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Goals

1.Describe Phase Diagram

2.Describe Data

3.Explain how we analyze data (and why)

4.Discuss Accuracy

Take home message:

Many of our observations impact other OLE projects



Phase Diagram
Exact: 1D fermions with attractive point interactions 
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Alternative variables
Shown at Initial DARPA Meeting -- Also discussed by Bolech at last meeting
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Alternative variables
Shown at Initial DARPA Meeting -- Also discussed by Bolech at last meeting
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Measured by spatially resolving cloud
µ = µ0 − V (r)

Value at phase boundary is unique
function of “h”



Extracting Phase 
Diagram

Basic Idea:

Spatially resolve 
phase boundary

Measure relevant 
variables on 
boundary



Extracting 3D densities

Empirical Fit to 2D data

Inverse Abel transform 
fit

n↓ = a− br2 − cz2

n↑ − n↓ = a′ − b′r2 − c′z2
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Observations
1.Non-equilibrium distribution between tubes

Explored as function of lattice turn-on

Important for ALL OLE projects

Makes finding phase diagram harder

2.Equilibrium distribution in each tube

3.Ratios of compressibilities matches theory

4.Generated Phase Diagram 

5.Unresolved factor of 2.5  



Non-equilibrium

n↑ − n↓n↓

Column Density n↑ − n↓

n↓

Boundary is nontrivial



Extra Trick (Boosts signal-to-noise)

Two of our three phases are “trivial”

Phase boundary: equation of state of “trivial” phase
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Alternative variables
Shown at Initial DARPA Meeting -- Also discussed by Bolech at last meeting
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state of pairs
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state of up-spins



Approach
2D Densities

2D model

Reconstructed 3D density
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Result
Assumes νz = 42Hz

νz = 241HzActual

Fit works best away from critical polarization:
throw away medium polarization data

Factor of 2.5 discrepancy in cloud size!!!

Ratio of compressibilities
of paired and polarized states
matches theory



Sources of Errors

Temperature

Inter-tube coupling

3D nature of bound state

Non-equilibrium distribution

Finite size effects

Major focus of theoretical efforts

All should be below the 10% threshold



3D bound states

If bound state smaller than channel size:
     not describable in terms of 1D fermions

At unitarity, bound state is large

Strong coupling theory is same

Non-problem:



Strong-coupling theory

Tonks gas of Bosons (pairs)
Ideal fermi gas
(excess up-spins)

Bose-Fermi interactions

Baur, Shumway, Mueller, arXiv:0902.4653

Perfect transmission: but phase shift of π

rbf

Ψ

E =
!2π2

12m
n3
↓ +

!2π2

6m
(n↑ − n↓)3

Finite T theory is trivial

correlation functions: Jordan-Wigner

Zhao, Guan, Liu, Batchelor, Oshikawa



Finite T

Analytic strong-coupling theory agrees with this

T/TF=0.176
T/TF=0.088
T/TF=0.044
T/TF=0.036
T/TF=0.029
T/TF=0.022

Temp not problem if T<0.05 Tf

Casula,  Ceperley,  Mueller,  
Phys. Rev. A 78, 033607 (2008)

Kakashvili, Bolech,  
Phys. Rev. A 79, 041603 (2009)

state at the edges; while for large polarizations !P=26% and
P=48% plots", the FFLO-like state in the trap center coexists
with a fully polarized normal state at the edges. Close to the
“critical point” !P=15% plots", the entire trap is in the
FFLO-like state. The interface between different phases in
the trap is marked by a kink feature in the local particle
density !or polarization" profiles at zero temperature, which
is smeared out by thermal fluctuations. From Fig. 2 we see
that while for cases with large total polarization the phase
boundary is still visible at T=0.06#!↑F$ !here !↑F is the non-
interacting Fermi energy for the majority species", for small
polarizations temperature should be even smaller to observe
the kink. From the local polarization profiles, we see that in
the fully polarized state temperature induces bound pairs,
while in the fully paired state unpaired particles appear.

We propose here a scheme to identify the low-temperature
phase diagram of the uniform system from trap profiles of
the local particle density and polarization. To achieve that
aim we represent the phase diagram in variables that can be
measured directly in the experiments. We argue that nt!z" and
the majority-spin local chemical potential !↑!z"=!!z"+h can

be straightforwardly measured, and thus, a phase diagram in
these variables should be directly useful to analyze experi-
mental findings. In these variables, the phase diagram of the
uniform system !see Fig. 1, which has been calculated by
numerically solving the TBA equations at a vanishingly
small temperature" shows three different states: the BCS-like
fully paired state with zero polarization !1DSC", the FFLO-
like state with nonzero polarization !1DFFLO", and the fully
polarized normal state which has collapsed into a curve !cf.
Fig. 1 in Ref. #12$". Plotting the local particle density and
polarization profiles as functions of !↑ will reconstruct the
uniform-system phase diagram and probe into the 1DFFLO
state. To elucidate the scheme we consider a trap profile with
the total polarization P=48% !triangles on Fig. 1". In this
regime, the 1DFFLO phase in the trap center coexists with
the fully polarized region at the edges !see Fig. 2". In the
framework of the local-density approximation, the radius of
the cloud is given by R=%!0+h and thus one can easily find
!!z"+h=R2−z2. Thus, the trap profile can be uniquely
placed on the phase diagram !see Fig. 1". The above identi-
fication is valid for clouds with fully polarized wings and
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FIG. 2. !Color online" Trap density profiles for N=200, T=0,0.06,0.12#!↑F$ !dashed, solid, and dotted, respectively", and different total
polarization P. The first column shows spin-up !n↑, solid" and spin-down !n↓, dashed" particle densities and their difference !ns, dotted" for
"=25 and T=0 only !in good agreement with Ref. #13$". The second column shows the local particle densities !nt" for "=25,100 and
different temperatures. The third column shows the respective local polarizations !p". The nt and p plots for "=25 are vertically offset for
clarity.

PAIRED STATES IN SPIN-IMBALANCED ATOMIC FERMI… PHYSICAL REVIEW A 79, 041603!R" !2009"
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Adiabatic Cooling/Heating
Start cold enough, get cooling
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Inter-tube coupling

Zhao and Liu,  
Phys. Rev. A 78, 063605 (2008)
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FIG. 1: The ratio u1/u2 as function of γ for p = 0.2.

square lattice array of such tubes coupled by transverse
hopping t⊥. We are interested in the fate of the 1D FFLO
phase as the t⊥ is turned on.

In the limit of small t⊥, we can treat H⊥ and HJ as
perturbations to the individual 1D Hamiltonian HFFLO.
In the language of renormalization group (RG), both H⊥

and HJ are relevant perturbations: the scaling dimen-
sions of the single particle and pair tunneling are both
smaller than 2. The first-order RG equations for the ef-
fective inter-tube couplings t⊥(κ) and J(κ) at momentum
scale κ (with κ → 0) read:

κdt⊥(κ)/dκ = (2δ↑ − 2)t⊥(κ),
κdJ(κ)/dκ = (2δ∆ − 2)J(κ),

(18)

where the equation of t⊥ is for the spin ↑ tunneling (as
we have emphasized before, it is more relevant than the
spin ↓). In other words, the fate of the 1D FFLO phase
is controlled by the relative magnitude δ↑ and δ∆ [17].
For δ∆ < δ↑, pair tunneling is most relevant and the
system flows into a quasi-1D FFLO state. In this state,
strong effective Josephson coupling locks the phases of all
tubes to establish the overall phase coherence to produce
a genuine superfluid state. For δ∆ > δ↑, however, single
particle tunneling is most relevant and the system flows
into a partially polarized Fermi liquid (FL) state with
well defined quasiparticles. In the latter case, the actual
ground state of the quasi-1D system at zero temperature
depends on the residue interactions between quasiparti-
cles, the details of which are not captured by the leading
order RG analysis presented here [17]. Such limited pre-
dictive power is inherent to all leading order RG analysis
on coupled Luttinger liquids. Therefore, the Fermi liquid
state predicted here should be understood as a region in
the phase diagram where the superfluid transition tem-
perature is significantly suppressed by the weakening of
effective intertube Josephson coupling. It is important
to bear in mind that other instabilities may take over at
lower temperatures leading to a ground state with broken
symmetry.
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FIG. 2: Zero temperature phase diagram of a quasi-1D at-
tractive Fermi gas in the limit of weak inter-tube tunneling.
γ is the interaction strength of the Gaudin-Yang model and
p is the population imbalance.

The T = 0 phase diagram of the quasi-1D gas system
based on leading order RG is shown in Fig. 2. It is ob-
tained by going through the steps outlined in Sec.IVB
and taking the continuum limit, a → 0, for fixed parti-
cle numbers and system length L [see Eq. (3)]. As the
intertube tunneling is turned on, the 1D FFLO phase
(originally occupying the whole region 0 < p < 1 for all
γ) splits into two distinct phases, an FFLO superfluid
and a polarized Fermi liquid (FL). Intuitively, stronger
attractive interaction (larger γ) favors the FFLO phase.
From Fig. 2, one can read off the critical interaction
strength required to realize the quasi-1D FFLO state for
given p. For fixed interaction γ, increasing imbalance
would drive the system out of FFLO into a Fermi liquid
phase. A crucial feature of the phase diagram is that the
FFLO phase survives in a smaller region in quasi-1D than
true 1D (single tube). This shrinking trend observed at
t⊥ → 0 is expected to continue as t⊥ increases, since we
know that FFLO state in 3D only occupies a tiny part
of the phase diagram [8]. Fig. 3 shows T = 0 phase di-
agram of the quasi-1D attractive Hubbard model in the
limit of t⊥ → 0. We observe a similar splitting of the
1D FFLO phase. Ref. 37 also discussed the phases of
weakly coupled Hubbard chains in the presence of finite
spin polarization, close in spirit with ours. While our
main focus here is the continuous gas systems (without
lattice in the x direction), our result of quasi-1D Hubbard
model (Figure 3) agrees with Ref. 37.

VII. THE TRANSITION TEMPERATURE OF
QUASI-1D FFLO STATE

In this section, we use the random phase approxima-
tion (RPA) [16, 40, 41] to compute the FFLO superfluid
transition temperature Tc for the quasi-1D system with

Finite coupling continuously connected to decoupled limit

Parish, Baur, Mueller, Huse 
Phys. Rev. Lett. 99, 250403 (2007)
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FIG. 2: (Color online) Slice of the mean-field phase diagram
taken at t/εB = 0.08. The phases shown include the unpo-
larized superfluid (SF), partially-polarized normal (N), and
fully-polarized normal (NP). The FFLO phase is divided into
gapped ‘commensurate’ (C) and ungapped ‘incommensurate’
(IC) phases. The filled circle marks the tricritical point; near
it, but not visible here is a tiny region of SFM magnetized
superfluid phase, a remnant of the 3D BEC regime. The SF-
NP and SF-N transitions are first-order for µ/εB above the
tricritical point, along the solid heavy line. The SF-FFLO
transition (solid line) is estimated from the domain wall calcu-
lation. The transition from FFLO to normal (dotted-dashed
line) is assumed to be second-order. The large circle marks
the region of FFLO where ∆/εF is largest, so the phase is
likely to be most robust to T > 0 here. The dashed line near
the SF-FFLO transition shows where the wave vector of the
FFLO state is stationary as a function of µ: dq/dµ = 0 (this
is calculated using the FF approximation).

generally, ∆(z) is a real periodic function of z. When the
coherence length ξ is small compared to 1/q, this state
consists of well-separated domain walls between domains
where ∆ is alternately positive and negative. The polar-
ized cores of these domain walls result from occupying
the spin-up Andreev bound states on each wall [21].

We calculate the energy of a single domain wall by it-
erating to self-consistency Eq. (5) in a finite box with pe-
riodic boundary conditions, beginning with a trial ∆(z)
containing two domain walls whose separation is large
compared to the coherence length. If the domain walls
interact repulsively, the SF to FFLO transition is con-
tinuous and lies where this domain wall energy vanishes;
otherwise this condition marks the spinodal of a first-
order transition (likely to be near the true phase bound-
ary). Within mean field theory the transition is contin-
uous in 1D [22], and has been argued to be so in 3D
[21, 23, 24]: in weak coupling the critical fields are re-
spectively h = (2/π)∆0(= 0.64∆0), and 0.67∆0, where
∆0 is the gap in the SF phase. We are unaware of a
strong coupling 3D calculation of the sign of the domain
wall interaction.

Fig. 2 shows a representative slice of the mean-field
phase diagram at fixed t/εB = 0.08 (if one can neglect
the spatial variation of εB and t, this slice corresponds
to a fixed optical lattice intensity). Near the vacuum at
small filling (low µ) is the 3D BEC regime, including a
very small region of the SFM magnetized superfluid phase
where the excess fermions form a Fermi liquid within the
BEC. As µ and thus the filling is increased, the system
crosses over towards 1D. Here, the FFLO phase appears
and occupies a large portion of the phase diagram [25].
Both the SF and FFLO phases become re-entrant: in the
1D regime the FFLO phase is at a higher µ and thus a
higher density than SF, while in the 3D regime this den-
sity relation is reversed. Thus, we see that the “inverted”
phase separation in 1D trapped gases is connected to
the standard phase separation of 3D via an intermedi-
ate pattern of phases where SF forms a shell surrounded
by polarized phases. As t/εB is further reduced, the 3D
regime becomes smaller, with the re-entrance of the SF
phase moving to lower µ, while the FFLO phase grows
and the sliver of N phase between FFLO and NP is di-
minished. In the limit t = 0 this phase diagram matches
fairly well to that obtained from the exact solution in
1D (e.g., Fig. 1 of Ref. [11]). The main feature that the
mean-field approximation misses at t = 0 is the multi-
critical point where the four phases, SF, FFLO, NP and
vacuum, all meet at h = −µ = εB/2. In mean-field the-
ory, the FFLO phase never extends all the way down
to zero density; instead it is preempted by a first-order
SF-to-NP transition.

A new T = 0 phase transition occurs within the FFLO
phase as one moves from 3D to 1D by increasing the
intensity of the 2D optical lattice. In 3D the FFLO state
has a Fermi surface, and is therefore gapless. In 1D the
spectrum of BdG quasiparticles is fully gapped in the
FFLO state. The gapped, commensurate FFLO state
(FFLO-C) contains exactly one excess spin-up atom per
1D tube per domain wall. This commensurability means
that q = πb2(n↑ − n↓), while, by contrast, the number of
excess up spins in the ungapped, incommensurate FFLO
state (FFLO-IC) is not constrained.

The transition between FFLO-C and FFLO-IC can
be understood from the band structure of the Andreev
bound states on the domain walls. In FFLO-C the chem-
ical potential lies in a gap in the quasiparticle spectrum.
Thus, the superfluid FFLO-C phase is a band insulator
for the relative motion of the unpaired atoms and the
condensate of pairs. As the optical lattice intensity is
decreased, the 3D bands broaden and may overlap the
chemical potential, opening up a Fermi surface. We ap-
proximate the IC-C transition within the FF ansatz by
examining the kz > 0 half of the Fermi surface to see if
it is fully gapped. In the limit µ/t " 1, the transition
occurs when ∆ ∼ 8th/µ.

We now address the question of what are the best
conditions for experimentally producing, detecting and



Finite Size Effects
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Outlook

Find scale factor

investigate dimensional crossover

systematically study non-adiabaticity

BCS-BEC Crossover

(another phase diagram without an exact 
solution)




