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Preface

About Basic Training
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offered by the theorists in the Cornell Physics department. It is designed to
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2-4 weeks, and require a range of preparations. This module, “Greens Function

Approach to Transport,” is designed for students who have completed a standard

one semester graduate solid state physics course. It assumes no prior exposure to

many-body Greens functions, but requires a knowledge of second quantization.
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Chapter 1

Introduction – Jan 24, 2018

A. Logistics

I hate to start with logistics, but it is necessary. This is a modular course with

three long modules, and one short. To get credit, you need to complete two

of the three long modules – including the homework. If you want to audit the

course, you are welcome. It helps us out if you officially sign-up to audit, rather

than just show up.

I expect that there will be some students attending class who are not signed

up. You are welcome to do so. I will send around a sign-up sheet so that I have

everyone’s email address. If you did not sign up, I would appreciate a quick

email, so that I can add you to the list.

Due to various obligations, there are two classes that I will have to cancel:

Jan 26 and Feb 14. I would like to schedule make-up classes. I will set up an

electronic poll once I have everyone’s email addresses.

Each module is structured in a unique way. I am going to be giving homework

problems every class. You will have one week to complete them. They should

not be too heavy. You can get a feel for the scope by looking at the web site.

Over the past few years I have discovered that I don’t like writing equations

on the board. Thus my lectures will be structured so that you mostly figure

the math out yourself. I will post my lectures the day before class – with the

in-class questions included. I will hand out print-outs of the questions at the

beginning of class, and will incorporate them into the lectures. After class I will

post a copy of the notes with the answers to the problems.
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B. Classical (Drude) Theory of Resistivity

Here are some problems (which we will go through in class) to remind you of

the Drude theory of resistivity:

Problem 1.1. Classical Theory of Resistivity In the simplest model of

resistivity one considers the motion of a particle with charge q and mass m

being accelerated by an electric field of strength E in the x̂ direction.

1.1.1. Suppose the particle is moving at velocity ṽ0 at time t = 0, what will

its velocity be at time t?

Solution 1.1.1. The force on the particle is F̃ = qEx̂, so Newton’s laws read

m
∂v

∂t
= qEx̂, (1.1)

which implies

ṽ = ṽ0 +
qEt

m
x̂. (1.2)

1.1.2. Suppose after time τ , the particle bounces off something (a phonon, an

impurity...) and its velocity resets in some random manner. That is initially the

particle has velocity v0, the particle accelerates for a time τ , then it scatters

off something and v becomes v1. It again accelerates for a time τ , then it

again scatters, and v resets to v2. The velocities vj are drawn from some set

distribution, with zero mean.

What will the average velocity of the particle be?

Solution 1.1.2.

〈ṽ〉 = 〈ṽj〉+
qEτ

2m
x̂ (1.3)

=
qEτ

2m
x̂ (1.4)

1.1.3. If the density of particles is n, what is the electrical current~j?

Solution 1.1.3.

~j = qn~v =
q2nEt

2m
x̂. (1.5)

1.1.4. Suppose we make a device out of this material, with length L, and cross-

sectional area A. What will its resistance be?

Solution 1.1.4. The total current going through the device is jA. The total

voltage drop is EL, thus the resistance is

R =
V

I
=
EL

jA
=

2m

q2nτ

L

A
(1.6)
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B.1. Discussion

If you had a good solid state physics class you should know a few refinements

to this argument. First, it is ridiculous to think that after every time τ there is

a collision. Of course, the argument does not really depend on this. Instead, it

suffices that the “reset” processes happen randomly, with a mean time between

them of τ . We call τ the mean-free time. We call vd = qnEτ/2m the “drift

velocity”. The drift velocity is typically quite small. In particular, it is much

smaller than the rms velocity of a particle v̄ =
√
〈v2〉 – which classically is

the thermal velocity, but quantum mechanically is some fraction of the Fermi

velocity. One often refers to the ”mean free path”, λ = v̄τ , which is typically

interpreted as λ = 1/(nsσ), where ns is the density of scatterers, and σ is the

cross-section for scattering off the impurities.

The other refinement is that electrons in metals behave like they are heavier

than electrons in free space. Thus one should replace m with m∗, the effective

mass. The density of electrons n should also be replaced by the density of

mobile electrons: For example, in an undoped semi-conductor, the only mobile

electrons are those which are thermally excited into the conduction band, and

hence n ∝ e−∆/kBT , where ∆ is the band-gap.

On further thought, maybe the carriers should not be electrons, but “quasi-

particles” – some sort of collective excitation which acts like particles?

Regardless, I don’t think I know how to use the Drude theory to actually

calculate resistivity. In the homework we will go backwards – starting with

measured data infer the parameters of the Drude theory.

C. Quantized Conductance (Landauer)

There is a completely different argument about resistivity which sometimes

makes it into a solid-state physics course. It has the advantage of being quantum

mechanical. It involves thinking about a very clean, very thin wire. So thin in

fact that the electrons in it can be modeled via a 1D Schrodinger equation.

One imagines that far to the left, and far to the right, are leads. The

electrons that are moving to the right must have come from the left lead – and

those moving to the left must have come from the right lead.

Problem 1.2. Quantized Conductance

1.2.1. Consider the right-moving electrons in a 1D wire. They have all come

from the left lead, so the occupation of a right-moving mode with wave-vector

k will be

f+
k =

1

eβL(εk−µL) + 1
, (1.7)
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where βL and µL are the inverse temperature and the chemical potential of

the left lead. The dispersion relationship εk relates the energy and momentum.

Here we will consider zero temperature, so

f+
k = θ(µL − εk). (1.8)

Use this expression to formally write the contribution to the current from the

right-moving particles I+ as an integral over k, with k running from 0 to kLf ,

where εkLf = µL. Assume that there are ns degenerate spin states. [In most

physical situations, ns = 2.]

Solution 1.2.1.

I+ = nsq

∫
k>0

dk

2π~
∂kεkf

+
k (1.9)

=
qns
2π~

∫ kLf

0

dk∂kεk. (1.10)

1.2.2. Do the integral – hint: what is the integral of a derivative?

Solution 1.2.2.

I+ =
qns
2π~

µL. (1.11)

1.2.3. What is the contribution to the current I− from the left-moving particles?

Solution 1.2.3. By symmetry

I− = − qns
2π~

µR. (1.12)

1.2.4. What is the net current?

Solution 1.2.4.

I = I+ + I− =
qns
2π~

(µL − µR). (1.13)

1.2.5. Finally we identify qV = µL − µR as the voltage difference between the

leads. What is the conductance G = 1/R = I/V ?

Solution 1.2.5.

G =
q2ns
2π~

(1.14)
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C.1. Discussion

This result is quite peculiar, and completely unlike the Drude argument. Here

we have no forces on the electrons, and no scattering. The resistance is inde-

pendent of the length of the wire – which is unlike any ordinary macroscopic

material.

The standard understanding is that this Landauer result is correct when the

device is much smaller than the mean-free path. It should be understood as

a maximum possible conductivity. Any sources of scattering will decrease the

conductivity of the device.

The absence of forces is due to charging effects: one applies a potential

difference between two reservoirs. The densities of electrons in each reservoir

adjusts so that there are no forces.

One crucial generalization of this argument is to note that for a real wire

there will be multiple independent 1D channels corresponding to the different

transverse wavefunction of the electrons. Depending on the chemical potentials

of the contacts, some number of these channels will be active, and the observed

conductivity will be an integer multiple of the number we calculated in this

lecture.

Our strategy in this course will be to generalize this Landauer result to more

complicated geometries, and add both elastic and inelastic scattering processes.

An interesting note is that while quantized conductance can be observed in

1D wires (such as graphene nano-tubes), the simplest setting to see this physics

is actually “point-contact.” That is, imagine the left and right reservoir just

touch at a single point. All of the electrons approaching the point from the left

will enter the right reservoir. All of the electrons approaching the point from

the right will enter the left reservoir. The arguments from lecture imply that

the conductivity of the contact will be G0 = 2e2

h . In the PHYS 6510 lab there

is an experiment where you observe this phenomenon by simply placing two

small gold wires on top of one-another. One then taps the table. As the wires

jump, the contact will transiently open and close, and you will see this universal

quantized conductance for a few ms. See: http://pages.physics.cornell.

edu/p510/E-16_Conductance_Quantization.

D. Plan

I can now lay out the basic physics that we will use to model the conductivity

of a device. The idea is cleanest if I first consider only elastic scattering.

As illustrated in Fig. 1.1, we will consider a generic device with several

leads. The device contains various impurities or other defects which can lead to
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Figure 1.1: Schematic of device with 3 leads. Given voltages applied to each
lead, we wish to calculate the currents.

(elastic) scattering. Each lead is attached to an infinite reservoir.

We imagine solving for the eigenstates of the entire system (reservoirs+leads+device).

Some eigenstates correspond to bound states that do not extend into the leads.

These do not contribute to transport. All other eigenstates can be chosen so

that each one originates in a single lead. In the simple wire example of Sec. C,

these are the left-moving and right-moving states. We occupy each eigenstate

according to the chemical potential of the lead from which it originates. One

can then calculate the currents by summing up the contribution from all of these

states.

Of course, the challenge is that there are an infinite number of eigenstates.

Luckily there are tools which allow us to calculate the net currents, without ex-

plicitly finding all of the eigenstates. This course is focussed on developing those

tools. We will then generalize these arguments to include inelastic scattering.
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E. Homework: Due Jan 31

Problem 1.3. Typical scales

1.3.1. The copper wire in your house is either 14 gauge or 12 gauge (depending

on if it is a 15 Amp or 20 Amp circuit). A 12 gauge wire has a diameter of

roughly 2 mm. If you drive a current of I = 1A through one of these wires,

roughly what would one expect the drift velocity to be? [You will need to

estimate the electron density. There is roughly one conduction electron per

nucleus.]

Solution 1.3.1. The current should be I = qnvA, or

v =
I

qnA
(1.15)

The lattice constant of most crystals is of order a few Angstrom. Thus the

electron density of copper should by somewhere in the neighborhood of n ∼
1029m−3. Thus the drift velocity is something like

v ∼ 1A

(1.610−19C)(1029m−3)(π10−6m2)
(1.16)

∼ 10−5m/s. (1.17)

1.3.2. Estimate the Fermi velocity in copper.

Solution 1.3.2. For a 3D degenerate Fermi gas, the density is related to the

fermi velocity vf = kf/m via

n =

∫
|k|<kf

d3k

(2π~)3
(1.18)

=
(4/3)πk3

f

(2π~)3
(1.19)

In other words

vf =
~
m

(6π2n)1/3 (1.20)

≈ 106m/s. (1.21)

1.3.3. Is our assumption that the drift velocity is small compared to the Fermi

velocity reasonable?

Solution 1.3.3. Very much so!

1.3.4. At room temperature the resistance of 1 meter of 12 gauge wire is roughly

5mΩ. Using the semiclassical transport theory, estimate the mean-free path?
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Solution 1.3.4. According to the semiclassical theory, R = 2mL/(q2nAτ).

The mean free path is λ = vfτ , and hence

λ =
2mvfL

RAq2n
(1.22)

≈ 2(10−30kg)(106m/s)(1m)

(5 · 10−3m/s)(π10−6m2)(1.6 · 10−19C)2(1029m−3)
(1.23)

≈ 10−7m. (1.24)

To be honest I am not sure if this lengthscale actually means anything physical.

Problem 1.4. Density of states and currents Consider a 1D wire of length

L with periodic boundary conditions and dispersion εk.

1.4.1. What is the normalized wavefunction of a particle with wave-vector k?

Solution 1.4.1.

ψk(x) =
1√
L
eikx (1.25)

1.4.2. What are the allowed wave-vectors k?

Solution 1.4.2.

k =
2πn

L
(1.26)

1.4.3. For a generic dispersion εk, what is the velocity of a particle with wave-

vector k? [In other words, what is the group velocity of a wave-packet centered

around wave-vector k.]

Solution 1.4.3. This is a standard wave-mechanics result,

v =
1

~
∂kεk. (1.27)

1.4.4. What is the contribution to the current of a particle with wave-vector

k?

Solution 1.4.4. Current is charge times velocity times density. The density

of a particle in some k-state is 1/L. So the contribution to the current is

jk =
e

~L
∂kεk (1.28)

1.4.5. If the state with wave-vector k is occupied with probability fk, write

sums which corresponds to the total density and total current. [Neglect Spin.]
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Solution 1.4.5. The total density is

n =
1

L

∑
k=2πn/L

fk. (1.29)

The total current is

j =
1

~L
∑

k=2πn/L

fk∂kεk (1.30)

1.4.6. Take L→∞, and convert the sums into integrals.

Solution 1.4.6. The Riemann integral can be taken to be the limit∫
dsG(s) = lim

δ→0

∑
s=nδ

δG(s). (1.31)

In our case δ = 2π/L, and the integrals are

n =

∫
dk

2π
f(k) (1.32)

j =
e

~

∫
dk

2π
f(k)∂kεk. (1.33)

It is not part of the question, but one can typically write f(k) = f+(εk) for

k > 0 and f(k) = f−(εk) for k < 0. One then finds

j =
e

~

∫
dε

2π
(f+(ε)− f−(ε)). (1.34)

At zero temperature this gives the quantized Landauer conductivity.

Problem 1.5. Transmission and Reflection Consider a 1D wire, with an

impurity which can be modeled as a potential V (r) = V0δ(r). As you learned in

your quantum mechanics class, for V0 > 0, a complete set of eigenstates of the

Schrodinger equation can be drawn from two classes: those which are incident

from the left, and those which are incident from the right. That is, if we let

k > 0 we can find eigenstates of the form

ψ+(x) = θ(−x)
[
eikx + t11(k)e−ikx

]
+ θ(x)t12(k)eikx (1.35)

ψ−(x) = θ(x)
[
e−ikx + t22(k)eikx

]
+ θ(−x)t21(k)e−ikx, (1.36)

where tij(k) are found by satisfying the matching conditions at the origin:

ψ(0+) = ψ(0−) (1.37)

ψ′(x)

ψ(x)

∣∣∣∣0+

0−
= 2mV0/~2. (1.38)
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Note: I will not have you solve these equations – if you have never done it before

it is good for your soul (only takes a few lines). It suffices to know that if we

wanted to we could calculate the coefficients tij(k).

These states in Eq. (1.35) have energy E = ~2k2/2m. Neglect spin.

1.5.1. Suppose you know the transmission amplitudes tij(k). Further suppose

that all states originating on the left with energy E < µ1 are occupied, and all

state originating on the right with energy E < µ2 are occupied. What is the

net current going from the left lead to the right lead in terms of integrals over

the tij(k)? Hint: The measure for the integral is far from obvious, but in the

reflectionless limit the result should reduce to that in problem 1.4. In future

lectures we will develop a more systematic approach.

Note: in complete generality |t12| = |t21|.

Solution 1.5.1. The current from left to right should be

j+ =
e

~

∫
Ek<µ1

dk

2π
(∂kEk)|t12(k)|2 (1.39)

=
e

~

∫ µ1 dε

2π
|t12(ε)|2. (1.40)

Conversely, the current from right to left should be

j− =
e

~

∫
Ek<µ2

dk

2π
(∂kEk)|t21(k)|2 (1.41)

=
e

~

∫ µ2 dε

2π
|t12(ε)|2. (1.42)

Thus the total current is

j =
e

~

∫ µ2

µ1

dε

2π
|t12(ε)|2 (1.43)

1.5.2. Take µ2 = µ + V/2 and µ1 = µ − V/2. Write an expression for the

conductivity G = ∂I/∂V evaluated at V = 0?

Solution 1.5.2. For small V , the current will be

j =
e

2π~
V |t12(µ)|2. (1.44)

Thus the conductivity is

G =
e

2π~
|t12(µ)|2. (1.45)

1.5.3. For V0 < 0 there also exists an eigenstate of the Schrodinger equation

which is neither incident from the left, nor from the right. What is it? Does it

contribute to the current?
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Solution 1.5.3. This extra solution is a bound state. It carries no current.



Chapter 2

Intro to Python/Kwant –

date TBD

Our second class will be a computer lab where we go through a IPython Note-

book which will teach you some computer basics that we will be using. Unless

someone objects, we will run this as a “Bring Your Own Computer” lab.

A. Homework – Due date TBD

Complete the notebook.

12



Chapter 3

Open Quantum Systems –

Jan 31, 2018

As explained last day, the way we will calculate transport is that we will model

both our system, and the leads that are attached to it. Every eigenstate which

contributes to the current can be taken to originate in one of the leads. We fill

those states based on the chemical potential of the lead.

The problem is book-keeping. We have an infinite system with an infinite

number of eigenstates. Today we will introduce a simple toy problem which

will help us develop some of the needed machinery. This problem is the classic

“decay of a single mode coupled to a continuum”. In the transport context

we will imagine that we have a small metallic grain – a quantum dot – which

can hold a single electron. It is in close proximity to a large conductor, which

provides a bath. We will imagine at time t = 0 we put an electron on the dot.

We then want to calculate how it escapes.

It is convenient to use “second quantized” notation to describe this model.

This notation is not necessary, but will make our life easier. If you need a

refresher on this notation, there is a homework problem, and I would be happy

to help you out.

We let â† denote the operator which adds a particle to the mode that is on

the dot – and â is the operator that removes a particle from that mode. We will

neglect spin, and â†â is the operator which counts how many particles are on

the dot. Similarly, we let b̂j be the operator that removes a particle from the

j’th mode of the reservoir. We will take the dot-mode to have energy ε0, and

the j’th reservoir mode to have energy εj . The Hamiltonian will be

H = ε0â
†â+

∑
j

εj b̂
†
j b̂j +

∑
j

λj â
†b̂j + λ∗j b̂

†
j â. (3.1)

13
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Here λj parameterizes the coupling between the j’th reservoir mode and the

dot mode.

A. Wave-function approach

We will first analyze this problem in an “elementary” manner – that is by

writing down a wavefunction, and finding the differential equations obeyed by

the coefficients. We will later develop more sophisticated language which is

easier to generalize.

At time t = 0 we want to be in the state where the dot mode is occupied

and all other modes are empty. This is conveniently written as

|t = 0〉 = â†|vac〉, (3.2)

where |vac〉 is the state containing no particles. Our goal will be to follow the

time-evolution of this state.

Note: this model might be more familiar in the context of atomic physics.

We identify â†|vac〉 with that of an excited atom. We further identify b̂†j |vac〉
with that of a ground-state atom in the presence of a photon which occupies

the j’th mode of the electromagnetic field. Equation (3.4) then corresponds

to the Hamiltonian one would use to calculate the decay of the atom into its

ground-state.

We are going to take an “elementary” approach. Next day we will consider

this problem using a bit more technology.

Problem 3.1. Decay into a continuum We wish to time evolve the state

|t = 0〉 = â†|vac〉, (3.3)

under the Hamiltonian

H = ε0â
†â+

∑
j

εj b̂
†
j b̂j +

∑
j

λj â
†b̂j + λ∗j b̂

†
j â. (3.4)

3.1.1. The most general state we will have at time t is

|t〉 = A(t)â†|vac〉+
∑
j

Bj(t)b̂
†
j |vac〉. (3.5)

Use the Schrodinger equation

i~∂t|t〉 = H|t〉, (3.6)

to derive equations of motion for the coefficients A(t) and Bj(t).
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Solution 3.1.1. We plug the Ansatz of Eq. (3.5) into the time dependent

Schrodinger equation to findi~A′(t) +
∑
j

i~B′j(t)b̂
†
j

 |vac〉 =

ε0A(t) +
∑
j

λjBj(t)

 a†|vac〉 (3.7)

+
∑
j

[
εjBj(t) + λ∗jA(t)

]
b†j |vac〉.(3.8)

Equating coefficients yields

i~A′(t) = ε0A(t) +
∑
j

λjBj(t) (3.9)

i~B′j(t) = εjBj(t) + λ∗jA(t). (3.10)

3.1.2. We will solve these equations using the Laplace transform. That is we

define A(s) and Bj(s) such that

A(s) =

∫ ∞
0

dt e−stA(t) (3.11)

and

Bj(s) =

∫ ∞
0

dt e−stBj(t). (3.12)

Write an expression for

Ā(s) =

∫ ∞
0

dt e−stA′(t) (3.13)

in terms of A(s) and A(t = 0). Hint: Integrate by parts.

Solution 3.1.2.

Ā(s) =

∫ ∞
0

dte−stA′(t) (3.14)

= e−stA(t)
∣∣∞
0

+

∫ ∞
0

dte−stA(t) (3.15)

= −A(t = 0) + sA(s). (3.16)

3.1.3. Multiply Eq. (3.35) by e−st and integrate over time to derive a coupled

set of equations for A(s) and Bj(s).

Solution 3.1.3.

(i~s− ε0)A(s)−
∑
j

λjBj(s) = i~ (3.17)

−λ∗jA(s) + (i~s− εj)Bj(s) = 0. (3.18)
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3.1.4. The coefficients of the bath modes can be eliminated to write

(i~s− ε0 − Σ(is))A(s) = i~. (3.19)

Find the function Σ(is). This function is referred to as the “self-energy.” It

encodes all information about how the environment influences the dot.

Solution 3.1.4. We start by solving Eq. (3.18) to find

Bj(s) =
λ∗j

i~s− εj
. (3.20)

We then substitute this into Eq. (3.17) to find

(i~s− ε0)A(s)−
∑
j

|λj |2

i~s− εj
A(s) = i~, (3.21)

which is of the desired form with

Σ(is) =
∑
j

|λj |2

i~s− εj
. (3.22)

3.1.5. In the thermodynamic limit, the leads should contain a dense set of

modes. Hence it is desirable to replace the sums with integrals. We define a

“spectral density”,

S(ω) =
∑
j

|λj |22πδ(~ω − εj). (3.23)

Show that

Σ(is) =

∫
d~ω
2π

S(ω)

i~s− ~ω
. (3.24)

Solution 3.1.5. The result comes from a simple substitution.

3.1.6. The simplest model for S(ω) is that is is a constant: S(ω) = S. Assuming

that the real part of s is positive, show that Σ(is) = −i~Γ/2. Find Γ.

Solution 3.1.6. The integral is over an infinite domain, which is most easily

considered by introducing a cutoff Ω and taking Ω→∞,

Σ(is) = S

∫ ~

−~Ω

Ω
d~ω
2π

1

i~s− ~ω
(3.25)

= − S

2π
log

(
i~s− ~Ω

i~s+ ~Ω

)
(3.26)

=
−iS

2
. (3.27)

Thus Γ = S/~.
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3.1.7. We thus arrive at

A(s) =
i~

i~s− (ε− i~Γ/2)
. (3.28)

Invert the Laplace transform to find A(t).

Solution 3.1.7. We know that∫
dte−ste−iEt/~ =

1

s+ iE/~
=

i~
i~s− E

. (3.29)

We further know ∫
dte−stA(t) =

i~
i~s− (ε− i~Γ/2)

. (3.30)

Thus

A(t) = e−i(ε−i~Γ/2)t/~ = e−Γt/2e−iεt/~. (3.31)

3.1.8. What is the probability that the particle is on the dot at time t?

Solution 3.1.8.

P (t) = |A(t)|2 = e−Γt. (3.32)

A.1. Discussion

The calculation we just did should feels somewhat satisfying, and the main

punch-line is that the occupation of the cavity mode decays exponentially. The

decay rate is proportional to the product of the square of the coupling to the

environment, and the density of states.

There are a couple aspects which might seem less than ideal. In particular,

choice for the spectral density may have felt arbitrary, and as presented it was

not clear how valid/generic our approximations were. What does this “self-

energy” mean?

Over the next few classes we will answer these questions.

B. Greens functions

As you know from your mathematics courses, a Greens function is the solution

to an inhomogeneous differential equation where the inhomogeneous term is a

delta-function. It turns out that we can interpret the A(t) from section A as

a Greens function – at least if we appropriately specify its behavior for t < 0.

That is, we define

GRaa(t) =
1

i~
θ(t)A(t) (3.33)
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where θ(t) is the Heaviside step function, which vanishes for t < 0 and is unity

for t > 0. The R denotes the fact that it is a “Retarded” Greens function, which

vanishes when t < 0. The aa denotes the fact that it gives the amplitude of

being in the a mode, given that one starts at t = 0 in the a mode. By the same

logic, we can write

GRaj(t) =
1

i~
θ(t)Bj(t) (3.34)

as the amplitude to end up in state j at time t, assuming that you start on the

dot. To save ink, I will leave off the R.

As the notation suggests, one can also write functions Gja and Gjk which

represent amplitude of ending up in state a or k, assuming at time t = 0 you

are in state j.

From the equations of motion for A(t) and Bj(t),

i~∂tGaa(t)− ε0Gaa(t)−
∑
j

λjGaj(t) = δ(t) (3.35)

i~∂tGaj(t)− εjGaj(t)− λ∗jGaa(t) = 0. (3.36)

Indeed we see that Gaa is a Greens function.

Problem 3.2.

3.2.1. Fourier transform these equations to show that

Gaa(ω) =
1

ω − ε0 − Σ(ω)
. (3.37)

Solution 3.2.1. The argument is the same as that we made for A. Explicitly,

~ωGaa − ε0Gaa −
∑
j

λjGaj = 1 (3.38)

~ωGaj − εjGaj − λ∗jGaa = 0.. (3.39)

We then solve the second equation for Gaj to find

Gaj =
λj

~ω − εj
Gaa. (3.40)

Substituting this back into the first equation yields~ω − ε0 −
∑
j

|λj |2

~ω − εj

Gaa = 1, (3.41)

which is the desired expression.
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C. Eigenstates

A complementary way to solve this decay problem is to find all the eigenstates

of the system+bath, and then expand the initial wavefunction in terms of these

states. Here we will learn how to find these states. It will be a gentle introduc-

tion to a bit more machinery.

Suppose we know all the eigenstates |α〉 and their energy Eα. The generic

eigenstate will be of the form

|α〉 = Aαâ†|vac〉+
∑
j

Bαj b̂
†
j |vac〉. (3.42)

These coefficients are clearly

Aα = 〈a|α〉 (3.43)

Bαj = 〈a|j〉, (3.44)

where

|a〉 = a†|vac〉 (3.45)

|j〉 = b†j |vac〉. (3.46)

At time t = 0 we are in the state

|a〉 =
∑
α

〈α|a〉|α〉 (3.47)

=
∑
α

(Aα)∗|α〉. (3.48)

Thus

|t〉 =
∑
α

(Aα)∗e−iEαt|α〉. (3.49)

The amplitude of being on the dot at time t is

A(t) = 〈a|t〉 =
∑
α

(Aα)∗e−iEαt〈a|α〉 (3.50)

=
∑
α

|Aα|2e−iEαt. (3.51)

Problem 3.3. Eigenstates

3.3.1. Use the time-independent Schrodinger’s equation

Ĥ|α〉 = Eα|α〉 (3.52)
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to find an equation satisfied by the coefficients Aα and Bαj . Note: this may

feel repetitive. That is intentional, you should start to get a feel for the fact

that these various problems: time evolving an initial state, finding the Greens

function for the Schrodinger equation, and finding eigenstates, are all intimately

related.

Solution 3.3.1.

Ĥ|α〉 = AαĤâ†|vac〉+
∑
j

Bαj Ĥb̂
†
j |vac〉 (3.53)

=

Aα(ε0a
† +

∑
j

λ∗j b̂
†
j) +

∑
j

Bαj (εjb
†
j + λj â)

 |vac〉 (3.54)

=

ε0Aα +
∑
j

λjB
α
j

 â†|vac〉+
∑
j

[
εjB

α
j +Aαλ∗j

]
b̂†j |vac〉.(3.55)

but this should equal

Eα|α〉 = EαA
α|vac〉+

∑
j

EαB
α
j b
†
j |vac〉. (3.56)

Equating coefficients gives

ε0A
α +

∑
j

λjB
α
j = EαA

α (3.57)

εjB
α
j +Aαλ∗j = EαBj . (3.58)

3.3.2. Show that Bαj can be eliminated to give

(ε0 − Σ(Eα))Aα = EαA
α. (3.59)

Solution 3.3.2. This should be old hat by now. We write

Bαj = −
λ∗j

Eα − εj
Aα, (3.60)

which gives ε0 −∑
j

|λj |2

Eα − εj

Aα = EαA
α, (3.61)

which is the desired equation.
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C.1. Discussion

Here we see an excellent interpretation of the self-energy. It is the contribution

to the system Hamiltonian which you get from integrating out the environment.

IE. We interpret

Ĥeff = (ε0 − Σ(E))â†â (3.62)

as an effective Hamiltonian.
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D. Homework: Due Feb 2

Problem 3.4. Fermi’s Golden Rule Here we will perturbative solve the

equations of motion for this decaying system:

i~A′(t) = ε0A(t) +
∑
j

λjBj(t) (3.63)

i~B′j(t) = εjBj(t) + λ∗jA(t), (3.64)

with boundary conditions A(0) = 1 and Bj(0) = 0. We will formally treat λj
as a small parameter.

This is an argument that you should have seen in your quantum mechanics

class, where it is known as “Fermi’s Golden Rule.” It is one of those things that

you usually concentrate on the result rather than the derivation.

3.4.1. First, if λj = 0 find A(t) and Bj(t). These will be the zeroth order

solutions A0(t) and B0
j (t).

Solution 3.4.1. The equations decouple. The B equations are simple, one

just has

B0
j (t) = 0. (3.65)

The A equation yields

A0(t) = e−iε0t/~. (3.66)

3.4.2. On the right hand side of Eq. (3.64), replace A(t) with A0(t) to get an

inhomogeneous differential equation of the form

[i~∂t − εj ]Bj(t) = cje
−iε0t/~. (3.67)

What is the constant cj? Integrate this differential equation. Call the solution

B1
j (t).
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Solution 3.4.2. Making the substitution, we get

[i~∂t − εj ]Bj(t) = λ∗je
−iε0t/~, (3.68)

so cj = λ∗j . There are at least 3 ways to solve this equations: Integrating

factors, Greens functions, and Guessing. We use integrating factor, noting

that

eiεjt/~ (i~∂t) (e−iεjt/~Bj(t)) = [i~∂t − εj ]Bj(t). (3.69)

Thus our equation becomes

(i~∂t) (e−iεjt/~Bj(t)) = λ∗je
−i(ε0−εj)t/~, (3.70)

which gives

eiεjt/~Bj(t) =
λ∗j

ε0 − εt

[
e−i(ε0−εj)t/~ − 1

]
, (3.71)

or

Bj(t) =
λ∗j

ε0 − εj

[
e−iε0t/~ − e−iεjt/~

]
. (3.72)

3.4.3. On the right hand side of Eq. (3.63), replace B(t) with B1(t) to get an

inhomogeneous differential equation of the form

[i~∂t − ε0]A(t) =
∑
j

[
uje
−iεjt − vje−iε0t

]
. (3.73)

Find uj and vj . Do not integrate the equation.

Solution 3.4.3. Making the substitution we find

[i~∂t − ε0]A(t) =
∑
j

|λj |2

ε0 − εj

[
e−iεjt/~ − e−iε0t/~

]
, (3.74)

from which we conclude

uj = vj =
|λj |2

ε0 − εj
. (3.75)

3.4.4. So far everything has been straightforward. We now get to the hard part

of the argument. Your results from the last question should be equivalent to

i~∂t
[
eiε0t/~A(t)

]
=

∫
dω

2π
Γ(ω)

e−i(ε0−ω)t/~ − 1

ε0 − ω
. (3.76)

where

Γ(ω) =
∑
j

|λj |22πδ(ω − εj). (3.77)

Verify that this expression is correct.
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Solution 3.4.4. We start by evaluating the derivative, and using our previous

result to write.

i~∂t
[
eiε0t/~A(t)

]
= eiε0t [i~∂tA(t)− ε0A(t)] (3.78)

= eiε0t
∑
j

|λj |2

ε0 − εj

[
e−iεjt/~ − e−iε0t/~

]
(3.79)

=
∑
j

|λj |2

ε0 − εj

[
ei(ε0−εj)t/~ − 1

]
. (3.80)

We then introduce an integral over ω and a delta function to get

i~∂t
[
eiε0t/~A(t)

]
=

∫
dω

2π

∑
j

2πδ(ω− εj)
|λj |2

ε0 − ω

[
e−iωt/~ − e−iε0t/~

]
. (3.81)

Reversing the order of the sum and integral gives the desired expression.

3.4.5. The function e−i(ε0−ω)t/~−1
ε0−ω is a strongly peaked function of ω, with height

proportional to t, and width proportional to 1/t. Thus in the limit t→ 0 it acts

like a delta-function. In particular, if we assume Γ(ω) is smooth on the scale of

this term, we can approximate

i~∂t
[
eiε0t/~A(t)

]
≈ Γ(ε0)

∫
dω

2π

e−i(ε0−ω)t/~ − 1

ε0 − ω
. (3.82)

This integral can be calculated in closed form. Find its value. This completes

the derivation of “Fermi’s Golden Rule.”

Solution 3.4.5. The real part of the integral is odd about ω = ε0, so only

the inaginary part is non-zero, thus∫
dω

2π

e−i(ε0−ω)t/~ − 1

ε0 − ω
= −i

∫
dx

2π

sin(x)

x
(3.83)

= −i/2, (3.84)

where the last is a tabulated integral. There are may different ways to do the

integral – look up ”Dirichlet integral” on Wikipedia for 4 of them.

3.4.6. In class we argued that

A(t) = e−i(ε−i~Γ/2)t/~ = e−Γt/2e−iεt/~. (3.85)

where, for the case of frequency-independent self-energy

Γ =
2

~
ImΣ, (3.86)
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with

Σ(ω) =
∑
j

|λj |2

~ω − εj
. (3.87)

Use the expression
1

x
=
P

x
± iπδ(x) (3.88)

to calculate Γ. How does it compare to the Fermi’s Golden Rule result?

Problem 3.5. Non-uniform self-energy In the lecture we assumed that Σ

was independent of ω. In the generic case, behavior of GR(t) will essentially be

given by the result we used, where you just evaluate Σ(ω) at some particular

frequency.

3.5.1. Start with

GR(t) =

∫
dω

2π

e−iωt

ω − ε0 − Σ(ω)
, (3.89)

Suppose we can Taylor expand Σ about ω = ε0,

Σ(ω) = (δ + iΓ/2) +
(ω − ε0)

D
(u+ iv) +O(D−2), (3.90)

where δ,Γ, u, v should all be of similar magnitude, and D is a large energy

corresponding to the scale on which Σ changes. It is of order the band-width.

The neglected terms are smaller in the bandwidth. Calculate G(t) both with

and without the 1/D term. You should find that the corrections are small –

lending credulence to the leading order approximation.



Chapter 4

Greens functions in finite

Hilbert spaces – Feb 2, 2018

Last day we motivated the idea that we could understand the dynamics of open

systems by calculating Greens functions. Today we will further understand

these mathematical objects in the context of isolated finite systems. We will

work with tight-binding models, but all of our arguments also apply to the

continuum – they are just slightly more abstract there, and the linear algebra

turns into differential equations.

This lecture is in part making you feel more comfortable with the tools. Next

week we will show how to use the Greens functions to calculate transport.

A. Tight-Binding Models

Tight binding models play an important role in solid-state physics. They are

used to build-up the physics of a material or device, starting with atomic or-

bitals. Alternatively (as discussed in section B) they are a systematic way to

truncate the infinite Hilbert space of a continuum system, in order to either get

insight or simplify calculations.

I assume you are familiar with the idea of tight-binding models. The simplest

example is a double-well. You know that the low energy physics of a double-well

can be approximated by simply taking two states: one that lies on the left well,

and one on the right. A tight-binding model is simply the generalization of this

to multiple wells. One may take multiple states on each well – these are referred

to as orbitals.

Given Ns sites, each with n0 orbitals, the single-particle Hamiltonian can be

written as a Ns × n0 by Ns × n0 matrix. The terms which connect orbitals on

26
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different sites are referred to as “hopping matrix elements”. Typically the size

of the hopping matrix elements fall off exponentially with the spacing between

sites, and we truncate to just a few.

For example, consider a 1D chain with one orbital per site. We let âj be the

operator which removes a particle from site j. A typical tight-binding model

with nearest neighbor hopping might be

Ĥ = −J
∑
j

(
â†j+1âj + â†j âj+1

)
. (4.1)

A generic tight-binding model is

Ĥ =
∑
ij

Hij â
†
i âj , (4.2)

where Hij are just numbers corresponding to matrix elements of the Hamilto-

nian,

Hij = 〈i|Ĥ|j〉, (4.3)

where |j〉 = a†j |vac〉 is the state where a particle is on site j.

A.1. Statistics

Most of the physics in this course is single-particle physics, and we are really

just using the creation and annihilation operators for the notational ease they

provide. It is, however, worth remembering that their true utility is in helping

keep track of the symmetries of many-particle wavefunctions. In particular the

symmetry is encoded in commutation/anticommutation relations

[ai, a
†
j ] = aia

†
j − a

†
jai = δij (Bose) (4.4)

[ai, a
†
j ] = aiaj − ajai = 0 (Bose) (4.5)

{ai, a†j} = aia
†
j + a†jai = δij (Fermi) (4.6)

{ai, a†j} = aiaj + ajai = 0. (Fermi). (4.7)

If these are unfamiliar to you, let me know and I will give you some reading –

there is one homework problem from today that uses them, and about 5 minutes

of today’s lecture.

A.2. Schrodinger Picture

The single-particle Schrodinger equation for a tight-binding model is just a

matrix equation.

Problem 4.1.
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4.1.1. Take |ψ〉 =
∑
j ψj |j〉. If this is an eigenstate of the Hamiltonian, Ĥ|ψ〉 =

E|ψ〉, find an equation obeyed by the coefficients ψj .

These sorts of matrix equations are trivial to solve numerically. Your laptop

should be able to essentially instantaneously diagonalize matrices which are

10, 000× 10, 000.

A.3. Heisenberg Picture

It will be convenient to also be able to operate in the Heisenberg picture – where

one thinks about the properties of operators instead of states. In particular

consider the case in which we have a tight-binding model with N states. We

will find it useful to understand transformations of the form

b̂s =
∑
j

Usj âj , (4.8)

where U is a N×N matrix. That is, we have defined operators b̂s which involve

removing particles from a superposition of states. The concrete example we are

thinking of, is that we want the bs’s to correspond to the eigenstates of the

single particle Hamiltonian.

Suppose we have fermions: that is {ai, a†j} = δij and {ai, aj} = 0. We call

the transformation in Eq. (4.8) canonical if {bs, b†t} = δst and {bs, bt} = 0. For

Bose operators we use commutators instead of anticommutators.

Physically, a canonical transformation means that the new operators describe

independent modes: adding or removing a particle from one mode does not affect

other modes. It also means that they are properly “normalized”.

Problem 4.2.

4.2.1. Show that Eq. (4.8) is canonical if and only if U is unitary: U†U = 1.

One consequence is that

âj =
∑
s

(U−1)jsb̂s (4.9)

=
∑
s

(U†)jsb̂s (4.10)

=
∑
s

U∗sj b̂s (4.11)

We can always choose U to diagonalize Hij , that is we can always find a

unitary matrix such that

(UHU†)st = δstεs. (4.12)
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In that case

Ĥ =
∑
ij

â†iHij âj (4.13)

=
∑
st

b̂†s
(
UHU†

)
st
b̂t (4.14)

=
∑
s

εsb̂
†
sb̂s. (4.15)

B. Tight-Binding Models as Finite Difference Approxima-

tions to Continuum Systems

A second, important application of tight-binding models is as approximations

to continuum systems. We will limit ourselves to a simple example. Consider

the Schrodinger equation:

− ~2

2m
∂2
xψ(x) + V (x)ψ(x) = Eψ(x). (4.16)

We can approximate the derivative by considering the Taylor expansion

ψ(x+ δ) = ψ(x) + δψ′(x) +
δ2

2
ψ′′(x) + · · · (4.17)

ψ(x− δ) = ψ(x)− δψ′(x) +
δ2

2
ψ′′(x) + · · · (4.18)

which motivates

∂2
xψ(x) ≈ ψ(x+ δ) + ψ(x− δ)− 2ψ(x)

δ2
. (4.19)

If we define ψj = ψ(jδ), and Vj = V (jδ) then Eq. (4.16) becomes

−J(ψj+1 + ψj−1) + (Vj + 2J)ψj = Eψj , (4.20)

where J = ~2/(2mδ2). Well this is the exact same Schrodinger equation as we

would get from the tight-binding model

Ĥ =
∑
j

−J(â†j+1âj + â†j âj+1) + (Vj + 2J)â†j âj . (4.21)

C. Time dependent Schrodinger Equation

The time-dependent Schrodinger Equation is also a matrix equation. We write

|ψ〉 =
∑
j ψj(t)|j〉, and consider

i~∂t|ψ〉 = Ĥ|ψ〉, (4.22)
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which gives

i~∂tψi(t) =
∑
i

Hijψj(t). (4.23)

Given an initial value ψ(t = 0), we can solve the time-dependent Schrodinger

equation using the Greens function

ψi(t) =
∑
j

GRij(t)ψj(0), (4.24)

where

i~∂tGRij(t)−
∑
k

HikG
R
kj(t) = δ(t)δij (4.25)

with GRij(t < 0) = 0. The Fourier transform of the Greens function is particu-

larly simple, ∑
k

(~ωδik −Hik)Gkj(ω) = δij . (4.26)

This is nothing but the matrix equation

G(ω) =
1

ω −H
. (4.27)

If you have H represented as a big matrix, one just needs to do matrix inversion

to calculate G.

Note: Eq. (4.27) is somewhat ambiguous, since the matrix ω − H is not

invertible whenever ω is equal to one of the eigenvalues of H. This ambiguity

exactly corresponds to the fact that the Greens functions are not unique: you

need to specify boundary conditions. As you will see in the homework, an

unambiguous Fourier transform of the retarded Greens function is

G(ω) = lim
η→0+

1

ω −H − iη
. (4.28)

Since the eigenstate of H are all real, the matrix ω−H− iη is invertible for any

η 6= 0. For most of these notes I won’t bother with adding this infinitesmal. We

can always put it in when we encounter any ambiguities.

D. What can you do with G(ω)

I think it is pretty clear what one can do with G(t): You can time-evolve a

wavefunction: GRij(t) is the amplitude that if you start at site j at time 0, you

end up at site i at time t.

It turns out that there are a number of very useful things that one can do

directly with the Fourier transform, G(ω).
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D.1. Response to a perturbation

First of all, like any other Greens function, G(ω) tells you about the response

of the system to an external perturbation of frequency ω. That is if

i~∂tψ −Hψ = ψ0e
−iνt, (4.29)

then once the transients die down,

ψi = e−iνt
∑
j

Gij(ν)(ψ0)j . (4.30)

This will clearly be a useful result when we are trying to calculate currents from

leads: The leads will act like external perturbations, and the Greens function

will allow us to calculate how these disturbances propagate.

D.2. Spectral Representation

It turns out that there are other useful things that we can extract from G.

These are most transparent in the Spectral Representation. Let ψsj be the s’th

eigenstate of Hij . By Construction

Hij =
∑
s

(ψsi )
∗Esψ

s
i . (4.31)

Equivalently

Ĥ =
∑
s

|s〉Es〈s|. (4.32)

Clearly the Greens function is then

Ĝ(ω) =
1

ω − Ĥ
=
∑
s

|s〉 1

ω − Es
〈s| (4.33)

or

Gij(ω) =
∑
s

(ψsi )
∗ψsj

ω − Es
. (4.34)

Thus one can find eigenstates by looking at the poles of G.

Mathematically, we can more directly access this information by using the

identity that
1

x± iη
=
P

x
∓ iπδ(x), (4.35)

where P represents the principle part.
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This relation is usually proven by noting that for any function f(x) one can

write

I = lim
η→0

∫ ∞
−∞

dx
f(x)

x± iη
(4.36)

= lim
ε→0

lim
η→0

(∫ −ε
−∞

+

∫ ∞
ε

)
f(x)

x± iη
(4.37)

+ lim
ε→0

lim
η→0

∫ ε

−ε

f(x)

x± iη
.

The first integral is well behaved as η → 0, and we define∫ ∞
−∞

f(x)
P

x
= lim
ε→0

(∫ −ε
−∞

+

∫ ∞
eps

)
f(x)

x
. (4.38)

The second integral is over a small range of x, and we write

lim
ε→0

lim
η→0

∫ ε

−ε

f(x)

x± iη
= f(0) lim

ε→0
lim
η→0

∫ ε

−ε

1

x± iη
(4.39)

= f(0) lim
ε→0

lim
η→0

log

(
ε± iη
−ε± iη

)
(4.40)

= ∓iπf(0). (4.41)

Regardless, we can use the Greens function to calculate the spectral function

Aij(ω) =
∑
s

(ψsi )
∗ψsj2πδ(ω − Es) (4.42)

= 2 ImG(ω − iη) (4.43)

= 2 ImGR(ω) (4.44)

In particular, we can access the density of states as

ρ(ω) =
∑
s

2πδ(ω − Es) (4.45)

= TrA(ω). (4.46)

D.3. Calculating Transport

Both the Greens function and the spectral function will be a key part of our

transport calculations.

E. Homework: Due Feb 9

Problem 4.3. Greens function for 2-level system Suppose we have a 2-

level system with Hamiltonian

H =

(
0 −J
−J 0

)
. (4.47)
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4.3.1. Calculate the 2× 2 matrix GR(ω).

Solution 4.3.1.

GR(ω) =

(
ω J

J ω

)−1

(4.48)

=
1

ω2 − J2

(
ω −J
−J ω

)
(4.49)

4.3.2. Calculate the 2× 2 matrix GR(t).

Solution 4.3.2. There are a number of ways to calculate this, for example

we can find the eigenvalues and eigenvectors of H:

ψ1 =

(
1/
√

2

1/
√

2

)
E1 = −J (4.50)

ψ2 =

(
1/
√

2

−1/
√

2

)
E2 = J (4.51)

then

GR(t) =
1

i
θ(t)e−iE1tψ1ψ

†
1 +

1

i
θ(t)e−iE2tψ2ψ

†
2 (4.52)

=
1

2i
θ(t)eiJt

(
1 1

1 1

)
+

1

2i
θ(t)e−iJt

(
1 −1

−1 1

)
(4.53)

=
1

i
θ(t)

(
cos(Jt) i sin(Jt)

i sin(Jt) cos(Jt)

)
. (4.54)

An alternative approach is to note that

H2 = J2I (4.55)

where I is the 2× 2 identity matrix. Then

GR(t) =
1

i
θ(t)e−iHt (4.56)

=
1

i
θ(t)

[
cos(Ht)I− iHt

sin(Ht)

Ht

]
(4.57)

=
1

i
θ(t)

[
cos(Jt)I− iHt

sin(Jt)

Jt

]
, (4.58)

which is readily seen to agree with the previous argument.

4.3.3. Calculate the 2× 2 matrix A(t).
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Solution 4.3.3.

A(t) =

(
cos(Jt) i sin(Jt)

i sin(Jt) cos(Jt)

)
. (4.59)

Problem 4.4. Branch cuts and Greens Functions

This problem works you through all the details about the infinitesmal imag-

inary bits.

4.4.1. There was a typo in this question – the correct expression is in red

Consider

GR(t) = e−i(ε−iη)t 1

i
θ(t). (4.60)

Show that as η → 0+, this function obeys

(i∂t − ε)GR(t) = δ(t). (4.61)

Solution 4.4.1.

i∂tG
R(t) = (ε− iη)e−i(ε−iη)t 1

i
θ(t) + e−i(ε−iη)tδ(t), (4.62)

where we have used that the derivative of the step function is a delta-function.

We then use f(t)δ(t) = f(0)δ(t) and take the limit η → 0 to find

i∂tG
R(t) = εGR(t) + δ(t) (4.63)

which is the desired result.

4.4.2. Calculate the Fourier transform

GR(ω) =

∫
dteiωtGR(t). (4.64)

What is the condition on η for the integral to be absolutely convergent?

Solution 4.4.2. If η > 0, then the integral is convergent and equal to

GR(ω) =
1

ω − ε+ iη
. (4.65)

4.4.3. There was a typo in this question – the correct expression is in red

Consider

GA(t) = e−i(ε+iη)t−1

i
θ(−t). (4.66)

Show that as η → 0+, this function obeys

(i∂t − ε)GA(t) = δ(t). (4.67)
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Solution 4.4.3.

i∂tG
A(t) = (ε+ iη)e−i(ε+iη)t−1

i
θ(−t) + e−i(ε+iη)tδ(t) (4.68)

Again taking the limit η → 0 gives the desired equation.

4.4.4. Calculate the Fourier transform

GA(ω) =

∫
dteiωtGA(t). (4.69)

What is the condition on η for the integral to be absolutely convergent?

Solution 4.4.4. Again the integral is convergent if η > 0 in which case

GA(ω) =
1

ω − ε− iη
(4.70)

4.4.5. Use contour integrals to calculate

f(t) =

∫ ∞
−∞

dω

2π

e−iωt

ω − ε− iη
(4.71)

for η > 0.

If you have never done this integral before, the way to do it is to separately

consider the case t > 0 and t < 0. If t > 0 then the integrand vanishes when

the imaginary part of ω becomes large and negative. Thus you can replace

the integral with a contour integral which consists of the real axis, and an arc

which extends through the lower-half plane. On the other hand, when t < 0,

the integrand becomes small when ω is large and positive – in which case you

can close the contour in the upper-half plane.

Solution 4.4.5. Following the hint, for t > 0 the contour includes no poles,

and thus f(t) = 0 for t > 0, Conversely if t < 0 there is a pole at ω = ε + iη

which gives

f(t) =
−1

i
θ(−t)e−i(ε+iη)t. (4.72)

Problem 4.5. Greens functions from operator equations of motion

This course is all about Greens functions in the case where we can neglect the

electron-electron interactions. It is useful, however, to know how to general-

ize them to the interacting many-body problem. This generalization will also

provide us with some notation that we will use in future lectures.

In that case one simply defines

GRij(t, t
′) =

1

i~
θ(t− t′)〈âi(t)â†j(t

′) + â†j(t
′)âi(t)〉, (4.73)
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where

â(t) = eiĤtâe−iĤt (4.74)

obeys the equation of motion

i~∂tâ(t) = [â(t), Ĥ]. (4.75)

It turns out that GR is only a function of t− t′. Thus it suffices to consider

GRij(t) = GRij(t, 0), (4.76)

where we have set t′ = 0.

4.5.1. For our case

Ĥ =
∑
ij

Hij â
†
i âj . (4.77)

Find the equation of motion

i~∂tâi(t) =????. (4.78)

Solution 4.5.1. The basic rule is that

[a, bc] = abc− bca (4.79)

= (ab+ ba)c− b(ac+ ca) (4.80)

= {a, b}c− b{a, c}. (4.81)

The only non-zero anticommutator will be between the creation and annihila-

tion operator – which gives a delta function. Hence

i~∂tâi(t) =
∑
j

Hijaj(t). (4.82)

4.5.2. For t > 0, use the last result to find the equation of motion for GRij(t).

Note: the act of taking a derivative commutes with the act of taking an expec-

tation value.

Solution 4.5.2. For t > 0 we can neglect the step function and

i~∂tGRij(t) = i~∂t
[

1

i~
〈âi(t)â†j(0) + â†j(0)âi(t)〉

]
(4.83)

=
∑
k

Hik

[
1

i~
〈âk(t)â†j(0) + â†j(0)âk(t)〉

]
(4.84)

=
∑
k

HikG
R
kj(t) (4.85)
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4.5.3. What is GRij(t = 0+).

Solution 4.5.3.

GRij(t = 0+) =
1

i~
〈âi(0)â†j(0) + â†j(0)âi(0)〉 (4.86)

=
1

i~
δij . (4.87)

4.5.4. Combine these results to write an equation of motion for GRij(t) which is

valid for all time. [This will be the same equation we worked with in class, so

you know what to aim for.]

Solution 4.5.4. There are a number of ways to do this. One way is to note

that for t 6= 0 the greens function obeys Eq. (4.85). We can then surmise that

for some constant matrix A

i~∂tGRij(t)−
∑
k

HikG
R
kj(t) = Aijδ(t). (4.88)

Integrating this from t = −η to t = η yields

i~[GRij(η)−GRij(−η)] = Aij . (4.89)

Hence Aij = δij

4.5.5. Show that the function

Gij(t) =
1

i
θ(t)〈âi(t)â†j〉 −

1

i
θ(−t)〈â†j âi(t)〉 (4.90)

obeys the same equation of motion – and is also a Greens function (clearly with

different boundary conditions however). This connection motivates the notation

(which we will use in a future class)

G>ij(t) = 〈âi(t)â†j〉 (4.91)

G<ij(t) = 〈â†j âi(t)〉. (4.92)

Despite using the symbol G, the functions G< and G> are not actually Greens

functions – rather they are correlation functions.

Solution 4.5.5. Away from t = 0 this function obeys the same equation. The

discontinuity at t = 0 is also the same. Thus it must obey the same equation

everywhere.



Chapter 5

Calculating Greens

Functions for Infinite

Systems – Feb 7, 2018

Today we will develop the technology for calculating Greens functions by looking

at a couple iconic examples. We will first explore a model of a semi-infinite wire,

which will be the basis for our models of leads. We will then return to the notion

of a self-energy, and see how it is used to calculate Greens functions for devices

attached to leads.

A. Semi-Infinite 1D wire

The simplest model I can think of for a wire is

Ĥ = −J
∑
j

(
â†j+1âj + â†j âj+1

)
. (5.1)

A semi-infinite wire is formed by putting bounds on the sum

Ĥ = −J
∞∑
j=0

(
â†j+1âj + â†j âj+1

)
. (5.2)

In the obvious basis this can be represented by an infinite dimensional matrix

Hij which is zero unless i and j differ by 1.

Lets calculate G00(ω), the matrix element of the Greens function evaluated

at the first site. Physically this will be very useful. First, if we attach this wire

to a device, the device will only know about things which are happening on that

38



CHAPTER 5. CALCULATING GREENS FUNCTIONS FOR INFINITE SYSTEMS – FEB 7, 201839

first site. It will all be encoded in G00. Second, it can tell us about the spectral

density at that site.

Recall that

Gij =
∑
α

(ψαi ) ∗ ψαj
ω − Eα

. (5.3)

where ψα is the eigenstate of H with energy Eα. Thus

Gii =
∑
α

|ψαi |2

ω − Eα
. (5.4)

The imaginary part of Gii is then

Aii = 2ImGii =
∑
α

|ψαi |22πδ(ω − Eα). (5.5)

This has the meaning of the density of modes on site i with energy ω. You can

measure this quantity via tunneling spectroscopy.

I will make the argument in such a way that we can reuse it later for a more

complicated problem. In particular, we break H into four pieces: H0, Hs, Λ

and Λ†. The first part H0 describes the portion of the system for which we need

the Greens function. It is the Hamiltonian projected into the space of interest.

In this case, the projection just involves a single site,

H0 = |0〉〈0|H|0〉〈0|. (5.6)

Of course for us H0 = 0. The second part Hs describes the portion of the system

which is completely disjoint from the region of interest:

Hs = −J
∞∑
j=1

(
â†j+1âj + â†j âj+1

)
. (5.7)

Finally, Λ and Λ† respectively contain the terms which take us out of and into

the region of interest,

Λ = −Ja†0a1 (5.8)

Λ† = −Ja†1a0. (5.9)

These represents block in the matrix representation of H – and we can write

H =

(
H0 Λ†

Λ Hs

)
. (5.10)

The top left block is 1× 1. The bottom right is ∞×∞. The others are 1×∞
and ∞ × 1. Of course, in this basis those off-diagonal blocks have only one

non-zero matrix element. Finally we introduce a projector

P0 = |0〉〈0|. (5.11)
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As a projector P 2
0 = P0 and (1− P0)2 = (1− P0).

The Greens function we want to calculate is

G = P0
1

E −H
P0. (5.12)

Problem 5.1.

5.1.1. Consider two matrices A and B, show that

1

A+B
=

1

A

1

1 +BA−1
. (5.13)

Hint: Use that (XY )−1 = Y −1X−1.

Solution 5.1.1. This is straightforward:

1

A+B
=

1

(1 +BA−1)A
(5.14)

=
1

A

1

1 +BA−1
. (5.15)

5.1.2. Use that result to write

1

E −H
=

1

E −H0 −Hs

1

1−XXX
. (5.16)

Find XXX.

Solution 5.1.2.

1

E −H0 −Hs − Λ− Λ†
=

1

E −H0 −Hs

1

1− (Λ + Λ†) 1
E−H0−Hs

(5.17)

5.1.3. Show that

P0
1

E −H0 −Hs
=

1

E −H0 −Hs
P0 =

1

E −H0
P0 = P0

1

E −H0
. (5.18)

Solution 5.1.3. These result simply follow from the fact that P0Hs = HsP0 =

0 and P0H0 = H0P0 = H0.

5.1.4. Show that

(1−P0)
1

E −H0 −Hs
=

1

E −H0 −Hs
(1−P0) =

1

E −Hs
(1−P0) = (1−P0)

1

E −Hs
.

(5.19)

Solution 5.1.4. Same argument.

5.1.5. Show that

(Λ + Λ†)P0 = (1− P0)Λ = Λ (5.20)

and

(Λ + Λ†)(1− P0) = P0Λ† = Λ† (5.21)
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Solution 5.1.5. Same argument.

5.1.6. We can Taylor expand the result in question 5.1.2 to formally write

G = P0
1

E −H
P0 = P0

1

E −H0 −Hs

∞∑
j=0

[
(Λ + Λ†)

1

E −H0 −Hs

]j
P0. (5.22)

Show that the j = 1 term of this series vanishes. What other j’s will give terms

which vanish?

Solution 5.1.6. The j = 1 term is

Gj=1 = P0
1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
P0. (5.23)

We walk the P0’s through to get

Gj=1 =
1

E −H0
P0(Λ + Λ†)P0

1

E −H0
. (5.24)

But

P0(Λ + Λ†)P0 = 0. (5.25)

The same argument will make any odd j term vanish.

5.1.7. Simplify the j = 2 term by moving the P0 through from right to left.

Solution 5.1.7. The j = 2 term is

Gj=2 = P0
1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
P0.

(5.26)

We walk the P0’s through to get

Gj=2 = P0
1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
P0(5.27)

= P0
1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
(Λ + Λ†)P0

1

E −H0
(5.28)

= P0
1

E −H0 −Hs
(Λ + Λ†)

1

E −H0 −Hs
(1− P0)Λ

1

E −H0
(5.29)

= P0
1

E −H0 −Hs
(Λ + Λ†)(1− P0)

1

E −Hs
Λ

1

E −H0
(5.30)

= P0
1

E −H0 −Hs
P0Λ†

1

E −Hs
Λ

1

E −H0
(5.31)

= P0
1

E −H0
Λ†

1

E −Hs
Λ

1

E −H0
. (5.32)

5.1.8. Show that

G = P0
1

1−H0

∑
j=0∞

[
Λ†

1

E −Hs
Λ

1

E −H0

]j
P0 (5.33)
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Solution 5.1.8. This is the same argument applied to a general term.

5.1.9. Resum the series.

Solution 5.1.9.

G = P0
1

1−H0

1

1− Λ† 1
E−HsΛ 1

E−H0

P0 (5.34)

5.1.10. Use the result in question 5.1.2 to arrive at

G00 =
1

E −H0 − Σ
(5.35)

Find Σ. This result is generic, and did not use the specific form of H.

Solution 5.1.10.

G00 = P0
1

E −H0 − Λ† 1
E−HsΛ

P0 (5.36)

so

Σ = Λ†
1

E −Hs
Λ (5.37)

5.1.11. We can now specialize to the problem at hand, and note that

Λ†s
1

E −Hs
Λs = J2|0〉〈1| 1

E −Hs
|1〉〈0|. (5.38)

But

〈1| 1

E −Hs
|1〉 = 〈0| 1

E −H
|0〉 = G00. (5.39)

Thus

G00 =
1

E − J2G00
. (5.40)

Solve this equation for G00.

Solution 5.1.11. This is a quadratic equation.

J2G2
00 − EG00 + 1 = 0, (5.41)

with solution

G00 =
E

2J2
±
√
E2

4J4
− 1. (5.42)

For the retarded Greens function we want the + branch. The structure is

explored in the homework.

5.1.12. Calculate the spectral density A00(E) = 2ImG00(E). For what values

of E is the spectral density non-zero?
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Solution 5.1.12. The spectral density will be non-zero if −2J < E < 2J .

This is sensible, because the eigenstates of an infinite wire all are in this range.

One then finds that the spectral density is a semi-circle,

A(E) =

√
4− E2

J2
. (5.43)

A.1. Comments

This is a nice example, because it is non-trivial, and computationally clean.

This is one of the better ways of calculating the spectral density on the first site

of an open chain. We also once again saw the “Self-Energy,” Σ, which encoded

how the rest of the wire influences the wavefunction on the first site.

B. Infinite Wire

We will now use this tricky result (the Greens function for a semi-infinite wire)

to calculate a well-known result – the density of states of an infinite wire. We

will do this as an example of how to analyze a device with leads: we will interpret

our wire as single site, with two semi-infinite leads attached to it. Thus

H = H0 + (HL + ΛL + Λ†L) + (HR + ΛR + Λ†R). (5.44)

Where H0 contains terms which only act on the site j = 0 (which is H0 = 0 yet

again). The other terms are

HR = −J
∞∑
j=1

(a†jaj+1 + a†j+1aj) (5.45)

HL = −J
−1∑

j=−∞
(a†jaj−1 + a†j−1aj) (5.46)

ΛR = −Ja†0a1 (5.47)

ΛL = −Ja†0a−1. (5.48)

The same argument that we used previously gives

G =
1

E −H0 − ΣL − ΣR
(5.49)

where

ΣL = J2GL (5.50)

ΣR = J2GR (5.51)
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with GL and GR the greens function for the first site of each lead, assuming you

separated it from the system. In this case

GL = GR =
E

2J2
+

√
E2

4J4
− 1 (5.52)

Thus we find

G =
1

E − 2J2

[
E

2J2 +
√

E2

4J4 − 1

] (5.53)

=
1

−
√
E2 − J2

. (5.54)

The density of states is then

A(E) = 2ImG (5.55)

=
2√

4J2 − E2
(5.56)

In homework you will verify that this agrees with more conventional arguments.

You might remember that in 1D the density of states goes as 1/
√
E This also

emerges here since:

2√
4J2 − E2

=
2√

2J − E
√

2J + E
(5.57)

If E is near −2J , then

A(E) ≈ 2√
4J

1√
2J + E

(5.58)

C. Beyond 1D

A more general wire is made of repeating units of M sites. For example, we

could have a rectangular strip which is M sites wide. Here we will explain how

to find the M ×M matrix which represents the Greens function for that first

cell.

We let H0
ij be the matrix elements of the Hamiltonian in that first layer.

We let Λīj be the matrix elements of the Hamiltonian between the sites ī in

the second layer and sites j in this first layer. Finally let Ḡīj̄ be the Greens

function of the lead if we removed the first layer – this time taking ī, j̄ to lie

in the second layer. By translational invariance Ḡ = G. This equality was the

crux of how we calculated the Greens function in section A.

What happens if the Hamiltonian has next nearest neighbor hopping? Well,

then we just combine the first two rows into one – and call that the first layer.
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Thus if we have a strip of width M with next-nearest-neighbor hopping, we will

need a 2M × 2M matrix to represent H0.

Being careful with our matrix multiplication, our previous argument goes

through, and we find

G =
1

E −H0 − Λ†ḠΛ
. (5.59)

Identifying Ḡ = G, this can be written as a quadratic equation

Λ†GΛG− (E −H0)G+ 1 = 0, (5.60)

where 1 is the identity matrix.

Equations like Eq. (5.60) are straightforward if Λ commutes with H0, in

which case one simply works in the basis that simultaneously diagonalizes Λ

and H0. Unfortunately, here they don’t commute. Aside from numerical itera-

tion, the main approach to solving these nonlinear operator equations involves

a transfer matrix approach. I will leave this approach as an exercise in the

homework.

D. Spectral Representation of Self-Energy

The Self-Energy is generically

Σ̂ = Λ†
1

ω − Ĝlead

Λ. (5.61)

It is convenient to write this in terms of the eigenvalues |α〉 of Glead, correspond-

ing to the energy eigensates of an isolated lead

Σ̂ =
∑
α

Λ†|α〉 1

ω − Eα
< α|Λ. (5.62)

The imaginary part of Σ is related to the spectral density

Γ =
Σ− Σ†

i
=
∑
α

Λ†|α〉2πδ(ω − Eα)〈α|Λ. (5.63)

The homework has a concrete example.

E. Homework

Problem 5.2. Response to periodic perturbation

5.2.1. Consider a Schrodinger equation driven by an a periodic external per-

turbation:

i~∂tψ(t)−Hψ(t) = fe−iνt. (5.64)

Fourier transform this equation to produce an equation for ψ(ω).
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Solution 5.2.1.

(~ω −H)ψ(ω) = fδ(ω − ν) (5.65)

5.2.2. Solve for ψ(ω). Relate the solution to the Greens function GR(ω).

Solution 5.2.2.

ψ(ω) =
1

~ω −H
fδ(ω − ν) (5.66)

= GR(ω)fδ(ω − ν). (5.67)

Problem 5.3. Greens function for a simple quantum dot attached to

1D leads

Consider a simple model for a quantum dot attached to 1D leads, namely

H = ε0â
†
0â0 +

∞∑
j=−∞

−J(a†jaj+1 + a†j+1aj). (5.68)

5.3.1. Treat the j = 0 site as the “system,” and the sites with j > 0 and j < 0

as the right and left leads. What is

H0 (5.69)

HL (5.70)

HR (5.71)

ΛL (5.72)

ΛR (5.73)

ΣL (5.74)

ΣR (5.75)

ΓL (5.76)

ΓR (5.77)
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Solution 5.3.1.

H0 = ε0a
†
0a0 (5.78)

HL =
∑
j<0

−J(a†jaj−1 + a†j−1aj) (5.79)

HR =
∑
j>0

−J(a†jaj+1 + a†j+1aj) (5.80)

ΛL = −Ja†0a−1 (5.81)

ΛR = −Ja†0a1 (5.82)

ΣL = J

[
E

2J
+

√
E2

4J2
− 1

]
(5.83)

ΣR = J

[
E

2J
+

√
E2

4J2
− 1

]
(5.84)

ΓL = J

√
1− E2

4J2
(5.85)

ΓR = J

√
1− E2

4J2
(5.86)

5.3.2. What is the Greens function for the site?

Solution 5.3.2.

G =
1

E −H0 − ΣL − ΣR
(5.87)

=
1

−ε0 −
√
E2 − 4J2

(5.88)

5.3.3. What is the spectral density for the site?

Solution 5.3.3. If |E| < 2J things are simple, and

A =
G† −G

i
(5.89)

=
1

i

[
1

−ε0 + i
√

4J2 − E2
− 1

−ε0 − i
√

4J2 − E2

]
(5.90)

=
2
√

4J2 − E2

ε20 + 4J2 − E2
(5.91)
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Solution 5.3.3. It turns out that this result is incomplete, as the Greens

function can have discrete poles when |E| > 2J . I didn’t talk about this in

class, so I don’t expect anyone to do it – but it is useful to give the argument

here. Normally I wouldn’t be so formal, but I will try to be pedagogical

here. Note: these poles represent bound states, so they will not contribute to

transport.

Firstly, we need to be a bit more careful about our branch cuts. The branch

we actually want is the principle branch of

G =
1

−ε0 − i
√

4J2 − (E + iη)2
, (5.92)

as η → 0+. For −2J < E < 2J this is just what we had before. For E > 2J

we will be taking the square root of a number with a negative real part and

a very small negative imaginary part. Thus the square root gives us a −i and

we have

G(E > 2J) =
1

−ε0 −
√
E2 − 4J2

. (5.93)

For E < −2J we will be taking the square root of a number with a negative

real part and a very small positive imaginary part. Thus the square root gives

us +i and we have

G(E < −2J) =
1

−ε0 +
√
E2 − 4J2

. (5.94)

Thus when ε0 < 0 there is a pole at E < −2J , and when ε0 > 0 there is a pole

at E > 2J . The pole will be located at

E2 = 4J2 + ε20. (5.95)



CHAPTER 5. CALCULATING GREENS FUNCTIONS FOR INFINITE SYSTEMS – FEB 7, 201849

Solution 5.3.3. Lets first treat the case ε0 > 0, in which case we define

E0 =
√

4J2 + ε20, (5.96)

and to find the residue write

E = E0 + δE (5.97)

with δE small. The greens function is then

G ≈ 1

−ε0 −
√
E2

0 − 4J2 + 2E0δE
(5.98)

≈ 1

−ε0 −
√
E2

0 − 4J2 − E0δE/
√
E2

0 − 4J2
(5.99)

=
1

−E0δE/ε0
(5.100)

=
−ε0/E0

E − E0
, (5.101)

which gives a contribution to the spectral density of

A =
ε0√

4J2 + ε20
2πδ(E − E0). (5.102)

In particular if ε0 � 2J , one can ignore the leads, and the spectral density is

just a single delta function at E = ε0.

One finds a similar expression for ε0 < 0, But in that case the pole is at

negative E.

If one is not careful about these branch cuts one might accidentally believe

there are two poles. A sure way to guard against this is to think about what

happens when ε0 is very large. It is clearly unphysical to have a pole at

E = −ε0.

Problem 5.4. Conventional calculation of density of states

5.4.1. A 1D wire has a dispersion εk = −2t cos(k). Each of these states are

spatially homogeneous, with density 1/L. Thus the density of states will be

ρ(E) =
∑
k

1

L
2πδ(E − εk) (5.103)

=

∫ π

−π

dk

2π
2πδ(E + 2t cos(k)) (5.104)

= 2

∫ π

0

dk δ(E + 2t cos(k)). (5.105)
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Carry out the integral to calculate the density of states. How does it compare

to the results that we arrived at in class?

Solution 5.4.1.

ρ(E) = 2

∫ π

0

dk
δ(k + arccosE/(2t))

2t sin(k)
(5.106)

We then do some trigonometry. If cos(k) = −E/(2t), then sin(k) =√
4t2 − E2/(2t), and we get

ρ(E) =
2√

4t2 − E2
(5.107)

which coincides with what we found with Greens functions.

5.4.2. For a finite 1D chain of length L, with sites j = 1, 2, · · ·L, the normalized

eigenstates are

ψj =

√
2√
L

sin(kj), (5.108)

where

k =
nπ

L+ 1
, (5.109)

with n = 1, 2, · · ·L. Again the energy is εk = −2t cos(k).

Calculate the local density of states at the first site of the chain (in the limit

L→∞). Compare to the result we derived in class.

Solution 5.4.2.

ρ1(E) = L

∫
dk

2π
|ψ1|22πδ(E − εk) (5.110)

= 4

∫ π

0

dk sin2(k)δ(E + 2t cos(k)) (5.111)

= 4

∫ π

0

dk
sin(k)

2t
δ(k + arccosE/(2t)) (5.112)

=
4

2t

√
4t2 − E2

2t
(5.113)

=
1

t

√
4− E2

t2
. (5.114)

Problem 5.5. Formal Properties of Greens Functions This question is a

bit abstract, and is not actually needed for this course – but it is good mathe-

matical background.
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5.5.1. Analytic Properties – Discontinuities across the real axis

Consider a function

G(ω) =

∫ ∞
−∞

dz

2π

1

ω − z
A(z), (5.115)

where A(z) is an arbitrary real valued function, and the integral is taken over

the real z-axis.

Use the expression that for real x

1

x± iη
=
P

x
∓ iπδ(x) (5.116)

To show that G(ω) is discontinuous across the real ω axis and find the discon-

tinuity

G(ω + iη)−G(ω − iη) (5.117)

for real ω.

It turns out that G is continuous everywhere except the real axis. Generically

the discontinuity corresponds to a Branch Cut – and one can define GR(ω) to

be the analytic continuation from the upper half plane, and GA(ω) to be the

analytic continuation from the lower half-plane.

Solution 5.5.1. This is straightforward.

5.5.2. Kramers-Kronig – part 1 Take ω real. Use Eq. (5.115) and Eq. 5.116

to express the real part of GR(ω) = G(ω + iη) as a principle-value integral of

the imaginary part of GR(ω).

This is the first half of the Kramers-Kronig relations.

Solution 5.5.2. This is again straightforward

ReGR(ω) = Re

∫
dz

2π

1

ω − z
A(z) (5.118)

= P

∫
dz

2π

A(z)

ω − z
(5.119)

=
1

π
P

∫
dz

ω − Z
ImGR(z). (5.120)

5.5.3. Kramers-Kronig – part 2 To get the full Kramers-Kronig relations,

we note that if GR(ω) is analytic in the upper half plane, then for any closed

contour Γ in the upper half plane∮
Γ

dω

2π

GR(ω)

z − ω
= 0. (5.121)

In particular we take a contour that skims along the real axis, then is closed by

a half-circle in the upper-half plane.
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It is obvious from Eq. (5.115) that GR(ω) vanishes when the imaginary part

of ω is large. Thus the integral over the half circles vanish, and one must have∫ ∞
−∞

dω

2π

GR(ω)

z − ω
= 0. (5.122)

Take the real and imaginary part of this equation to derive two integral equations

relating the real and imaginary part of GR. One of them should coincide with

the equation you found in question 5.5.2.

Solution 5.5.3. First the real part:

Re

∫ ∞
−∞

dω

2π

GR(z)

z − ω + iη
= P

∫ ∞
−∞

dω

2π

ReGR(z)

z − ω
(5.123)

+

∫ ∞
−∞

dω

2π
ImGR(z)πδ(z − ω)

= P

∫ ∞
−∞

dω

2π

ReGR(z)

z − ω
+

1

2
ImGR(ω).

Next the imaginary part:

Im

∫ ∞
−∞

dω

2π

GR(z)

z − ω + iη
= P

∫ ∞
−∞

dω

2π

ImGR(z)

z − ω
(5.124)

−
∫ ∞
−∞

dω

2π
ReGR(z)πδ(z − ω)

= P

∫ ∞
−∞

dω

2π

ImGR(z)

z − ω
− 1

2
ReGR(ω).

Setting each of these to zero gives the Kramers-Kronig relations

ReGR(ω) =
1

π
P

∫ ∞
−∞

dω

z − ω
ImGR(z) (5.125)

ImGR(ω) = − 1

π
P

∫ ∞
−∞

dω

z − ω
ReGR(z) (5.126)

Problem 5.6. A more complicated 1D lead

Here we try to calculate the Greens function for a semi-infinite wire with a

non-trivial unit cell. Following the arguments of section C, we break the wire up

into layers – each of which contain M sites. The Hamiltonian contains matrix

elements within each layer. In the main text we referred to this M ×M matrix

as H0. To save some ink, here we will just refer to it as H. There is also a

M×M matrix Λ which contains the elements of the Hamiltonian which connect

two sequential layers.
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This problem is a bit heavy – and in practice we will not do this by hand –

this algorithm (or some equivalent) is built into Kwant. It is kind of fun to go

through this though. Don’t sweat it if you get lost.

5.6.1. As a concrete example, you can imagine a lead which is two-sites wide.

One might then write

H =

(
0 −t
−t 0

)
(5.127)

Λ =

(
−t 0

0 −t

)
(5.128)

In this case Λ and H commute, so one can solve Eq. (5.60) by going into the

basis which diagonalizes H.

Find the Greens function for the first layer of the lead in this simple case.

It will be a 2× 2 matrix.

Solution 5.6.1. The eigenvectors and eigenvalues are

ψ1 =

(
1/
√

2

1/
√

2

)
ε1 = −J (5.129)

ψ2 =

(
1/
√

2

−1/
√

2

)
ε2 = J (5.130)

These are also eigenvectors of Λ with eigenvalue λ = −t.
We need to solve the equation

Λ†GΛG− (E −H0)G+ 1 = 0. (5.131)

The matrix G will be diagonal in this same basis, with eigenvalues g1 and g2

that solve

λ2g2
j − (E − εj)gj + 1 = 0. (5.132)

which gives

gj =
E − εj

2
+
√

(E − εj)2 − 4λ2. (5.133)

The matrix is then

G = ψ1g1ψ
†
1 + ψ2g2ψ

†
2 (5.134)

=
1

2

(
g1 + g2 g1 − g2

g1 − g2 g1 + g2

)
(5.135)

5.6.2. As a second concrete example, imagine we have a 1D lead, but we have
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next-nearest neighbor hopping,

Hlead =

∞∑
j=1

[
−t(a†jaj+1 + a†j+1aj)− t

′(a†jaj+2 + a†j+2aj)
]
. (5.136)

In this case one “layer” is two sites, and the Hamiltonian describing the first

layer is

H =

(
0 −t
−t 0

)
, (5.137)

and the operator that connects layers is

Λ =

(
−t′ −t
0 −t′

)
. (5.138)

Draw a picture which illustrates the first 4 sites, with labeled arrows between

them depicting the various hoppings. Then show that H and Λ do not commute.

Solution 5.6.2. Here is the first 8 sites:

t t t t

t

t'

t'

t

t'

t'

t

t'

t' t'

The boxes show the different “layers”. There is one hopping on the inside of

each box, and three joining each subsequent layers. I drew “one-way” arrows,

but the hoppings go in each direction.

The commutator is

[H,Λ] =

(
−t2 0

0 t2

)
, (5.139)

which is non-zero as long as t 6= 0.

5.6.3. Transfer Matrices In the case where [H,Λ] 6= 0 we need to do a trick

which converts the solution of a quadratic eigenvalue equation to that of an

auxilliary linear system. The argument is most transparent if we introduce

matrices Gmnij which are the Greens functions between the m’th layer, i’th site,
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and the n’th layer, j’th site. By definition
ω −H −Λ 0 · · ·
−Λ† ω −H −Λ · · ·

0 −Λ† ω −H · · ·
...




G00 G10 · · · · · ·
G01 G11 · · ·

...

...

 =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

 .

(5.140)

We take the first column of this equation and note that for m > 1,(
G0m

G0m+1

)
=

(
0 1

−Λ−1Λ† XX

)(
G0m−1

G0m

)

= T

(
G0m−1

G0m

)
, (5.141)

which defines the transfer matrix T . Find XX.

Solution 5.6.3.

T =

(
0 1

−Λ−1Λ† −Λ−1(ω −H)

)
(5.142)

and

XX = −Λ−1(ω −H) (5.143)

5.6.4. For the case of Eq. (5.137) find T . (Note, we are assuming t and t′ are

real.)

Solution 5.6.4. The inverse matrix is

Λ−1 =

(
− 1
t′

t
(t′)2

0 − 1
t′

)
(5.144)

Thus

T =


0 0 1 0

0 0 0 1

−1 + t2

(t′)2
t
t′

ω
t′ −

t2

(t′)2
t
t′ −

ωt
(t′)2

− t
t′ −1 t

t′
ω
t′

 . (5.145)

5.6.5. Next we note that

(ω −H)G00 + ΛG01 = 1 (5.146)

or equivalently (
G00

G01

)
= T

(
XX

G00

)
. (5.147)
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and hence (
G0m−1

G0m

)
= Tm

(
XX

G00

)
. (5.148)

Find XX.

Solution 5.6.5. It is easiest to multiply out EQ. (5.147), which becomes two

equations

G00 = G00 (5.149)

G01 = −Λ−1Λ†XX − Λ−1(ω −H)G00. (5.150)

The first equation is a tautology. If we multiply the second by Λ we get

ΛG01 + (ω −H)G00 = −Λ†XX. (5.151)

Clearly this means XX = −(Λ†)−1.

5.6.6. Show that

T †ΩT = Ω (5.152)

where

Ω =

(
0 −Λ

Λ† 0

)
(5.153)

is a skew-Hermitian matrix (Ω† = −Ω).

The property in Eq. 5.152 is described as “Symplectic.” [Or sometimes

“complex-symplectic” or “conjugate-sympectic” – as traditionally the symplec-

tic condition involves the transpose of T rather than the Hermitian-Conjugate.]

5.6.7. Because of the symplectic property, the eigenvectors of T come in pairs.

Let χ be an eigenvector of T with eigenvalue λ:

Tχ = λχ. (5.154)

Use the symplectic property to show that Ωχ is an eigenvector of T † with

eigenvalue 1/λ.

The eigenvalues of a matrix are the complex conjugate of the eigenvalues

of the Hermitian conjugate of a matrix. Thus we can conclude that if λ is an

eigenvalue of T , then so is 1/λ∗. Thus either |λ| = 1, or for every eigenvalue

with modulus greater than unity there is one that is smaller.

To get the branch cuts right, we add a small positive imaginary part to ω.

Formally this breaks the complex-symplectic structure, but it is restored as we

take the imaginary part to zero. It turns out that once we add this imaginary

part, none of the eigenvalues have unit magnitude. (You can see this by looking
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at the determinant of T †T − 1, but I won’t go into the argument.) In fact,

with the infinitesmal imaginary part added, half the eigenvalues have modulus

greater than 1, and half have modulus less than 1.

Solution 5.6.6. If Tχ = λχ, then T †ΩTχ = λT †Ωχ. But by the symplectic

condition T †ΩTχ = Ωχ. Thus

T † (Ωχ) =
1

λ
(Ωχ) , (5.155)

which is the desired result.

5.6.8. We denote theN eigenvalues which have modulus less than 1 as λ1, λ2, · · ·λN ,

and the corresponding eigenvectors (ψ1, φ1), (ψ2, φ2), · · · (ψN , φN ), as in(
0 1

−Λ−1Λ† −Λ−1(ω + iη −H)

)(
ψj
φj

)
= λj

(
ψj
φj

)
. (5.156)

These are readily found numerically.

For the case of Eq. (5.137) with t = 0 find the ψj and φj . [I used a computer

algebra system – though you can do it by hand if you note that under this

circumstance, T is block diagonal.] You can take η → 0 once you have figured

out which eigenvalues have modulus less than 1.

[Note the case t = 0 corresponds to when [Λ, H] = 0, so we could have solved

this case directly using a more elementary approach. Moreover, in this case the

even and odd sites decouple, so our lead is really two separate leads. Regardless,

it is a good case to explore the arithmetic.]

Solution 5.6.7. The eigenvectors whose eigenvalues have magnitude less than

1 (when η 6= 0) are

ψ1 =

(
ω+i
√

4(t′)2−ω2

2t′

0

)
(5.157)

φ1 =

(
1

0

)
(5.158)

λ1 =
ω − i

√
4(t′)2 − ω2

2t′
(5.159)

ψ2 =

(
0

ω+i
√

4(t′)2−ω2

2t′

)
(5.160)

φ2 =

(
0

1

)
(5.161)

λ2 =
ω − i

√
4(t′)2 − ω2

2t′
. (5.162)
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5.6.9. In order for the Greens functions in Eq. (5.148) to be bounded, we must

have that the vector on the right hand side is only made from the (ψj , φj). That

is

−(Λ−1)ij =
∑
j

cijψjk (5.163)

G00
ik =

∑
j

cijφjk, (5.164)

where ψjk is the k’th entry of the vector ψj . The previous version had an

erroneous Λ† in Eq. (5.163). Everything is known in Eq. (5.163) except the c’s.

Assuming the matrix of coefficients of the ψ’s is invertible, we can immediately

extract

c = −Λ−1ψ−1 (5.165)

and

G00 = cψ = −Λ−1ψ−1φ. (5.166)

Since G00 is what we were trying to find, we are now done.

Use this approach to find G00 for the case of Eq. (5.137) with t = 0

Solution 5.6.8. The matrices are

φ =

(
1 0

0 1

)
(5.167)

ψ =
ω + i

√
4(t′)2 − ω2

2t′

(
1 0

0 1

)
(5.168)

ψ−1 =
ω − i

√
4(t′)2 − ω2

2t′

(
1 0

0 1

)
(5.169)

Λ−1 =
−1

t′

(
1 0

0 1

)
(5.170)

Thus

G =
ω + i

√
4(t′)2 − ω2

2(t′)2

(
1 0

0 1

)
(5.171)



Chapter 6

Calculating Transport from

Greens Functions – Feb 9,

2018

We now finally have all the tools to calculate transport. Just to keep you from

the suspense, the end result (in the absence of scattering) is that in linear-

response we will find that the net current entering from lead s is

Is =
∑
s′

σss′Vs′ , (6.1)

where Vs′ is the voltage applied to lead s′, and the conductivity tensor is

σss′ = − q

2π~

[
TrΓsGΓs

′
G† − δss′

∑
s̄

TrΓsGΓs̄G†

]
, (6.2)

where G = GR = G(ω + iη), G† = GA = G(ω − iη), and Γs = 2ImΣs(ω + iη).

Today we will derive this expression, and figure out how to calculate currents

inside the device.

In a typical device, some leads have known currents going down them, while

other leads have known voltages. Typically the other quantity is unknown.

For example, there are no currents going through the leads that go to a volt-

meter. Thus one generically has some of the unknowns on the right hand side of

Eq. (6.1) while others are on the left. This feature does not make the equations

any harder to solve.

There are a few important physical properties of the conductivity matrix.

59
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First, the total incoming current should vanish. Thus we look at∑
s

Is =
∑
ss′

σss′Vs′ . (6.3)

But if we sum Eq. (6.2) we find

−2π~
q

∑
s

σss′ =
∑
s

TrΓsGΓs
′
G† −

∑
s̄

TrΓs
′
GΓs̄G†, (6.4)

which is zero because Γ is Hermitian. Second, it is only differences in voltages

that matter. If we add a constant to all the voltages, the currents should not

change. This is encoded in

−2π~
q

∑
s′

σss′ =
∑
s′

TrΓsGΓs
′
G† −

∑
s̄

TrΓsGΓs̄G†, (6.5)

which is clearly zero.

Of course, this makes it clear that a more sensible way to write the result is

Is =
∑
s′

σ̄ss′(Vs′ − Vs) (6.6)

with

σ̄ss′ = − q

2π~

[
TrΓsGΓs

′
G†
]
. (6.7)

The next thing to say about this result, is it has the same structure as the

Landauer result from our 1D example. As we will see, the object ΓsGΓs
′
G† can

be interpreted as a density of states times a transmission matrix element.

A. Currents entering from a lead

The logic we are going to use is that we will look at all of the incoming eigenstates

from a given lead, and ask what contribution they make to the current. As

before, our system will be described by

Htotal = H +
∑
s

(Λs + Λ†s +Hs), (6.8)

where Λs contains the terms which take a particle from the lead into the device.

For simplicity, we can think about the case with 2 leads – generalizing to more

is straightforward.

A.1. Calculating G<

Before calculating the current, we will need to calculate

G<(ω) =
∑
α

|α〉fα2πδ(ω − Eα)〈α| (6.9)
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where we are summing over all eigenstates of the entire system. The fα’s are

the occupation numbers of the modes.

Let us consider an incoming wave from lead 1. The wavefunction will have

four parts: The incoming wave φ
(1)
in , the reflected wave φ

(1)
out, the wave in the

device ψ, and the transmitted wave φ
(2)
out. The Schrodinger equation will read E −H −Λ1 −Λ2

−Λ†1 E −H1 0

−Λ†2 0 E −H2


 ψ

φ
(1)
in + φ

(1)
out

φ
(2)
out

 =

 0

0

0

 . (6.10)

It is convenient to rewrite φ(1) = φ
(1)
in + φ

(1)
out = φ

(1)
0 + χ(1), where φ

(1)
0 is an

eigenstate of H1 with eigenvalue E.

For concreteness, one can imagine a 1D lead, terminating at x = 0. Then:

φ
(1)
in = Aeikx (6.11)

φ
(1)
out = RAe−ikx (6.12)

φ
(1)
0 = 2iA sin(kx) (6.13)

χ(1) = (R+ 1)Ae−ikx. (6.14)

We work with φ0 rather than φin primarily because it is easier to calculate φ0:

We just find the eigenstates of the isolated lead. [There are of course an infinite

number of them, but we know how to deal with that.]

Problem 6.1.

6.1.1. Solve the second equation in Eq. (6.10) to express χ in terms of φ
(1)
0 and

ψ.

Solution 6.1.1. This is straightforward:

−Λ†1ψ + (E −H1)(φ
(1)
0 + χ) = 0, (6.15)

but

(E −H1)φ
(1)
0 = 0 (6.16)

so

χ =
1

E −H1
Λ†1ψ. (6.17)

6.1.2. Solve the third equation in Eq. (6.10) to express φ(2) in terms of ψ.

Solution 6.1.2. This one is even easier

φ(2) =
1

E −H2
Λ†2ψ. (6.18)
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6.1.3. Combine these results with the first equation to get an expression relating

ψ to φ
(1)
0 . Write this in terms of the Greens function.

Solution 6.1.3. The substitution yields[
E −H − Λ1

1

E −H1
Λ†1 − Λ2

1

E −H2
Λ†2

]
ψ = Λ1φ

(1)
0 . (6.19)

or

ψ = GΛ1φ
(1)
0 (6.20)

6.1.4. We can now calculate the density matrix

G<(ω) =
∑
α

|α〉2πfαδ(ω − Eα)〈α|, (6.21)

where |α〉 is the eigenstate of the entire system with energy Eα whose occupation

is fα. Generically G< will have a contribution from bound states (which we will

ignore since they do not contribute to currents) and contributions from the

states incident from each lead. What is the contribution to G<(ω) from this

one mode?

Solution 6.1.4. The contribution from this one mode will be

(G<ψ )ij = 2πfδ(ω − E)(GΛ1φ
(1)
0 )i((φ

(1)
0 )∗Λ†1G

†)j (6.22)

where

f =
1

eβ1(E−µ1) + 1
(6.23)

is the occupation of the incoming mode.

In perhaps clearer notation

(G<ψ )ij = GΛ1|φ0〉2πfδ(ω − E)〈φ0|Λ†1G† (6.24)

Adding up all the contributions, the density matrix will then be

G< =
∑
s

fsGΓsG
† (6.25)

=
∑
s

GΣ<s G
† (6.26)

where

Γs = 2ImΣs (6.27)

= Λs

(∑
α

|α〉2πδ(ω − Eα)〈α|

)
Λ†s. (6.28)
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In more explicit notation

(Γs)ij = 2Im(Σs)ij (6.29)

=
∑
α

(Λ1φ
(s)
0,α)i2πδ(ω − Esα)((φ

(s)
0,α)∗Λ†1)j . (6.30)

In the homework we have another derivation of this result, which only takes a

couple lines, but is otherwise more opaque.

A.2. Current Operators

The next thing we need is an operator which yields the total current entering

from a lead. A concrete place to start is with the number operator:

N =
∑
j

a†jaj (6.31)

where the sum is taken over all sites in the device. Taking a Heisenberg per-

spective, the total number of particles in the device obeys

dN

dt
=

1

i
[N,Htot] (6.32)

=
1

i

∑
j

[a†jaj , Htot]. (6.33)

The only terms in the Hamiltonian that contribute are those that involve Λ and

Λ†. In particular, Λ is of the form

Λ =
∑
ij

λija
†
i bj (6.34)

where j is in the lead, and i is in the device.

Problem 6.2.

6.2.1. Calculate [a†jaj , b
†
sat].

6.2.2. Calculate [a†jaj , a
†
tbs].

6.2.3. Calculate 1
i [N,Λ + Λ†], where

N =
∑
j

a†jaj (6.35)

Λ =
∑
ij

λija
†
i bj (6.36)
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That last result can be summarized as

dN̂

dt
= −

∑
s

Λ̂s − Λ̂†s
i

. (6.37)

The operators on the right hand side can be interpreted as the current operator.

It acts between sites in the system and sites in the leads.

We now consider the contribution to the current from a single mode. Suppose

the mode corresponds to an incoming wave from lead 1. The wavefunction in

lead 1 is

φ(1) = φ0 +
1

E −H1
Λ†1ψ (6.38)

= φ0 +G1Λ†1ψ (6.39)

The wavefunction in lead s 6= 1 is

φ(s) =
1

E −Hs
Λ†sψ (6.40)

= GsΛ
†
sψ. (6.41)

The wavefunction in the device is

ψ = GΛ1φ0. (6.42)

These can be rearranged to become

Λ1φ
(1) = Λ1φ0 + Σ1ψ (6.43)

= G−1ψ + Σ1ψ (6.44)

Λsφ
(s) = Σsψ (6.45)

(6.46)

The contribution to the rate of change of N from this state is then

dN

dt
= −

∑
s

ψ†Λsφ
(s) − (φ(s))†Λ†sψ

i
(6.47)

= −

(∑
s

ψ†Σsψ − ψ†Σ†sψ
i

)
− ψ†Λ1φ0 − φ†0Λ†1ψ

i
. (6.48)

It is natural to interpret the first term as the outgoing flux, and the second term

as the incoming flux.



CHAPTER 6. CALCULATING TRANSPORT FROM GREENS FUNCTIONS – FEB 9, 201865

Lets first look at the incoming term. The contribution from that one mode

is (
dN

dt

)
in

= −ψ
†Λ1φ0 − φ†0Λ†1ψ

i
(6.49)

= −φ
†
0Λ†1G

†Λ1φ0 − φ†0Λ†1GΛ1φ0

i
(6.50)

= φ†0Λ†1AΛ1φ0. (6.51)

To get the total incoming current, we sum over all φ0, weighting each by the

probability of being occupied(
dN

dt

)
total in from 1

=
∑
α

fαφ
†
αΛ†1AΛ1φα (6.52)

=

∫
dω

2π
2πδ(ω − Eα)fαφ

†
αΛ†1AΛ1φα (6.53)

=

∫
dω

2π
Tr Σ<1 (ω)A(ω). (6.54)

Next we look at the outgoing terms.(
dN

dt

)
out

= −
∑
s

ψ†Σsψ − ψ†Σ†sψ
i

(6.55)

=
∑
s

ψ†Γsψ, (6.56)

which is clearly the sum of contributions leaving through each lead. Summing

over all states(
dN

dt

)
total out through s

=
∑
α

fαψ
†
αΓsψα (6.57)

=

∫
dω

2π
2πδ(ω − Eα)fαψ

†
αΓsψα (6.58)

=

∫
dω

2π
TrG<Γs. (6.59)

Thus the net current through any particular lead is

Is = 2q

∫
dω

2π
Tr
[
Σ<s A− ΓsG

<
]
. (6.60)

A.3. Linear Response

To arrive at the equation we started the lecture with, we use

A =
∑
s

GΓsG
† (6.61)

G< =
∑
s

fsGΓsG
† (6.62)
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first write

Is
2q

=

∫
dω

2π
Tr
[
Σ<s A− ΓsG

<
]

(6.63)

=

∫
dω

2π
Tr
∑
s′

[
Σ<s GΓs′ − ΓsGΣ<s′G

†] (6.64)

=

∫
dω

2π
Tr
∑
s′

[
(fs − fs′)ΓsGΓs′G

†] . (6.65)

But fs − f ′s is zero except near the Fermi surface. We can thus take everything

else out of the integral, evaluating them at the Fermi energy, and arrive at

Is
2q

=
∑
s′

Tr[ΓsGΓs′G
†]

∫
dω

2π
(fs − fs′) (6.66)

=
∑
s′

Tr[ΓsGΓs′G
†]
Vs − Vs′

2π
, (6.67)

which, up to a ~ that I left off somewhere, is the desired expression.

B. Currents/densities inside the device

We can calculate any single particle properties inside the devices from

G< =
∑
s

fsGΓsG
†. (6.68)

In particular, given any single particle operator X,

〈X〉 =

∫
dω

2π
TrG<X. (6.69)

In particular, if we want to calculate the deviation of 〈X〉 from its value in the

absence of transport, we would calculate

〈δX〉 =

∫
dω

2π
(fs − f0)TrGΓsG

†X. (6.70)

In linear response this is

〈δX〉 =
∑
s

Vs
2π

TrGΓsG
†X. (6.71)

where we evaluate the matrices at the Fermi level.

Perhaps the most useful quantity is the current. If our Hamiltonian is

H =
∑
ij

Hija
†
iaj , (6.72)
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then the net current flowing between site i and j is

Jij =
2q

~
Hija

†
iaj −Hjia

†
jai

i
, (6.73)

where the 2 is for spin.

C. Homework

Problem 6.3. Slick (but less transparent) derivation of Density Matrix

For this argument we will include the small complex shift so that

G =
1

ω −H − Σ + iη
. (6.74)

Thus

A = i(G−G†). (6.75)

The energy ω will be real, H will be Hermitian, but Σ will not. In particular

Γ = i(Σ− Σ†). (6.76)

6.3.1. Relate G−1 − (G†)−1 to Σ† and Σ.

Solution 6.3.1.

G−1 − (G†)−1 = Σ† − Σ. (6.77)

6.3.2. Use that result and Eq. (6.76) to relate G−1 − (G†)−1 to Γ.

Solution 6.3.2.

G−1 − (G†)−1 = iΓ. (6.78)

6.3.3. Show that

G
[
G−1 − (G†)−1

]
G† = G† −G. (6.79)

Solution 6.3.3. This is just multiplying.

6.3.4. Combine these results to relate A to Γ, G, and G†. This is the central

relationship which allows us to calculate the properties of this open system.

Solution 6.3.4. Equating these gives

A = GΓG† (6.80)

Problem 6.4. Consider a simple device consisting of a single site coupled to

two leads. We will take a0 to remove an electron from the site, aj>0 removes



CHAPTER 6. CALCULATING TRANSPORT FROM GREENS FUNCTIONS – FEB 9, 201868

an electron from sites in the right-lead, and aj<0 removes an electron from the

left lead. We will ignore spin.

Lets take

H0 = 0 (6.81)

ΛL = −λa†0a−1 (6.82)

ΛR = −λa†0a1 (6.83)

HL =

−1∑
j=−∞

−t(a†jaj−1 + a†j−1aj) (6.84)

HR =

∞∑
j=1

−t(a†jaj−+ + a†j+1aj) (6.85)

(6.86)

Note t 6= λ. The strength of the coupling to the leads is different from the

strength of the hopping in the leads.

6.4.1. Find G(ω), the 1 × 1 matrix representing the Greens function for the

single site. Feel free to use results we derived in class.

Solution 6.4.1.

G =
1

E −H0 − ΣL − ΣR
(6.87)

=
1

E − λ2

t

[
E
t +

√(
E
t

)2 − 4

] (6.88)

=
1(

1− λ2

t2

)
E + λ2

t

√(
E
t

)2 − 4
(6.89)

6.4.2. Take t = 1. Plot the spectral density A(ω) as a function of ω for the

cases λ = 0.01, λ = 0.1, λ = 1, λ = 10.
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Solution 6.4.2. Taking just the part between E = −2 and E = 2 we have:

-2 -1 1 2
E

102

10-2

10-4

10-6

10-8

A

λ=0.01

λ=0.1

λ=1

λ=10

For λ � 1 this is essentially just a Lorentzian, with width 2λ2. When λ � 1

it crosses over to a semicircle A→
√

4− E2/λ2.

It turns out that there is also spectral weight outside of this region: For

λ > 1/
√

2 the Greens function has poles at E = ±2λ2/
√

2λ2 − 1. These are

bound states, which do not contribute to transport.

6.4.3. Assuming that the chemical potential of the left lead is µL = µ + qV/2

and the right lead is µR = µ− qV/2, find G<.

Solution 6.4.3.

G< = G(fLΓL + fRΓR)G† (6.90)

=

λ2

2t

√
4−

(
E
t

)2(
1− λ2

t

)2
E2 +

(
λ2

t2

)2 (
4−

(
E
t

)2) [θ(µL − E) + θ(µR − E)]

=

λ2

2t2

√
4−

(
E
t

)2(
1− 2λ

2

t

)
E2 + 4

(
λ2

t

)2 [θ(µL − E) + θ(µR − E)]

6.4.4. Take µ = 0 and plot the current as a function of V for λ = 0.1.
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Solution 6.4.4. Looks like I forgot to ask for an expression for the current

before asking to plot it.

Regardless, the current from the left lead to the right lead is (setting t = 1)

J = q

∫
dE

2π
(fL − fR)ΓLGΓRG

† (6.91)

= q

∫ µ+V/2

µ−V/2

dE

2π
ΓLGΓRG

† (6.92)

= q

∫ µ+V/2

µ−V/2

dE

2π
Γ2
L|G|2. (6.93)

We then use

G2 =
1

(1− 2λ2)E2 + 4λ4
(6.94)

ΓL = λ2
√

4− E2 (6.95)

to get

J = q

∫ µ+qV/2

µ−qV/2

dE

2π
λ4 4− E2

(1− 2λ2)E2 + 4λ4
(6.96)

Which can be done analytically. In particular, setting µ = 0 we get

J =
2

π
qλ3

[
1− λ2

1− 2λ2)3/2
arctan

(
qV
√

1− 2λ2

4λ

)
− qV λ

4(1− 2λ2)

]
. (6.97)

Taking λ = 0.1 we get

-4 -2 2 4
qV

-0.0005

0.0005

J/q

Note that the current saturates when all the left-moving states are filled, and

all of the right-moving states are empty.
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6.4.5. Find an expression for the current as a function of µ and λ, in the linear

response regime where V is small.

Solution 6.4.5.

J =
q2V

2π
λ4 4− µ2

µ2(1− 2λ2) + 4λ4
(6.98)

When λ→ 1 this becomes the Landauer result

J → q2V

2π
(6.99)

6.4.6. Take V = 0, t = 1. Find an expression for the number of particles on the

dot as a function of µ and λ. This will take the form of an integral which one

cannot do in closed form. [Actually that was a lie – it is an elementary integral.]

Solution 6.4.6. It turns out we can actually do the integral analytically. The

expression I was originally looking for is just:

n =

∫ µ

−2

dE

2π

2λ2
√

4− E2

(1− 2λ2)E + 4λ4
. (6.100)

We can convert the integrand to a ratio of polynomials by the transformation

E = (z + 1/z). The integral can then be done by a partial fraction expan-

sion – which gives the sum of three logs. Alternatively, you can type it into

Mathematica, which gives

n =
1

π

(1− λ2) arctan

(
µ√

4−µ2

1−λ2

λ2

)
− λ2 arctan

(
µ

4−µ2

)
1− 2λ2

+
1

2
. (6.101)

This can simplify a little bit if you write it in terms of arcsin(λ), but I will

spare you the arithmetic.

6.4.7. Plot the number of particles as a function of µ from question 6.4.6 for

the case λ = 0.1.
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Solution 6.4.7. -2 -1 0 1 2
μ

0.2

0.4

0.6

0.8

1.0
n



Chapter 7

Calculating Transport

Using Python/Kwant

This chapter is out of sequence. I have to be out of town, and we will make it

up with a computer lab. Date TBD
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Chapter 8

Revisit – Feb 16, 2018

A. Concrete Example

As a concrete example, lets consider the transport through a clean 1D wire. We

already know the answer to this one – we did it in lecture 1. We will, however,

now approach it using greens functions. Lets take the system to be a single site,

and the leads to be 1D chains extending to each side.

B. Greens functions

The Greens function for the first site of each lead is

GL = GR =
1

J

[
E

2J
+

√
E2

4J2
− 1

]
. (8.1)

Physically, these Greens functions tell you about the response of the lead to a

perturbation where you try to tunnel in a particle at that first site. The spectral

densities, which count states are

AL = AR =
1

J

√
4− E2

J2
. (8.2)
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The Greens function for the site is

G =
1

E −H0 − Σ
(8.3)

=
1

E − Σ
(8.4)

=
1

E − J2(GL +GR)
(8.5)

=
−1√

E2 − 4J2
(8.6)

=
i√

4J2 − E2
(8.7)

Here we used that

ΣL = J2GL. (8.8)

Following the order of last lecture, suppose we want to know the density on

the site of interest. To calculate this density we first calculate

G<(E) =
∑
j

fj |ψj |22πδ(E − Ej) (8.9)

where the sum is over all eigenstates of the entire system. The coefficient ψj is

the amplitude that this wavefunction is on the device site. the coefficient fj is

the probability that the state is occupied.

The density is then

n =

∫
dE

2π
G<(E). (8.10)

To calculate G<(E), we begin by noting that

G−1 − (G†)−1 = Σ† − Σ = iΓ. (8.11)

Thus

G[G−1 − (G†)−1]G† = iGΓG† (8.12)

But this expression is also

G[G−1 − (G†)−1]G† = G† −G = iA. (8.13)

Thus

A = GΓG†. (8.14)

The contribution to A from the states in the left lead is

Afromleft = GΓLG
†. (8.15)
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The contribution to A from the states in the right lead is

Afromright = GΓRG
†. (8.16)

Thus the we should have

G< = fLGΓLG
† + fRGΓRG

†. (8.17)

If we take a zero-temperature model

G<(E) = θ(µL − E)
i√

4J2 − E2
J

√
1

4
− E2

J2

−i√
4J2 − E2

(8.18)

+θ(µR − E)
i√

4J2 − E2
J2

√
1

4
− E2

J2
frac−i

√
4J2 − E2(8.19)

=
1

2
[θ(µL − E) + θ(µR − E)]

1√
4J2 − E2

. (8.20)

The number of particles is then

n =
1

π

[∫ µL

−2J

dE√
4J2 − E2

+

∫ µL

−2J

dE√
4J2 − E2

]
(8.21)

=
1

π

[
arctan

µL√
4J2 − µ2

L

+ arctan
µR√

4J2 − µ2
R

]
. (8.22)

This is just the density of particles coming from the left plus the density of

particles coming from the right.

C. wavefunctinos

Last day we had an involved discussion, which started from noting that a general

eigenstate incident from the left lead can be written

|ψ〉 = GΛL|φ0〉 (8.23)

|φL〉 = |φ0〉+GLΛ†L|ψ〉 (8.24)

|φR〉 = GRΛ†R|ψ〉. (8.25)

It is useful to think of how that works here. A generic state of the isolated left

lead is

ψ
(0)
j =

1√
L

sin(kj) j¡0 (8.26)

But the dispersion is

E = −J cos(k). (8.27)

Thus

G ∝ 1

sin(k)
(8.28)

is exactly the right thing to produce 1/
√
L.
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D. currents

Next we want to calculate the currents. The operator which corresponds to the

current incident from the left is

JL =
q

~
Λ†L − ΛL

i
(8.29)

ΛL = −Ja†0a−1. (8.30)

Thus the total current incident from the left is

〈JL〉 =
q

~
∑
j

fj
−J(φ∗jψj − ψ∗jφj)

i
, (8.31)

=
q

~
∑
j

fj
−J((φ0

j )
∗ψj − (ψ0

j )∗φj)

i
, (8.32)

+
q

~
∑
j

fj
−J((χj)

∗ψj − (χj)
∗φj)

i
,

where φj is the amplitude for the j’th wavefunction to be on the site −1 and

ψj is the corresponding amplitude to be on the site 0.

We can divide this current into two parts – one corresponding to states which

are incident from the left, and one corresponding to states which are incident

from the right. The incident from the left has two contributions

〈JL〉infromleft =
q

~

∫
dE

2π
fL(E)

∑
j

2πδ(E − Ej)
1

i

[
〈φj |Λ†L|ψj〉 − 〈ψj |ΛL|φj〉

]
=

q

~

∫
dE

2π
fL(E)

∑
j

2πδ(E − Ej)
1

i
(8.33)

×
[
〈φj |Λ†LGΛL|φj〉 − 〈φ0

j |Λ
†
LG
†ΛL|φ0

j 〉
]

(8.34)

=
q

~

∫
dE

2π
fL(E)

∑
j

2πδ(E − Ej)〈φj |Λ†LAΛL|φ〉 (8.35)

=
q

~

∫
dE

2π
fL(E)TrΣL(E)A(E). (8.36)

Where we used

|ψ〉 = GΛ1|φ0〉. (8.37)
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The contribution from the right is

〈JL〉fromright =
q

~

∫
dE

2π
fR(E)

∑
j

2πδ(E − Ej)
1

i

[
〈φj |Λ†L|ψj〉 − 〈ψj |ΛL|φj〉

]
(8.38)

=
q

~

∫
dE

2π
fR(E)

∑
j

2πδ(E − Ej)
1

i

[
〈ψj |ΛLG†LΛ†L|ψj〉 − 〈ψj |ΛLGLΛ†1|ψj〉

]
= − q

~

∫
dE

2π
fR(E)

∑
j

2πδ(E − Ej)〈ψj |ΓL|ψj〉 (8.39)

where we used

|φ〉 = GLΛ†L|ψ〉. (8.40)

and

ΓL =
1

i
(Σ†L − ΣL) =

1

L
ΛL(G†L −GL)ΛL (8.41)

Again this can be taken to be a trace

〈JL〉fromright = − q
~

∫
dE

2π
fR(E)TrΓLGΓRG

† (8.42)

The backscattering contribution is the same but with R replaced by L. The net

result is

〈JL〉 =
q

~

∫
dE

2π
(fL(E)− fR(E))TrΓLGΓRG

† (8.43)



Chapter 9

Scattering

We did not get to this in class, but I wanted to briefly mention it. Inelastic

scatterers can be added by a small change to our expressions. The Greens

function will be ∑
j

(Eδij −Hij − Σij(E))Gjk(E) = δik, (9.1)

where Σ(E) has contributions from each of the leads, and also a contribution

from scatterers. The simplest model for quasi-elastic scattering would be

(Σscatt)ij(E) = δijDiGii(E), (9.2)

where Di encodes the strength of the scattering at site i. Similarly, we would

define

(Σscatt)
<
ij(E) = δijDiG

<
ii(E). (9.3)

The correlation function then follows the standard expression

G<(ω) = G(ω)

[
Σscatt)

< +
∑
s

Σ<s (ω)

]
G†(ω). (9.4)

Now G< appears on both sides. The equation, however, is still linear, so can be

easily solved.

The current through lead s is

Js =
q

~

∫
dE

2π
Tr
[
Σ<s (E)A(E)− Γs(E)G<(E)

]
. (9.5)
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A. Derivation

To derive Eq. 9.2 it is convenient to first redefine the Greens functions as Fourier

transforms such as

G(ω) =

∫
d(t− t′)G(t, t′). (9.6)

We then define the two-time functions via

Gij(t, t
′) =

1

i
θ(t− t′)〈ai(t)a†j(t

′) + a†j(t
′)ai(t)〉 (9.7)

G<ij(t, t
′) = 〈a†j(t

′)ai(t)〉. (9.8)

One can readily verify that in the case where everything is coherent, these

definitions are equivalent to the ones we have previously used. To model local

inelastic impurities we add a bunch of Harmonic oscillators which couple to the

density on a given site, H = H0 + H̃ with H̃ =
∑
j H̃j

H̃j =
∑
q

ωqc
†
qcq + λq(c

†
q + cq)a

†
jaj , (9.9)

where the c′s and λ’s differ from site to site. At this point one can work either

with diagrams or equations of motion. The former is a bit more transparent,

but requires a bit more background. Thus we follow the second tack.

The equations of motion for the field operators read

(i∂t −H0)aj −
∑
q

λq(c
†
q + cq)aj = 0, (9.10)

which yields equations for the correlation functions

i∂t〈a†i (t
′)aj(t)〉 −

∑
k

(H0)jk〈a†i (t
′)ak(t)〉 −

∑
q

λq〈a†i (t
′)(c†q(t) + cq(t))aj(t)〉 = 0.

(9.11)

One then inspects the equation of motion for cq, finding,

i∂tcq = ωqcq + λqa
†
jaj (9.12)

i∂tc
†
q = −ωqc†q − λqa

†
jaj . (9.13)

We introduce a Greens function

Gq(t) =
1

i
θ(t)e−iωqt, (9.14)

with Fourier transform

Gq(ω) =
1

ω − ωq
, (9.15)
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so that

cq(t) = λq

∫
dt̄Gq(t− t̄)a†j(t̄)aj(t̄). (9.16)

Similarly

c†q(t) = λq

∫
dt̄Ḡq(t− t̄)a†j(t̄)aj(t̄). (9.17)

where

Ḡq(t) =
−1

i
θ(t)eiωqt, (9.18)

with Fourier transform

Ḡq(ω) =
1

−ω − ωq
. (9.19)

To keep the notation clean, we define

Wq = Gq + Ḡq, (9.20)

Allowing us to write

〈a†i (t
′)(cq(t) + c†q(t)aj(t)〉 =

∫
dt̄Wq(t− t̄)〈a†i (t

′)a†j(t̄)aj(t̄)aj(t)〉. (9.21)

We then make a ”Hartree” approximation,

〈a†i (t
′)a†j(t̄)aj(t̄)aj(t)〉 ≈ 〈a

†
i (t
′)aj(t̄)〉〈a†j(t̄)aj(t)〉. (9.22)

Substituting back into Eq. (9.11) yields∑
k

[
i∂t〈δjk − (H0)jk −

∫
dt̄Σik(t− t̄)〈a†i (t

′)ak(t)〉
]

= 0 (9.23)

with

Σik(t) = δik
∑
q

λ2
qWq(t)〈a†i (0)ai(t)〉. (9.24)

In Fourier space

Σik(ω) = δik

∫
dν

2π

∑
q

λ2
qWq(ν)Gii(ω − ν). (9.25)

We now take the limit that the spectral density of the scatterer is sharply peaked

about ν = 0, to find

Σik(ω) = δikDiGii(ω − ν). (9.26)

In a diagramatic approach this amounts to summing all “rainbow” diagrams.
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Mean Free Path

Our model for impurities corresponds to a mean-free time

τ =
1

Γ
=

1

ImΣ
. (9.27)

This corresponds to

τ =
1

Diρ(E)
(9.28)

where ρ(E) is the density of states.

B. Interactions

Interactions can be included by adding the appropriate self-energies. The dif-

ficulty is that generically the self-energies then become integrals over energy of

products of G’s. Thus Eq. (9.1) becomes a nonlinear integral equation. There

is a very nice textbook by Kadanoff and Baym, which shows that in some limit

this equation can be interpreted as a Boltzmann equation. I highly recommend

turning there for details.


