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(Goals

1.Describe Phase Diagram
2.Describe Data

3. Explain how we analyze data (and why)

4.Discuss Accuracy

Take home message:

Many of our observations impact other OLE projects
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Alternative variables




2.0\

Measured by spatially resolving cloud
p=po—VI(r)

\ FFLO
Tt SF

Value at phase boundary is unique
function of “h”

Alternative variables




Extracting Phase
Diagram

% Basic |dea:

* Spatially resolve
phase boundary

% Measure relevant
variables on
boundary




Extracting 3D densities

* Empirical Fit to 2D data

nl:a—br2—cz2

ny —n, i e

% Inverse Abel transform
fit




Observations

1.Non-equilibrium distribution between tubes
¢ Explored as function of lattice turn-on
¢ |Important for ALL OLE projects
¢ Makes finding phase diagram harder
2.Equilibrium distribution in each tube
3. Ratios of compressibilities matches theory
4.Generated Phase Diagram

5.Unresolved factor of 2.5




Non-equilibrium

Column Density
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Boundary is nontrivial
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EXt ra Tr| C k (Boosts signal-to-noise)

Two of our three phases are “trivial”
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Phase boundary: equation of state of “trivial” phase 4
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Equation of

=l state of up-spins

Equation of
state of pairs

Alternative variables




Approach

2D Densities
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Fit works best away from critical polarization:

Res u H: throw away medium polarization data

Assumes UV, = 42Hz
Actual v =241z

Factor of 2.5 discrepancy in cloud size!!!

50F

Ratio of compressibilities
+ 1 of paired and polarized states
‘fi* 1 matches theory




Sources of Errors

Major focus of theoretical efforts

* Temperature

* Inter-tube coupling

* 3D nature of bound state

* Non-equilibrium distribution

% Finite size effects

All should be below the 10% threshold




3D bound states

If bound state smaller than channel size:
not describable in terms of 1D fermions

Non-problem:

At unitarity, bound state is large

Strong coupling theory is same




Strong-coupling theory
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|deal fermi gas
(excess up-spins)

om

Tonks gas of Bosons (pairs)

Bose-Fermi interactions

Perfect transmission: but phase shift of 1t

Y

Finite T theory is trivial

Tor correlation functions: Jordan-Wigner

Baur, Shumway, Mueller, arXiv:0902.4653

Zhao, Guan, Liu, Batchelor, Oshikawa




Finite T

Temp not problem if T<0.05 Tf
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Analytic strong-coupling theory agrees with this




Temperature vs. Entropy for 3D/1
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Adiabatic Cooling/Heating




Inter-tube coupling
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Fermi Liquid
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Zhao and Liu, Parish, Baur, Mueller, Huse
Phys. Rev. A 78, 063605 (2008) Phys. Rev. Lett. 99, 250403 (2007)

Finite coupling continuously connected to decoupled limit




Finite Size Effects

20 particles
g=2d/a=20

(very strong interactions)

9 pairs
2 unpaired fermions

Dots: Monte-Carlo

Lines: TF

Smeared out by interparticle spacing




Outlook

% Find scale factor B R Yy a— v E—

2 s—n(um™?)

* Investigate dimensional crossover
* systematically study non-adiabaticity

% BCS-BEC Crossover

* (another phase diagram without an exact
solution)







