x2 =

√
−2 log(ξ1) sin(2πξ2)

(x1 and x2 are
uncorrelated)

Example 4b: f (x) ≈ e−x2/2
√

2π
, x ∈ (−∞,∞) (using central-limit theorem)

ξ − 0.5 is in [−1/2, 1/2]. Since σ2 for uniform distribution about 0 is∫ 1/2

−1/2
dx x2 = 1

12

x = lim
N→∞

√
12

N

(
N∑
i=1

ξi −
N

2

)
≈

12∑
i=1

ξi − 6
(avoids log, sqrt, cos, sin, but,
misses tiny tails beyond ±6)
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Rejection Method
We wish to sample f (x).
Find a function g(x) that can be sampled by another method (say transformation)
and that preferably mimics the behaviour of f (x).
Let C ≥ max(f (x)/g(x)).
Then f (x) is sampled by sampling g(x) and keep the sampled points with probability

P =
f (x)

Cg(x)

The efficiency of the method is the fraction of the sampled points that are kept.

Eff =

∫
dx

f (x)

Cg(x)
g(x)

=
1

C

Drawback: It is often hard to know C and a “safe” upperbound choice for C may
lead to low efficiency. An alternative is to associate weights with the sampled points.
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Sampling from Discrete Distributions

Suppose we need to repeatedly sample from N discrete events with
probabilities p1, p2, · · · pN , where N is large.
What is the best possible scaling of the time per sample?
Is it O(N), O(log2(N)), O(1)?

Straightforward O(log2(N)) method with binary search:

1. Before starting sampling, construct array of cumulative probabilities.
2. Draw a random number, ξ, in [0, 1].
3. Do a binary search to find the interval it falls in.

Can we do it in O(1)?
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What is the best possible scaling of the time per sample?
Is it O(N), O(log2(N)), O(1)?

Straightforward O(log2(N)) method with binary search:

1. Before starting sampling, construct array of cumulative probabilities.
2. Draw a random number, ξ, in [0, 1].
3. Do a binary search to find the interval it falls in.

Can we do it in O(1)?

Cyrus J. Umrigar



Sampling from Discrete Distributions: O(1) Alias Method

1. Before starting sampling, construct an integer array, {Ai}, that contains the
aliases and a real array, {pi} that contains the probabilities of staying at i .

2. Draw a random number in [0, 1].

3. Go to the i = dNξe bin.

4. With probability pi sample i and with probability (1− pi ) sample Ai .

Figure taken from book by Gubernatis, Kawashima and Werner
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Importance Sampling for computing integrals
efficiently

Now that we know how to sample simple probability density functions, we
study how to use importance sampling to compute integrals more efficiently.
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Example of Importance Sampling to Calculate
Integrals More Efficiently

Suppose we wish to compute

∫ 1

0

dx f (x) =

∫ 1

0

dx
1

xp + x

=
log
(

x+xp

xp

)
1− p

∣∣∣∣∣∣
1

0

=
log(2)

1− p
, but pretend not known


Note that ∫ 1

0

dx(f (x))2 = ∞, (for p ≥ 0.5)

so if we estimate the integral by sampling points uniformly in [0, 1] then this would
be an infinite variance estimator and the error of the estimate will go down more
slowly than N−1/2. However, we can instead sample points from the density

g(x) =
1− p

xp

Now the variance of f (x)/g(x) is finite and the error decreases as N−1/2, and, with
a small prefactor. (Still would not use this in 1D.)
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Homework Problem 1
Compute

I =

∫ 1

0
dx f (x) =

∫ 1

0
dx

1

xp + x
(=

log(2)

1− p
, but pretend not known) ≈

1

NMC

NMC∑
k=1

1

ξpk + ξk

with/without importance sampling, using for the importance sampling function

g(x) =
(1− p)

xp

To sample g(x):

∣∣∣∣dξdx
∣∣∣∣ = (1− p)x−p , i.e., ξ = x1−p , i.e., x = ξ

1
1−p

∫ 1

0
dx f (x) =

∫ 1

0
dx g(x)

f (x)

g(x)
=

∫ 1

0
dx

1− p

xp
1

(1− p)(1 + x1−p)

≈
1

NMC(1− p)

NMC∑
k=1

1

(1 + x1−p
k )

=
1

NMC(1− p)

NMC∑
k=1

1

(1 + ξk )

Do this for p = 0.25, 0.5, 0.75, 0.95 and NMC = 103, 104, 105, 106, 107, 108, 109.
Plot 2 graphs, each having 8 curves (4 values of p, and, with/without importance sampling):

1. Log of estimated 1-standard deviation statistical error versus log(NMC).
2. Actual error in I , with estimated 1-std. dev. statistical error as an error bar versus log(NMC).
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Homework Solution 1a
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)

Log10(N)

MC integral of 1/(x
p
+x) with and without importance sampling

p=0.25 with impor. sampl.
p=0.5 with impor. sampl.

p=0.75 with impor. sampl.
p=0.95 with impor. sampl.

p=0.25 no impor. sampl.
p=0.5 no impor. sampl.

p=0.75 no impor. sampl.
p=0.95 no impor. sampl.

Statistical errors ∼ NMC
−1/2 for all p with importance sampling but only for p = 0.25

without importance sampling. For p = 1 even the integral is infinite. For p = 0.95 no sign
of convergence. Theorem about asymptotic convergence of little practical utility.
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Homework Solution 1b

-10
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A
ct
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Log10(N)

MC integral of 1/(x
p
+x) with and without importance sampling

p=0.25 with impor. sampl.
p=0.5 with impor. sampl.

p=0.75 with impor. sampl.
p=0.95 with impor. sampl.

p=0.25 no impor. sampl.
p=0.5 no impor. sampl.

p=0.75 no impor. sampl.
p=0.95 no impor. sampl.

For p = 0.95 all of the errors are negative. Occasional large positive errors will bring mean to
correct value. Actual errors may be MANY standard deviations. For infinite variance highly skewed
variables the averages with the larger actual errors tend to have the smaller estimated errors! So,
weighting estimates by inverse variances is bad!!
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Homework Solution 1b (expanded scale)
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Log10(N)

MC integral of 1/(x
p
+x) with and without importance sampling

p=0.25 with impor. sampl.

p=0.50 with impor. sampl.

p=0.75 with impor. sampl.

p=0.25 no impor. sampl.

p=0.50 no impor. sampl.

p=0.75 no impor. sampl.

Beware of infinite-variance estimators, particularly if the distribution of estimates is highly skewed!
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Unbiased Estimators
Population mean: 〈f 〉

Sample (of size N) mean: f̄

F̃ (f̄ ) is an unbiased estimator if
〈

F̃ (f̄ )
〉

= F (〈f 〉)
or more generally

F̃ (f̄1, f̄2, · · · ) is an unbiased estimator if
〈

F̃ (f̄1, f̄2, · · · )
〉

= F (〈f1〉, 〈f2〉, · · · )

1) Is
〈
f̄ − ḡ

〉
= 〈f 〉 − 〈g〉 ?

yes

2) Is
〈
f̄ ḡ
〉

= 〈f 〉 〈g〉 ?

no

3) Is
〈
f̄ /ḡ

〉
= 〈f 〉 / 〈g〉 ?

no

4) Is
〈

f̄ 2 − f̄ 2
〉

=
〈
f 2
〉
− 〈f 〉2 ?

no. Correct: N
N−1

〈
f̄ 2 − f̄ 2

〉
=
〈
f 2
〉
− 〈f 〉2
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Estimating Unbiased Variance from Uncorrelated Samples

Let 〈f (x)〉 denote the population mean and f (x) denote the sample mean.
Then f 2 − (f )2 =〈∑

i f 2(xi )

N
−
[∑

i f (xi )

N

]2
〉

= 〈f 2〉 −

〈∑
i f 2(xi ) +

∑
i ,j 6=i

∑
j f (xi )f (xj)

N2

〉

Since f (xi ) and f (xj) are independent

RHS =

(
1− 1

N

)
〈f 2〉 − N(N − 1)

N2
〈f 〉2 =

N − 1

N
(〈f 2〉 − 〈f 〉2) =

N − 1

N
σ2

So, the unbiased estimate for σ2 is

σ2 ≈ N

N − 1

(
f 2 − (f )2

)
Loss of one degree of freedom because sample variance is computed relative
to sample mean rather than the true mean.
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Examples of Unbiased and Biased Estimators

ET =

∫
dRψT(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

N∑
i=1

HΨT(Ri )

ΨT(Ri )
=

1

N

N∑
i=1

EL(Ri ) unbiased

ET =

∫
dRψT(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR |ψT(R)|∫

dR |ψT(R)| sgn(ψT(R)) HψT(R)∫
dR |ψT(R)|∫

dR |ψT(R)| |ψT(R)|

=

∑N
i=1 sgn(ψT(R)) HΨT(Ri )∑N

i=1 |ψT(R)|
O
(

1
N

)
bias

Can do better by calculating covariances.
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Unbiased Estimators to O(1/N) of functions of
expectation values and their variance

〈x〉 ≡ population averages of x , i.e., true expectation value
x̄ ≡ average of x over sample of size N

Let F be a function of expectation values, {〈fi 〉}.
F
(
{f̄i}

)
is unbiased estimator for F ({〈fi 〉}) iff F is linear function of {〈fi 〉}.

In general

F ({〈fi 〉}) =
〈
F
(
{f̄i}

)〉
− 1

2

∑
i ,j

∂2F

∂fi∂fj

cov(fi , fj)

N
+ O

(
1

N2

)

var
(
F ({〈fi 〉})

)
=

∑
i ,j

∂F

∂fi

∂F

∂fj
cov(fi , fj) + O

(
1

N

)
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Unbiased Estimators to O(1/N) or better (cont)
Estim. of mean 〈f 〉ρ = fρ

Estim. of variance 〈f 2〉ρ − 〈f 〉2ρ =
N

N − 1

(
f 2
ρ − fρ

2
)

Estim. of error of sample mean =

√
1

N − 1

(
f 2
ρ − fρ

2
)

Estim. of covar. cov(f , g) ≡ 〈fg〉ρ − 〈f 〉ρ〈g〉ρ =
N

N − 1

(
fgρ − fρgρ

)
Estim. of product of expec. values 〈f 〉ρ〈g〉ρ = fρgρ −

1

N
cov(f , g)

Estim. of ratio of expec. values
〈f 〉ρ
〈g〉ρ

≈
fρ

gρ

1−
1

N

 σ2
g

〈g〉2ρ
−

cov(f , g)

〈f 〉ρ 〈g〉ρ


Var

(
fρ gρ

)
=

1

N
〈f 〉2ρ 〈g〉

2
ρ

 σ2
f

〈f 〉2ρ
+

σ2
g

〈g〉2ρ
+ 2

cov(f , g)

〈f 〉ρ 〈g〉ρ


Var

(
fρ

gρ

)
=

1

N

〈f 〉2ρ
〈g〉2ρ

 σ2
f

〈f 〉2ρ
+

σ2
g

〈g〉2ρ
− 2

cov(f , g)

〈f 〉ρ 〈g〉ρ

 .

Note that the product, fρgρ is unbiased if cov(f , g) = 0, but the ratio
fρ
gρ

has O(1/N) bias even if

cov(f , g) = 0. The ratio has no bias (and no fluctuations) when f and g are perfectly correlated.

In practice replace population means by sample means on RHS.
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Unbiased Estimators of autocorrelated variables
Independent samples:

Estim. for error of sample mean ∆f =

√
1

N − 1

(
f 2
ρ − fρ

2
)

Autocorrelated samples (e.g. from Metropolis-Hastings):

Estim. for error of sample mean ∆f =

√
1

Neff − 1

(
f 2
ρ − fρ

2
)

where

Neff =
N

(1 + 2τf )
≡ N

Tcorr

τf =

∑∞
t=1

[
〈f1f1+t〉ρ − 〈f 〉

2
ρ

]
σ2
f

If samples are indep., 〈f1f1+t〉ρ = 〈f 〉2ρ and integrated autocorrelation time τf = 0.
Since the relevant quantity for MC calculations is (1 + 2τf ) ≡ Tcorr we will refer to
it as the autocorrelation time of f , though this is not standard usage.
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Lecture 2
Variational Monte Carlo

W. L. McMillan, Phys. Rev. 138, A442 (1965) (Bosons)

D. Ceperley, G. V. Chester and M. H. Kalos, PRB 16, 3081 (1977) (Fermions)
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Recap of Variational and Projector MC

EV =

[∑NMC
i

(
ti
gi

)2
EL(i)

]
Ψ2

G[∑NMC
k

(
tk
gk

)2
]

Ψ2
G

(Value depends on ΨT, error ΨT,ΨG)

E0 =

[∑NMC
i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(Value exact†. Error depends on ΨT,ΨG.)

EL(i) =

∑Nst
j Hij tj

ti

In both VMC and PMC weighted average of the configuration value of Ĥ aka
local energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉, gi = 〈φi |ΨG〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (if space discrete)
or semi-diagonal (if space continuous).

gc) other details.

† In practice, usually necessary to make approximation (e.g. FN) and value depends on ΨG.
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Recap of Variational Monte Carlo in Real Space
W. L. McMillan, Phys. Rev. 138, A442 (1965)

Monte Carlo is used to perform the many-dimensional integrals needed to
calculate quantum mechanical expectation values. e.g.

ET =

∫
dR Ψ∗T(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

∑
i

HΨT(Ri )

ΨT(Ri )
=

1

N

∑
i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from ψ2

T(R) using a generalization of
the Metropolis method. If ψT is an eigenfunction the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ψT(R).
Diffusion MC does better by projecting onto ground state.
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Three ingredients for accurate Variational Monte
Carlo

1. A method for sampling an arbitrary wave function Metropolis-Hastings.
2. A functional form for the wave function that is capable of describing the

correct physics/chemistry.
3. An efficient method for optimizing the parameters in the wave functions.
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Metropolis-Hastings Monte Carlo
Metropolis, Rosenbluth2, Teller2, JCP, 21 1087 (1953)

W.K. Hastings, Biometrika, 57 (1970)

Metropolis method originally used to sample the Boltzmann distribution.
This is still one of its more common uses.

General method for sampling any known discrete or continuous density.
(Other quantum Monte Carlo methods, e.g., diffusion MC, enable one to
sample densities that are not explicitly known but are the eigenstates of
known matrices or integral kernels.)

Metropolis-Hastings has serial correlations. Hence, direct sampling methods
preferable, but rarely possible for complicated densities in many dimensions.
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Metropolis-Hastings Monte Carlo (cont)
A Markov chain is specified by two ingredients:
1) an initial state
2) a transition matrix M(Rf |Ri) (probability of transition Ri → Rf .)

M(Rf |Ri) ≥ 0,
∑
Rf

M(Rf |Ri) = 1. Column-stochastic matrix

To sample ρ(R), start from an arbitrary Ri and evolve the system by repeated
application of M that satisfies the stationarity condition (flux into state Ri equals
flux out of Ri):∑

Rf

M(Ri|Rf) ρ(Rf) =
∑
Rf

M(Rf |Ri) ρ(Ri) = ρ(Ri) ∀ Ri

i.e., ρ(R) is a right eigenvector of M with eigenvalue 1.
Stationarity ⇒ if we start with ρ, will continue to sample ρ.
Want more than that: any initial density should evolve to ρ.

lim
n→∞

Mn(Rf |Ri) δ(Ri) = ρ(Rf), ∀ Ri.

i.e., ρ should be the dominant right eigenvector.
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Metropolis-Hastings Monte Carlo (cont)

Want that any initial density should evolve to ρ.

lim
n→∞

Mn(Rf |Ri)δ(Ri) = ρ(Rf), ∀ Ri.

ρ should be the dominant right eigenvector. Additional conditions needed to
guarantee this.

A nonnegative matrix M is said to be primitive if ∃ n such that Mn has all elements
positive. (Can go from any state to any other in finite number of steps.)

(Special case of) Perron-Frobenius Theorem: A column-stochastic primitive matrix
has a unique dominant eigenvalue of 1, with a positive right eigenvector and a left
eigenvector with all components equal to 1 (by definition of column-stochastic
matrix).

In practice, length of Monte Carlo should be long enough that there be a significant
probability of the system making several transitions between the neighborhoods of
any pair of representative states that make a significant contribution to the average.
This ensures that states are visited with the correct probability with only small
statistical fluctuations.
For example in a double-well system many transitions between the 2 wells should
occur, but we can choose our proposal matrix to achieve this even if barrier between
wells is high.
Cyrus J. Umrigar



Metropolis-Hastings Monte Carlo (cont)
Construction of M

Need a prescription to construct M, such that ρ is its stationary state. Impose detailed
balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf)

Detailed balance more stringent than stationarity condition (removed the sums).
Detailed balance is not necessary but provides way to construct M.
Write elements of M as product of elements of a proposal matrix T and an acceptance
Matrix A,

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri)

M(Rf |Ri) and T (Rf |Ri) are stochastic matrices, but A(Rf |Ri) is not.
Detailed balance is now:

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

or
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.
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Metropolis-Hastings Monte Carlo (cont)
Choice of Acceptance Matrix A

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.

Infinity of choices for A. Any function

F

(
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

)
= A(Rf |Ri)

for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1 will do.
Choice of Metropolis et al. F (x) = min{1, x}, maximizes the acceptance:

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}
.

Other less good choices for A(Rf |Ri) have been made, e.g. F (x) = x
1+x

A(Rf |Ri) =
T (Ri|Rf) ρ(Rf)

T (Ri|Rf) ρ(Rf) + T (Rf |Ri) ρ(Ri)
.

Metropolis: T (Ri|Rf) = T (Rf |Ri), Hastings:T (Ri|Rf) 6= T (Rf |Ri)
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Metropolis-Hastings Monte Carlo (cont)
Choice of Proposal Matrix T

So, the optimal choice for the acceptance matrix A(Rf |Ri) is simple and
known.

However, there is considerable scope for using one’s ingenuity to come up
with good proposal matrices, T (Rf |Ri), that allow one to make large moves
with large acceptances, in order to make the autocorrelation time small.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

CJU, PRL 71, 408 (1993)

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}

Use freedom in T to make
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
≈ 1.

T (Rf |Ri) ∝ ρ(Rf) optimal if T (Rf |Ri) can be sampled over all space – usually not the
case. And if it is, then one would not use Metropolis-Hastings in the first place.

Otherwise, let T (Rf |Ri) =
S(Rf |Ri)∫

dRf S(Rf |Ri)
≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)

S(Rf |Ri) is non-zero only in domain D(Ri) of volume Ω(Ri) around Ri).

A(Rf ,Ri)

A(Ri,Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ Ω(Ri)

Ω(Rf)

S(Ri|Ri)

S(Rf |Rf)

S(Ri|Rf)

S(Rf |Ri)

ρ(Rf)

ρ(Ri)

from which it is apparent that the choice

S(Rf |Ri)
∝∼
√
ρ(Rf)/Ω(Rf) yields A(Rf ,Ri)/A(Ri,Rf) ≈ 1.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

To be more precise, if the log-derivatives of T (Rf |Ri) equal those of
√
ρ(Rf)/Ω(Rf) at Rf =Ri, the

average acceptance goes as 1−O(∆m), where ∆ is the linear dimension of D(Ri).

In general, m=2, but if D(Ri) is inversion symmetric with Ri at its center, then m=3.

Considerable improvement compared to using a symmetric S(Rf |Ri) or choosing S(Rf |Ri)
∝∼ ρ(Rf)

for either of which m=1.

Another possible choice, motivated by (DMC) is

T (Rf |Ri) =
1

(2πτ)3/2
exp

[
−(Rf − Ri − V(Ri)τ)2

2τ

]
, V(Ri) =

∇Ψ(Ri)

Ψ(Ri)

Advantage: allows Metropolis Monte Carlo and diffusion Monte Carlo programs to share almost all

the code.

m = 1 for this choice of T . Such an algorithm is more efficient than one with a symmetric

S(Rf |Ri) or one for which S(Rf |Ri)
∝∼ ρ(Rf), but less efficient than one for which

S(Rf |Ri)
∝∼
√
ρ(Rf)/Ω(Rf).

These arguments are rigorous only in the small-step limit and are applicable only to functions with

sufficiently many derivatives within D(Ri). In practice these ideas yield large reduction in the

autocorrelation time provided that we employ a coordinate system such that ρ has continuous

derivatives within D(Ri).
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Some examples

We want to sample from |Ψ(R)|2.
We propose moves with probability density

T (Rf |Ri) =
S(Rf |Ri)∫

dRf S(Rf |Ri)
≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)

and since the acceptance is

A(Rf |Ri) = min

{
1,
|Ψ(Rf)|2 T (Ri|Rf)

|Ψ(Ri)|2 T (Rf |Ri)

}
we want

|Ψ(Rf)|2 T (Ri|Rf)

|Ψ(Ri)|2 T (Rf |Ri)

to be as close to 1 as possible.
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Symmetrical T in Metropolis
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Symmetrical T in Metropolis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

T(R’,R) = S(R’,R) / ∫ dR’’ S(R’’,R)

R

Ψ
(R

’)
, 

  
 S

(R
’,

R
),

  
 (

Ψ
(R

’)
/Ψ

(R
))

2
 T

(R
,R

’)
/T

(R
’,

R
)

R’

Ψ(R’) = e
-R’/2

S(R’,R)

(Ψ(R’)/Ψ(R))
2
 T(R,R’)/T(R’,R)

Cyrus J. Umrigar



Non-symmetrical linear T in Metropolis-Hastings
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Deviation from 1 is cubic.
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Non-symmetrical linear T in Metropolis-Hastings
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Non-symmetrical drifted Gaussian T in Metropolis-Hastings
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For this Ψ(R ′), the drifted Gaussian gives perfect acceptance! Not generally true.
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Non-symmetrical drifted Gaussian T in Metropolis-Hastings
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For this Ψ(R ′), the drifted Gaussian gives perfect acceptance! Not generally true.
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Non-symmetrical linear T in Metropolis-Hastings
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The force-bias choice works just as well for this different function.
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Non-symmetrical drifted Gaussian T in Metropolis-Hastings
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For this Ψ(R ′), the drifted Gaussian deviates from 1 linearly.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

When will the above not work so well?
What assumptions have we made in both of the non-symmetric choices
above?

Answer: In both cases we are utilizing the gradient of the function to be
sampled and are implicitly assuming that it is smooth.

Let’s see what happens when it is not.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

When will the above not work so well?
What assumptions have we made in both of the non-symmetric choices
above?

Answer: In both cases we are utilizing the gradient of the function to be
sampled and are implicitly assuming that it is smooth.

Let’s see what happens when it is not.

Cyrus J. Umrigar



Non-symmetrical linear T in Metropolis-Hastings
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When the gradient has a discontinuity the acceptance goes down.
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Non-symmetrical drifted Gaussian T in Metropolis-Hastings
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When the gradient has a discontinuity the acceptance goes down.

The drifted-Gaussian even overshoots the nucleus.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

How to make large moves with high acceptance in spite of
wavefunctions that have cusps at nuclei?

1. Make moves in spherical polar coordinates, centered on the nearest
nucleus.

2. Radial move is proportional to distance to nucleus, say in interval [ r5 , 5r ].
3. Angular move gets larger as electron approaches nucleus.

Using these ideas an autocorrelation time Tcorr ≈ 1 can be achieved!

Details are in: Accelerated Metropolis Method, C. J. Umrigar, PRL 71 408, (1993).

The point of the above exercise was not the particular problem treated, but
rather to provide a concrete example of the ideas that enable making large
moves with high acceptance, thereby achieving Tcorr ≈ 1.
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Metropolis-Hastings Monte Carlo (cont)
Some Observations about Metropolis-Hastings Method

1. To sample states with relative density ρ it is not necessary to know the normalization
of ρ. Metropolis automatically samples ρ(Ri)/

∫
dRf ρ(Rf). So, it is useful for

calculating quantities of the form∫
dRi e(Ri) ρ(Ri)∫

dRf ρ(Rf)

which is the form encountered in quantum mechanics and statistical mechanics.

(Can also be used to calculate

∫
dRi f (Ri), with importance sampling provided one has a g(Ri) that mimics f (Ri) but

whose integral is known. Of course if in addition g(Ri) can be sampled directly then one would not use Metropolis, so this

is rarely useful.)

2. The variance of the estimate for the expectation value 〈X 〉 is given by

1

N/Tcorr − 1

(∑
X (Ri)

2

N
−
(∑

X (Ri)

N

)2
)
.

That is, the effective number of configurations Neff is smaller than N by a factor of
Tcorr, which we define to be the autocorrelation time.
(Tcorr = 1 + 2tcorr, where tcorr =

∑∞
i ρi is the integrated autocorrelation time.)
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Metropolis-Hastings Monte Carlo (cont)

Some Observations about Metropolis-Hastings Method

3. The rate of convergence to the desired density and the autocorrelation
time of estimates of observables is governed by the sub-dominant
eigenvalues of M. In practice reduce Tcorr by inventing large moves that
have large acceptance probabilities.

4. Folklore: when one can choose the range of the PDF from which moves
are proposed the optimal one has an average acceptance close to 0.5.
Reasonable choice in absence of any information, but in fact the optimal
choice may have an average acceptance that is anywhere between zero
and one.
I have found instances where the optimum is as small as 0.2 or as large
as 0.9.
A much better criterion is to maximize the rate at which the system
diffuses through configuration space 〈A(Rf |Ri)(Rf − Ri)

2〉.
The real measure of goodness is of course to minimize the
autocorrelation time for the observables of interest.
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Estimation of Errors
Autocorrelation time

N Monte Carlo steps = Nb blocks × Ns steps/block
If Nb is large enough the block averages are nearly independent.

Ē = average of EL over the N Monte Carlo steps
σ = rms fluctuations of individual EL

σb = rms fluctuations of block averages of EL

Need to estimate Tcorr to make sure Nb � Tcorr.
Neff = N/Tcorr independent measurements of EL, so get Tcorr from:

err(Ē ) =
σ√

Nb × Ns

√
Tcorr =

σb√
Nb

⇒ Tcorr = Ns

(σb
σ

)2 Choose Ns � Tcorr, say, 100 Tcorr.
If Ns ≈ 10Tcorr, Tcorr underest. ≈ 10%.
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Blocking Analysis for error of mean of autocorrelated variables

Flyvberg and Peterson, JCP 1979

Compute recursively and plot

1

Nb(Nb − 1)

Nb∑
i=1

(mi − Ē)2

for various blocking levels, Ns = 1, 2, 22, 23, ..., N/2
If the variables were uncorrelated to begin with then these estimates of the error would be
equal aside from statistical fluctuations, which would increase with blocking level.
If they are autocorrelated, the estimated error will grow and the flatten out when the block
means become uncorrelated, which can only happen if N � Tcorr.
Assuming that block means are independent Gaussian variables (they are not at the lower
blocking levels), the estimated uncertainty of the error is

√
2 (error estim)√

(Nb − 1)

since the PDF of the sum of squares of Nb − 1 normal standard deviates is χ2(Nb − 1) and
has variance 2(Nb − 1). So, cannot go to very large Ns (Nb small).
A reasonable choice of blocking level is the highest one for which the increase in the
estimate for the error is larger than the increase in the estimate for the error in the error. It
is possible to get a somewhat better estimate by predicting the shape of the curve and
extrapolating when say N < 1000Tcorr.
Cyrus J. Umrigar



Blocking Analysis for error of mean of autocorrelated variables

In variational Monte Carlo, Tcorr is usually very small if one makes an
intelligent choice for the proposal matrix. With the algorithm we typically
use Tcorr < 2 even for systems with say 100 electrons!

However, in some of the projector Monte Carlo methods (e.g. FCIQMC),
Tcorr can be much larger, even for much smaller systems. Further, in these
methods one needs to use a large population of walkers, so it becomes
expensive to have a large number of Monte Carlo steps. In the next
viewgraph, a blocking analysis for a run with Tcorr ≈ 1000 and N = 223 is
shown.
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Blocking Analysis for error of mean of autocorrelated variables
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Functional form of Trial Wave Function
Other methods: Restrictions on the form of the wavefn.:

1. Many-body wavefn. expanded in determinants of single-particle orbitals.
2. Single-particle orbitals are expanded in planewaves or gaussians.

occasionally wavelets etc.

QMC: Great freedom in form of the wavefn. – use physics/chemistry
intuition:

1. Multideterminant times Jastrow. Ceperley, many others

2. Antisymmetrized Geminal Power times Jastrow. Sorella, Casula

A
[
Φ(r↑1, r

↓
1) Φ(r↑2, r

↓
2) · · · Φ(r↑N/2, r

↓
N/2)

]
3. Pfaffians times Jastrow. Schmidt, Mitas, Wagner and coworkers
A [Φ(r1, s1; r2, s2) Φ(r3, s3; r4, s4) · · · Φ(rN−1, sN−1; rN , sN)]

4. Backflow times Jastrow. Needs and coworkers, Moroni (extension of
Feynman)

5. Laughlin and Composite Fermion. Jeon, Güclu, CJU and Jain

Cyrus J. Umrigar



Multideterminant × Jastrow form of Trial Wavefunction

ΨT =

(∑
n

dnD↑n D↓n

)
× J (ri , rj , rij)

• Determinants:
∑

n dnD↑n D↓n
D↑ and D↓ are determinants of single-particle orbitals φ for up (↑) and down
(↓) spin electrons respectively.
The single-particle orbitals φ are given by:

φ(ri ) =
∑
αk

ckα Nkαr
nkα−1
iα e−ζkα riα Ylkαmkα

(̂riα)

• Jastrow: J (ri , rj , rij) =
∏
αi exp (Aαi )

∏
ij exp (Bij)

∏
αij exp (Cαij)

Aαi ⇒ electron-ion correlation
Bij ⇒ electron-electron correlation
Cαij ⇒ electron-electron-ion correlation

dn, ckα , ζkα and parms in J are optimized.

∼ Natomtype of J parms.
∼ Natomtype of ζkα parms.
∼ N2

atom of ckα parms.
∼ eNatom of dn parms.
Power of QMC:
J parms. replace many dn parms.

Cyrus J. Umrigar



Cusp-conditions of Trial Wave Functions

Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as

− Z

riα
for the electron-nucleus potential

1

rij
for the electron-electron potential

Want local energy
HΨ

Ψ
= −1

2

∑
i

∇2
i Ψ

Ψ
+ V to be finite (const. for Ψ0)

⇒ Kinetic energy must have opposite divergence to the potential V
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Cusp-conditions of Trial Wave Functions

Divergence in potential and behavior of the local energy

Consider two particles of masses mi , mj and charges qi , qj

Assume rij → 0 while all other particles are well separated

Keep only diverging terms in
HΨ

Ψ
and go to relative coordinates

close to r = rij = 0

− 1

2µij

∇2Ψ

Ψ
+ V(r) ∼ − 1

2µij

Ψ′′

Ψ
− 1

µij

1

r

Ψ′

Ψ
+ V(r)

∼ − 1

µij

1

r

Ψ′

Ψ
+ V(r)

where µij = mi mj/(mi + mj)
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Cusp-conditions of Trial Wave Functions

Divergence in potential and cusp conditions

Diverging terms in the local energy

− 1

µij

1

r

Ψ′

Ψ
+ V(r) = − 1

µij

1

r

Ψ′

Ψ
+

qiqj

r
= finite

⇒ Ψ must satisfy Kato’s cusp conditions:

∂Ψ̂

∂rij

∣∣∣∣∣
rij=0

= µijqi qjΨ(rij = 0)

where Ψ̂ is a spherical average

Note: We assumed Ψ(rij = 0) 6= 0.
Slightly more involved derivation if Ψ(rij = 0) = 0 (parallel spins).
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Cusp-conditions of Trial Wave Functions

Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

Ψ′

Ψ
= µijqi qj

• Electron-nucleus: µ = 1, qi = 1, qj = −Z ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= −Z

• Electron-electron(↑↓): µ =
1

2
, qi = 1, qj = 1 ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= 1/2

. Electron-nucleus cusps imposed on combination of the determinantal part
(using Slater basis functions) and the e-n Jastrow.
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Jastrow Factors
. Electron-electron cusps imposed by the Jastrow factor

Example: Simple Jastrow factor

J (rij) =
∏
i<j

exp

{
b1rij

1 + b2 rij

}

with b↑↓1 =
1

2
or b↑↑1 = b↓↓1 =

1

4

Imposes cusp conditions
+

keeps electrons apart
00

rij
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Comments on Jastrow factor
. Electron-electron-nucleus terms C

The Jastrow does not change the nodes of the wavefunction.

If the order of the polynomial in the e-e-n terms is infinite, Ψ

can exactly describe a two-electron atom or ion in 1S ground state

For the He atom, a 6th-order polynomial gives energies good to better

than 1 µHa, or 99.998% of the correlation energy, Ecorr = Eexact − EHF

. Is this Jastrow factor adequate for multi-electron systems?

The e-e-n terms are the most important: due to the exclusion

principle, it is rare for 3 or more electrons to be close, since at

least 2 electrons must necessarily have the same spin
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Higher-order Jastrow factors

Jastrow factor with e-e, e-e-n and e-e-e-n terms

J EVMC E corr
VMC (%) σVMC

Li EHF -7.43273 0

e-e -7.47427(4) 91.6 0.240

+ e-e-n -7.47788(1) 99.6 0.037

+ e-e-e-n -7.47797(1) 99.8 0.028

Eexact -7.47806 100 0

Ne EHF -128.5471 0

e-e -128.713(2) 42.5 1.90

+ e-e-n -128.9008(1) 90.6 0.90

+ e-e-e-n -128.9029(3) 91.1 0.88

Eexact -128.9376 100 0

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)
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Static and Dynamic Correlation

Dynamic and static correlation

Ψ = Jastrow × Determinants → Two types of correlation

. Dynamic correlation

Due to inter-electron repulsion

Always present

Efficiently described by Jastrow factor

. Static correlation

Due to near-degeneracy of occupied and unoccupied orbitals

Not always present

Efficiently described by a linear combination of determinants (change
nodes of Ψ)
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Static and Dynamic Correlation

Example: Be atom has 2s-2p near-degeneracy, prototypical example of static
correlation

HF ground state configuration 1s22s2

Additional important configuration 1s22p2

Ground state has 1S symmetry ⇒ 4 determinants:
D = (1s↑, 2s↑, 1s↓, 2s↓) +

c
[

(1s↑, 2p↑x , 1s↓, 2p↓x) + (1s↑, 2p↑y , 1s↓, 2p↓y ) + (1s↑, 2p↑z , 1s↓, 2p↓z )
]

1s22s2 × J (rij) → E corr
VMC = 61%

1s22s2 × J (rij , rαi , rαj) → E corr
VMC = 80%

1s22s2 ⊕ 1s22p2 × J (rij , rαi , rαj) → E corr
VMC = 99.3%
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Wavefunctions for Hole in a Filled Landau Level
6 electrons in a harmonic well and a magnetic field.
5 electrons are fixed. Phase of the wavefunction is plotted as the 6th moves.

Vortex hole

E = 4.293

Composite-fermion

E = 4.265

Exact diagonalization

E = 4.264

Jeon, Güclu, CJU, Jain, PRB 2005
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Optimization of many-body wavefunctions

Standard methods do not work for the wavefunctions we are interested in.
For example, they work for linear combinations of determinants but not for
linear combinations of determinants multiplied by a Jastrow factor. Issues:

1. Many nonlinear parameters
2. Optimization in the presence of stochastic noise

But is it a worthwhile expenditure of effort to optimize wavefunctions?

Cyrus J. Umrigar



Almost all errors reduced by optimizing trial
wavefunctions

1. Statistical error (both the rms fluctuations of EL and the
autocorrelation time)

2. EVMC

3. Fixed-node error in EDMC (nodes move during optimization). Fixed
node errors can be LARGE. For C2, FN error for 1-det wavefn is 1.3 eV
for total energy and 0.7 eV for well-depth. However, optimized multidet.
wavefn has FN error that is better than chemical accuracy (1 kcal/mole
= 0.043 eV/molecule).

4. Time-step error in DMC
5. Population control error in DMC
6. Pseudopotential locality error in DMC when using nonlocal

pseudopotentials
7. Error of observables that do not commute with the Hamiltonian (mixed

estimators, 〈Ψ0|Â|ΨT 〉 not exact even for nodeless ψ0, ψT) if one does
not use forward/side walking.
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Choices to be made when optimizing trial
wavefunctions

1. What precisely do we want to optimize – the objective function or
measure of goodness?

2. What method do we use to do the optimization? If more than one
method is applied to the same objective function, they will of course
give the same wavefunction, but the efficiency with which we arrive at
the solution may be much different.

3. When we test to see if the proposed new parameters are better than the
old ones, do we test on a fixed sample of MC points or draw new MC
points each time?
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Measures of goodness of variational wave functions

min EVMC =
〈ψT|H|ψT〉
〈ψT|ψT〉

= 〈EL〉|ψT|2

min σ2
VMC =

〈ψT|(H − ET)2|ψT〉
〈ψT|ψT〉

=
〈
E 2

L(Ri )
〉
|ψT|2

− 〈EL(Ri )〉2|ψT|2

max Ω2 =
| 〈ψFN|ψT〉 |2

〈ψFN|ψFN〉 〈ψT|ψT〉
=

〈
ψFN
ψT

〉2

|ψT|2〈∣∣∣ψFN
ψT

∣∣∣2〉
|ψT|2

min EDMC =
〈ψFN|H|ψT〉
〈ψFN|ψT〉

= 〈EL〉|ψFNψT|

For an infinitely flexible wave function all optimizations will yield the exact

wavefunction (except that minimizing σ could yield an excited state) but for
the imperfect functional forms used in practice they differ.
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Progress in optimization of Many-Body
Wavefunctions

Naive energy optim. → Variance optim. → Efficient energy optim.

− 1988 naive energy optimization, few (∼ 3) parameters

1988 − 2001 variance optimization, ∼ 100 parameters
could be used for more, but, variance does not couple strongly to some parameters

2001 − 2012 efficient energy optimization, ∼ 1000’s of parameters

2012 − 2017 efficient energy optimization, ∼ 100, 000’s of parameters

Most recent advance: Assaraf, Moroni, Filippi, arXiv 2017.
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Optimization of Many-Body Wavefunctions

A major advantage of quantum Monte Carlo methods is that there is no
restriction on the form of ψT(R). Hence any insight one may have, as
regards the nature of the many-body correlations, can be built into ψT(R)
and tested. To exploit this freedom it is necessary to have a method for
optimizing arbitrary wavefunctions.
First thought: Minimize the energy on MC sample.

Ē =

Nconf∑
i=1

HψT(Ri ; {p})
ψT(Ri ; {p})

wi , wi =

∣∣∣∣ΨT(Ri )

Ψ0
T(Ri )

∣∣∣∣2
/

Nconf∑
i=1

∣∣∣∣ΨT(Ri )

Ψ0
T(Ri )

∣∣∣∣2
Second thought: Minimize the variance of the local energy.

σ2 =

Nconf∑
i=1

(
HψT(Ri ; {p})
ψT(Ri ; {p})

− Ē

)2

wi

Third thought: Minimize the energy using MC but not on MC sample.
What is meant by this will become clear later.
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Variance vs. Energy

σ2 =

Nconf∑
i=1

(
HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑
i=1

HΨT(Ri )

ΨT(Ri )

Optimized

Variance

Energies

Original

Energies

Energy
Optimized

Energies

E
av

E
av Eexact
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Take-home Message

Energy optimization methods that minimize the energy
evaluated on finite sample will yield poor energies on other
samples, unless the sample used to do the minimization is
very large.
So, efficient energy optimization methods do NOT optimize
the energy evaluated on a finite sample, although they do
minimize the energy in the limit of an infinite sample.
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Advantages of Energy (or Mixed) Optim. vs.
Variance Optim.

1. Want lowest energy; fluctuations are of secondary importance. Energy
and variance do not always go hand-in-hand enough.

2. Some parameters couple more strongly to energy than variance.
3. Some variance-optimized parameters make wave function too extended.
4. Hellman-Feynman theorem can be used for forces (when combined with

variance reduction methods).
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Variational energy optimization methods
1. Newton method CJU, Filippi, PRL 94, 150201 (2005):

Add terms to the Hessian that contribute nothing in the limit of an infinite MC
sample, but cancel much of the fluctuations for a finite MC sample.
Gain in efficiency: 3 orders of magnitude for NO2, more for C10H12 compared to Newton of Lin-Zhang-Rappe.

2. Linear method (generalized eigenvalue problem):

1 Linear parameters: Nightingale, et al., PRL, 87, 043401 (2001)
Use asymmetric H to have zero variance property in the limit that the
basis functions span an invariant subspace.

2 Nonlinear parameters: Toulouse, CJU, J. Chem. Phys., (2007, 2008).
CJU, Toulouse, Filippi, Sorella, Hennig, PRL 98, 110201 (2007).
Choose freedom of normalization Ψ(p,R) = N(p) Φ(p,R) to make a near
optimal change in the parameters.

3. Perturbation theory in an arbitrary nonorthog. basis:
Toulouse, CJU, J. Chem. Phys., 126, 084102 (2007).
(Small modification of Scemama-Filippi (2006) perturbative EFP, modification of the
Fahy-Filippi-Prendergast-Schautz EFP method.)

4. Stochastic Reconfiguration:
Sorella, Casula, Rocca, J. Chem. Phys., 127, 014105 (2007).
Although it requires more iterations than 1) and 2), it is well suited for very large
numbers of parameters.

Cyrus J. Umrigar



Newton Method
Calculate gradient g and Hessian h of objective function and update parameters:

pnext = pcurrent − h−1g

or more efficiently (O(N2
p ) vs. O(N3

p )) find parameter changes, δp, by solving linear
equations:

h δp = −g,

Optimization of Jastrow and determinantal parameters encounter different problems.

Jastrow: For the form of the Jastrow we use and the systems we study the
eigenvalues of the Hessian span 10-12 orders of magnitude. So using steepest
descent is horribly slow and using the Hessian, or a reasonable approximation to it,
is essential even if there were no statistical noise.

determinantal: The eigenvalues of the Hessian span only 1-2 orders of magnitude.
However, the Hessian has terms involving

∂ψ
∂pi

ψ

that diverge as ψ → 0. The strongest divergence among various terms cancels.
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Energy Minimization via Newton
Lin, Zhang, Rappe, JCP 2000; CJU, Filippi, PRL 2005

Ē =
〈ψ|H|ψ〉
〈ψ|ψ〉

= 〈EL〉ψ2 ; EL(R) =
Hψ(R)

ψ(R)

Energy gradient components, Ēi :

Ēi =
〈ψi |Hψ〉+ 〈ψ|Hψi 〉

〈ψ|ψ〉
− 2
〈ψ|H|ψ〉 〈ψ|ψi 〉
〈ψ|ψ〉2

=
〈ψi |Hψ〉+ 〈ψ|Hψi 〉

〈ψ|ψ〉
− 2

Ē 〈ψ|ψi 〉
〈ψ|ψ〉

= 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
(by Hermiticity)

=

〈
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

〉
ψ2

= 2

〈
ψi

ψ
(EL − Ē )

〉
ψ2

(MC expression)

Is blue or green expression better for MC?

Green is better because it is a zero-variance expression in the limit that ψ is the
exact ground state (CJU, Filippi, PRL 2005) Moreover it is simpler and faster.
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〉
ψ2

(MC expression)

Is blue or green expression better for MC?
Green is better because it is a zero-variance expression in the limit that ψ is the
exact ground state (CJU, Filippi, PRL 2005) Moreover it is simpler and faster.

Cyrus J. Umrigar



Energy Minimization via Newton
CJU, Filippi, PRL 2005

Energy hessian components, Eij :

Ēi = 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
≡ 2

〈
ψiψ(EL − Ē )

〉
〈ψ2〉

Eij = 2

[〈
(ψijψ + ψiψj )(EL − Ē )

〉
+
〈
ψiψ(EL,j − Ēj )

〉
− Ēi

〈
ψψj

〉
〈ψ2〉

]

= 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē )

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi +

〈
ψi

ψ
EL,j

〉
ψ2

]
.

What can be done to improve this expression?

1) Symmetrize – but this does not reduce fluctuations much

2) Noting that 〈EL,j〉ψ2 =

〈
ψ2
(

Hψ
ψ

)
j

〉
〈ψ2〉 =

〈
ψ2

(
Hψj
ψ
−
ψj
ψ2 HΨ

)〉
〈ψ2〉 = 〈ψHψi−ψiHψ〉

〈ψ2〉 = 0

by hermiticity of Ĥ, and, that the fluctuations of the covariance 〈ab〉 − 〈a〉〈b〉 are smaller than

those of the product 〈ab〉, when
√
〈a2〉 − 〈a〉2 � |〈a〉| and 〈b〉 = 0 on ∞ sample but 〈b〉 6= 0 on

finite sample, replace〈
ψi

ψ
EL,j

〉
ψ2

→
1

2

(〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈
EL,j

〉
ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈
EL,i

〉
ψ2

)

3) Too hard to describe here.
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〉
〈ψ2〉

Eij = 2

[〈
(ψijψ + ψiψj )(EL − Ē )
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by hermiticity of Ĥ, and, that the fluctuations of the covariance 〈ab〉 − 〈a〉〈b〉 are smaller than

those of the product 〈ab〉, when
√
〈a2〉 − 〈a〉2 � |〈a〉| and 〈b〉 = 0 on ∞ sample but 〈b〉 6= 0 on

finite sample, replace〈
ψi

ψ
EL,j

〉
ψ2

→
1

2

(〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈
EL,j

〉
ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈
EL,i

〉
ψ2

)

3) Too hard to describe here.

Cyrus J. Umrigar



Energy Minimization via Newton
CJU, Filippi, PRL 2005
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(
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)
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(
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−
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ψ
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−
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ψj
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〉
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Energy Minimization via Newton

Ēij = 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē )

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi

]

+

〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈EL,j〉ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈EL,i 〉ψ2

= 2

[〈(
ψij

ψ
− ψiψj

ψ2

)
(EL − Ē )

〉
ψ2

(0 for pi linear in exponent)

+2

〈(
ψi

ψ
−
〈
ψi

ψ

〉
ψ2

)(
ψj

ψ
−
〈
ψj

ψ

〉
ψ2

)(
EL − Ē

)〉
ψ2

]

+

〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈EL,j〉ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈EL,i 〉ψ2 .

1) Blue and green terms are zero variance estimators.
2) Red terms are not, but, the terms we added in =0 for infinite sample and cancel
most of the fluctuations for a finite sample.
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Linear method for linear parameters
If all parameters are linear, i.e., ψ =

∑
i piψi , then optimize using generalized eigenvalue equation, Hp = ESp.

Symmetric or nonsymmetric H?
1) true H is symmetric:

True Hij =

∫
d3NR ψi (R) Ĥ ψj(R) symmetric

MC estim. Hij =

NMC∑
n=1

ψi (Rn)

ψ(Rn)

(
Ĥψj(Rn)

ψ(Rn)

)
nonsymmetric

MC estim. Hij =
1

2

NMC∑
n=1

(
ψi (Rn)

ψ(Rn)

Ĥψj(Rn)

ψ(Rn)
+

Ĥψi (Rn)

ψ(Rn)

ψj(Rn)

ψ(Rn)

)
symmetric

2) Minimizing the energy evaluated on a finite sample, i.e., minimizing the Rayleigh quotient, ∂E/∂pk = 0, even

with nonsymmetric H evaluated on finite sample, gives generalized eigenvalue equation with symmetric H:

E = min
p

pTHp

pTSp
= min

p

∑
ij piHijpj∑
ij piSijpj

∂E

∂pk
= 0 =⇒

(∑
ij

piSijpj

)(∑
j

Hkjpj +
∑
i

piHik

)
−

(∑
ij

piHijpj

)(
2
∑
j

Skjpj

)
= 0

(H + HT)

2
p = ESp
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Nonsymm. H satisfies strong zero-variance principle

M. P. Nightingale and Melik-Alaverdian, PRL, 87, 043401 (2001).

Nightingale’s strong zero-variance principle:
If the states ψi (R) are closed under Ĥ then the values of the optimized parameters using
nonsymmetric Hij are independent of the MC sample, provided NMC ≥ Np.

Proof: If closed ∃ {pj} s.t. Ĥ

Np∑
j=1

pj |ψj〉 = E

Np∑
j=1

pj |ψj〉

× 〈ψi |Rn〉 〈Rn|/ 〈ψ|Rn〉2 and sum over NMC pts. (not complete sum over R states),
sampled from |ψ(R)|2:

Np∑
j=1

pj

NMC∑
n=1

〈ψi |Rn〉
〈ψ|Rn〉

〈Rn|Ĥ|ψj〉
〈Rn|ψ〉︸ ︷︷ ︸

Hij

= E

Np∑
j=1

pj

∑NMC
n=1 〈ψi |Rn〉 〈Rn|ψj〉
〈ψ|Rn〉 〈Rn|ψ〉︸ ︷︷ ︸

Sij

Np∑
i=1

Hijpj = E

Np∑
i=1

Sijpj

H is nonsymmetric H of previous slide. Becomes symmetric when
∑
→
∫

.
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Convergence of energy with symmetric and nonsymmetric

Hamiltonians
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Linear method for nonlinear parameters
Toulouse, CJU, JCP (2007,2008); CJU et al., PRL, 87, 043401 (2007).

Make linear-order Taylor expansion of Ψ (use Ψi = ∂Ψ/∂pi as basis):

Ψlin = Ψ0 +

Nparm∑
i=0

∆pi Ψi , (Normalization: ∆p0 = 1)

Ψ0 ≡ Ψ(p0,R) = current wave function
Ψlin = next linearized wave function
Ψi = derivative of Ψ at p0, wrt i th parameter.
No unique way to obtain new nonlinear parameters.
The simplest procedure: is pnew

i = pi + ∆pi . Will not work in general. What can one do?
More complicated procedure: fit wave function form to optimal linear combination.
Simpler, yet efficient approach, freedom of norm to make linear approximation better

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i (p0,R) = Ψi (p0,R) + Ni (p0)Ψ(p0,R)

Note, Ni = 0 for linear parameters by definition. (If normal. depends on pi , it is not linear.)
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Dependence of parameter changes on normalization
Toulouse, CJU, JCP (2007,2008); CJU et al., PRL, 87, 043401 (2007).

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i = Ψi + NiΨ0

Ψ = Ψ0 +

Nparm∑
i=1

δpiΨi

Ψ̄ = Ψ0 +

Nparm∑
i=1

δp̄i Ψ̄i =

1 +

Nparm∑
i=1

Niδp̄i

Ψ0.+

Nparm∑
i=1

δp̄iΨi

Since Ψ and Ψ̄ are the optimal linear combin., they are the same aside from normalization

δpi =
δp̄i

1 +
∑Nparm

i=1 Niδp̄i
=⇒ δp̄i =

δpi

1−
∑Nparm

i=1 Niδpi
. (1)

One can get δp̄i directly from solving the eigenvalue problem in the renormalized basis or
get δpi from eigenvalue problem in the original basis and use the above transformation. In
either case, use δp̄i to update the parameters, pnew

i = pi + δp̄i .

The denominator in Eq. 1 can be +ve, -ve or zero! So, predicted parameter changes can
change sign depending on normalization!! If all parm. linear, δp̄i = δpi , since all Ni = 0.
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General semiorthogonalization
How to choose Ni ?

Toulouse, CJU, JCP (2007,2008); CJU et al., PRL, 87, 043401 (2007).

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i = Ψi + NiΨ0

Choose Ni such that the Ψ̄i are orthogonal to a linear combination of Ψ0 and Ψlin.〈
ξ

Ψ0

|Ψ0|
+ s(1− ξ)

Ψlin

|Ψlin|

∣∣∣∣Ψi + NiΨ0

〉
= 0

Solving for Ni we get
[
s = 1(−1) if 〈Ψ0|Ψlin〉 = 1 +

∑
j S0j∆pj > 0(< 0)

]
,

Ni = −
ξDS0i + s(1− ξ)(S0i +

∑
j Sij∆pj)

ξD + s(1− ξ)(1 +
∑

j S0j∆pj)

where D =
|Ψlin|
|Ψ0|

=

(
1 + 2

∑
j

S0j∆pj +
∑
i,j

Sij∆pi∆pj

)1/2
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Semiorthogonalization in the linear method

∆Ψ.5Ψ
lin

.5

Ψi

0

Ψ
lin

0

∆Ψ
0

Ψ
lin

lin

1

Ψ

0

Ψ
0

0
Ψ

∆Ψ

∆Ψ

Ψi
Ψ

i Ψ i

Ψi

ξ

∆Ψ i

ξ

Ψ
lin

ξ
the linear wavefn.

the change in the wavefn.

derivative of the wavefn. wrt parameter p_i

the initial wavefn.

1

1

.5

Comparison of semiorthogonalizations with xi = 1, 0.5, 0

versus no semiorthogonalization

Figure:

Ψξ
i lie on line parallel to Ψ0.

∆p is the ratio of a red
arrow to the corresponding
blue arrow.
It can go from −∞ to∞ for
different choices of ξ!
Can be 0 for ξ = 0
Can be ∞ for ξ = 1
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Semiorthogonalization in the linear method

Ψ0 is the initial wave function, Ψζ
i is the derivative of the wave function wrt

parameter pi for ζ. If superscript ζ is omitted that denotes that no
semiorthogonalization is done. Then

Ψlin = Ψ0 +

Nparm∑
i=1

∆Ψζ
i = Ψ0 +

Nparm∑
i=1

∆pζi Ψζ
i , ∆pζi =

∆Ψζ
i

Ψζ
i

Note that ||∆Ψζ || is smallest for ζ = 1 and that ||Ψ0.5
lin || = ||Ψ0||.

Also note that when there is just 1 parameter (can be generalized to > 1):
1. In the limit that Ψlin ‖ Ψi , ∆pi = ±∞
2. In the limit that Ψlin ⊥ Ψ0, ∆p1

i = ±∞ because ∆Ψ1 =∞, and,
∆p0

i = 0 because Ψ0
i =∞

3. ∆p0.5
i is always finite

Note that ∆pζi decreases as ζ decreases from 1 to 0. In Fig. 1, ∆pi is > 1
for ζ = 1, and, < 1 for ζ = 0.5, 0.
Also note that in Fig. 1 if we rotate Ψlin such that ∇Ψ·Ψ0

||∇Ψ||||Ψ0|| >
Ψlin·Ψ0
||Ψlin||||Ψ0||

then ∆pi has the opposite sign as ∆pζi !
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Variance Minimization via Linear method
Toulouse, CJU, J. Chem. Phys., 128, 174101 (2008)

Can one use the linear method to optimize the variance?

Suppose we have some quadratic model of the energy variance to minimize

Vmin = min
∆p

{
V0 + gT

V ·∆p +
1

2
∆pT · hV ·∆p

}
, (2)

where V0 = 〈Ψ0|(Ĥ − E0)2|Ψ0〉 is the energy variance of the current wave function |Ψ0〉,
gV is the gradient of the energy variance with components gV ,i = 2〈Ψi |(Ĥ − E0)2|Ψ0〉 and
hV is some approximation to the Hessian matrix of the energy variance. Then, one could
instead minimize the following rational quadratic model (augmented hessian method)

Vmin = min
∆p

(
1 ∆pT

)( V0 gT
V /2

gV /2 hV /2 + V0S

)(
1

∆p

)
(

1 ∆pT
)( 1 0T

0 S

)(
1

∆p

) ,

which agrees with the quadratic model in Eq. (2) up to second order in ∆p, and which
leads to the following generalized eigenvalue equation(

V0 gT
V /2

gV /2 hV /2 + V0S

)(
1

∆p

)
= Vmin

(
1 0T

0 S

)(
1

∆p

)
.

Hence, we can use linear method to optimize a linear combination of energy and variance!
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Variance Minimization via Linear method
Toulouse, CJU, J. Chem. Phys., 128, 174101 (2008)

Can one use the linear method to optimize the variance?
Suppose we have some quadratic model of the energy variance to minimize

Vmin = min
∆p

{
V0 + gT

V ·∆p +
1

2
∆pT · hV ·∆p

}
, (2)

where V0 = 〈Ψ0|(Ĥ − E0)2|Ψ0〉 is the energy variance of the current wave function |Ψ0〉,
gV is the gradient of the energy variance with components gV ,i = 2〈Ψi |(Ĥ − E0)2|Ψ0〉 and
hV is some approximation to the Hessian matrix of the energy variance. Then, one could
instead minimize the following rational quadratic model (augmented hessian method)

Vmin = min
∆p

(
1 ∆pT

)( V0 gT
V /2

gV /2 hV /2 + V0S

)(
1

∆p

)
(

1 ∆pT
)( 1 0T

0 S

)(
1

∆p

) ,

which agrees with the quadratic model in Eq. (2) up to second order in ∆p, and which
leads to the following generalized eigenvalue equation(

V0 gT
V /2

gV /2 hV /2 + V0S

)(
1

∆p

)
= Vmin

(
1 0T

0 S

)(
1

∆p

)
.

Hence, we can use linear method to optimize a linear combination of energy and variance!
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Connection between Linear and Newton methods
Toulouse, CJU, J. Chem. Phys., 128, 174101 (2008)

In semiorthogonal basis with ξ = 1, linear eqs. are:(
E0 gT/2

g/2 H

)(
1

∆p

)
= Elin

(
1 0T

0 S

)(
1

∆p

)
, (3)

Defining, ∆E = Elin − E0 ≤ 0, the 1st and 2nd eqs. are:

2∆E = gT ·∆p, 1st eq. (4)
g

2
+ H∆p = ElinS∆p 2nd eq. (5)

i.e., 2
(
H− ElinS

)
∆p = −g, (6)

This can be viewed as the Newton method with an approximate hessian,
h = 2(H− ElinS) which is nonnegative definite. (It has all nonnegative eigenvalues
since we are subtracting out the lowest eigenvalue.) This also means that the linear
method can be stabilized in much the same way as the Newton method.

Note that 2(H− ElinS) = 2(H− E0S−∆E S) and 2(H− E0S) is the approximate
hessian of Sorella’s stochastic reconfiguration with approximate hessian (SRH)
method (which converges more slowly that our linear and Newton methods). The
present method provides an automatic stabilization of the SRH method by a positive
definite matrix −∆E S making the hessian nonnegative definite.
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Stabilization
If far from the minimum, or, NMC, is small, then the Hessian, Ēij , need not
be positive definite (whereas variance-minimization Levenberg-Marquardt Ēij

is positive definite).

Even for positive definite Ēij , the new parameter values may make the wave
function worse if quadratic approximation is not good.

Add adiag to the diagonal elements of the Hessian. This shifts the
eigenvalues by the added constant. As adiag is increased, the proposed
parameter changes become smaller and rotate from the Newtonian direction
to the steepest descent direction, but in practice adiag is tiny.

The linear method and the perturbative method can be approximately recast
into the Newton method. Consequently we can use the same idea for the
linear and perturbative methods too.

Cyrus J. Umrigar



Stabilization with Correlated Sampling

Each method has a parameter adiag that automatically adjusts to make the
method totally stable:

1. Do a MC run to compute the gradient and the Hessian (or overlap and
Hamiltonian).

2. Using the above gradient and Hessian (or overlap and Hamiltonian), use
3 different values of adiag to predict 3 different sets of updated
parameters.

3. Do a short correlated sampling run for the 3 different wave functions to
compute the energy differences for the 3 wave functions more accurately
than the energies themselves.

4. Fit a parabola through the 3 energies to find the optimal adiag.
5. Use this optimal adiag to predict a new wave function, using the

gradient and Hessian computed in step 1.
6. Loop back
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Comparison of Newton, linear and perturbative
methods

Programming effort and cost per iteration:

1. Newton method requires ψ, ψi , ψij , Ĥψ, Ĥψi . (Ĥψij removed by Hermiticity)

2. Linear method requires ψ, ψi , Ĥψ, Ĥψi .
3. Perturbative method requires ψ, ψi , Ĥψ, Ĥψi .

Perturbative method with approx. denom., and, SR require ψ, ψi , Ĥψ.

Convergence with number of iterations:

1. Newton and linear methods converge in 2-10 iterations for all
parameters (CSF, orbital and Jastrow), but sometimes orbitals and
exponents can take much longer.

2. Perturbative method converges in 2-10 iterations for CSF and orbital
parameters but is very slow for Jastrow because eigenvalues of Hessian
for Jastrow span 10-12 orders of magnitude. (Perturbative method can
be viewed as Newton with crude Hessian.)
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Things to note

Eigenvalues of Ēij for Jastrow parameters typically span 10-12 orders of
magnitude. So steepest descent would be horribly slow to converge!

Take Home Message:
Any method that attempts to minimize the energy, by
minimizing the energy evaluated on a set of MC points, will
require a very large sample and be inefficient.
Each of the 3 methods presented above avoids doing this.
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Optimization of linear combination of energy and
variance

Energy Minimum

Variance Minimum

1. Can reduce the variance,
without sacrificing
appreciably the energy, by
minimizing a linear
combination, particularly
since the ratio of hard to
soft directions is 11 orders
of magnitude.

2. Easy to do – obvious for
Newton. Not obvious, but
easy to do for linear
method as shown above.

3. Measure of efficiency of the
wave function is σ2Tcorr.
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Convergence of energy of decapentaene C10H12
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Well-depth of C2
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Atomization energies of the G2 set
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5z 1CSF
3z CAS

The mean absolute deviation from experiment for the DMC energies using the
FV-CAS trial wave functions is 1.2 kcal/mole. Petruzielo, Toulouse, CJU, JCP 2012
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Optimization of wavefunction and geometry of C8H10 (42 electrons) with 201924
determinants (all SDT in a space of 22 electrons in 22 orbitals) and 58652
parameters. 10 hours on 128 cores. Filippi, Assaraf, Moroni, arXiv 2017
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