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Outline: Ultracold Physics, Quantum
Simulators, and Quantum Simulations

@ Motivation and Themes
@ Ultracold Physics

@ Quantum Simulators for Outstanding Problems in
Condensed Matter Physics

@ What Can Quantum Simulations on Classical
Computers Offer?
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@ Need approximation methods already 1n single
particle quantum mechanics
+ Hydrogen atom
+ Perturbation Theory, Dyson series, Feynman diagrams
+ Sudden/Adiabatic approximations
+ Etc. etc.

@ Hilbert space of many body quantum mechanics
scales exponentially
+ L sites, spin-1/2 particles, dim(H)=2%



Quantum Mechanics 1s Hard

@ Need approximation methods already 1n single
particle quantum mechanics
+ Hydrogen atom
%+ Perturbation Theory, Dyson series, Feynman diagrams
+ Sudden/Adiabatic approximations
%+ Ltc. etc.

@ Hilbert space of many body quantum mechanics
scales exponentially
+ L sites, spin-1/2 particles, dim(H)=2
@ A Bug 1s a Feature?

#+ Feynman, 1982: Quantum computer to simulate physics
%+ Peter Shor’s algorithm, 1994: Factor large numbers



Feynman says...

If we suppose that we know all the physical laws perfectly, of course we don't have
to pay any attention to computers. It's interesting anyway to entertain oneself with
the idea that we've got something to learn about physical laws; and if I take a
relaxed view here (after all I'm here and not at home) I'll admit that we don't
understand everything. The first question is, What kind of computer are we going to
use to simulate physics? Computer theory has been developed to a point where it
realizes that it doesn't make any difference; when you get to a universal computer, it
doesn't matter how it's manufactured, how it's actually made. Therefore my
question is, Can physics be simulated by a universal computer?
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understand everything. The first question is, What kind of computer are we going to
use to simulate physics? Computer theory has been developed to a point where it
realizes that it doesn't make any difference; when you get to a universal computer, it
doesn't matter how it's manufactured, how it's actually made. Therefore my
question is, Can physics be simulated by a universal computer?

Now, what kind of physics are we going to imitate? First, I am going to describe
the possibility of simulating physics in the classical approximation, a thing which is
usually described by local differential equations. But the physical world 1s quantum
mechanical, and therefore the proper problem is the simulation of quantum
physics--which 1s what I really want to talk about, but I‘ll come to that later. So
what kind of simulation do I mean? There is, of course, a kind of approximate
simulation in which you design numerical algorithms for differential equations, and
then use the computer to compute these algorithms and get an approximate view of
what physics ought to do. That's an interesting subject, but 1s not what I want to
talk about. I want to talk about the possibility that there is to be an exact simulation,
that the computer will do exactly the same as nature.



Feynman adds...

The rule of simulation that I would like to have is that the number of computer
elements required to simulate a large physical system is only to be proportional to
the space-time volume of the physical system. I don't want to have an explosion.
That is, if you say I want to explain this much physics, I can do it exactly and I
need a certain-sized computer. If doubling the volume of space and time means I'll
need an exponentially larger computer, 1 consider that against the rules (I make up
the rules, I'm allowed to do that).
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The rule of simulation that I would like to have is that the number of computer
elements required to simulate a large physical system is only to be proportional to
the space-time volume of the physical system. I don't want to have an explosion.
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How do we think about this now?

@ Quantum simulator
+ More like an analog device
#+ An exact experimental realization of a quantum model
#+ Closer to Feynman’s 1dea

@ Quantum computer

+ More like a digital device
%+ Can perform arbitrary quantum computation
%+ Closer to Shor’s 1dea

@ Ultracold neutral atoms and molecules provide a
promising platform...
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Themes of Our Workshop

@ [: What are the key outstanding problems from
condensed matter physics which ultracold atoms
and molecules can address?

@ II: What new many-body aspects of ultracold
atoms and molecules require new techniques and
new perspectives, in comparison to “traditional”
solid state systems? What new insight can we
obtain 1nto 1ssues in fundamental quantum
mechanics and quantum information processing?
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@ [II: What are the main challenges for simulating
quantum systems and using ultracold atoms and
molecules for quantum information processing?
What new simulation techniques on classical
computers can be brought to bear on these
challenges?
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Themes

@ [II: What are the main challenges for simulating
quantum systems and using ultracold atoms and
molecules for quantum information processing?
What new simulation techniques on classical
computers can be brought to bear on these
challenges?

@ IV: What 1s the best way to perform a quantum
computation in ultracold atoms and molecules
with the approprate fidelity? How does one then
interrogate such a quantum simulation or “read
out” the answer from such a quantum computer?
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What are they made of?

H Periodic Table of the Elements ",
3 4 B hydrogen B poor metals 5 6 7 8 9 10
Be alkali metals B nonmetals B CIN]|O F | Ne
m > [ | alkali.e.arth metals B noble gases = ) BT s T m
Mg B transition metals M rare earth metals Al Si P S Ccl | Ar
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Ca|Sc|Ti |V [Cr|Mn|Fe |Co|Ni |CulZn|Ga|Ge]| As | Se| Br | Kr
37 38 39 40 41 42 43 44 45 46 47 48| 49 50 51 52 53 54
Sr|Y |Zr INb|Mo|Tc|Ru|[Rh|Pd |[Ag|Cd | In|Sn|Sb|Te| | [ Xe
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Bal|lLa|Hf |Ta|W | Re|Os| Ir [Pt | AulHg| Ti | Pb| Bi | Po| At | Rn
87 88 89 104 105 106 107 108| 109 10
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Ce| PrINd|Pm|Sm|Eu |Gd | Tb | Dy|Ho | Er | Tm|YDb | Lu
90 91 92 93 94 95 96 97 98 99| 100 101 102] 103
Th | Pa|l U [Np|Pu|Am|Cm|Bk | Cf |Es | Fm| Md| No|{ Lr
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Dilute Quantum Gases

High
Temperature T:
thermal velocity v
density d2
"Billiard balls"

Temperature T:
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AdB=h/mv o< T-12
"Wave packets"
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Pure Bose
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Truscott et al., Hulet Group, Science
291, 2570 (2001)
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Magnetic traps
Atom laser

BEC on a chip
Optical Lattices
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Internal States and Spin

@ Boson: 87Rb
+ =2, F=1

+ Vengalatorre et al.,
Stamper-Kurn
group, Phys. Rev.
Lett. 100, 170403

T=20 50 100 150 200 230ms 0 50 100 150 200 250ms
(2008) : :
. . Magnetic field [G]
@ Fermion: 6L1 792 833 852

+ F=3/2, F=1/2

+ Zwierlein et al.,
Ketterle group, 4
Nature 435,

1047 (2005)

07 0 0.25
<«— BEC Interaction parameter 1/k.a BCS —



Interatomic potential

Control of Interactions
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Quantum Phase Transitions

@ Optical Lattices
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A Laittle History...

1925 Bose-Einstein condensation proposed (Bose and
Einstein)

1995 BEC realized (Cornell and Wieman, Ketterle, Hulet)
1999 Quantum degenerate fermions realized (Deborah Jin)
2002 BEC in an Optical Lattice (Greiner and Bloch)

+ Dynamics of Quantum Phase Transition

2004 BCS-BEC Crossover (Jin, Grimm)
+ Turns over 20 years of many body theory

2006 imbalanced fermions (Ketterle, Hulet)

+ Never seen in solid state — hope to see FFLO soon...

2007 Single site imaging, CNOT gates (Weiss, Porto,
Bloch)

2008 Quantum Degenerate Cold Molecules (Jin and Ye,
Grimm)
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Outstanding problem in condensed
matter physics
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Can some or all of this behavior be reproduced by a simple model?



Hubbard Hamiltonian
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Hubbard Hamiltonian

@ Minimal Lattice Hamiltonian

fr=-t 3 @, +hep S,

<i,i'>,0

+ t = hopping/tunneling, does not change spin
+ U= on-site interaction

+ <1,1’> = nearest neighbor

+ O spin index
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Hubbard Hamiltonian

@ Minimal Lattice Hamiltonian

fr=-t 3 @, +hep S,

<i,i'>,0

+ t = hopping/tunneling, does not change spin
+ U= on-site interaction

%+ <1,1’> = nearest neighbor

% O spin index

@ Model in CM, First Principles for cold atoms



Sketch of Hubbard Hamiltonian Mathematics

Interaction

Sites

i=-1

Hopping

i=0 i=+I

Lowest Band
Approximation




ard Hamiltonian in Cold Atoms
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Early Fermi-Hubbard Data
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M. Kohl et al., Esslinger group, Phys. Rev. Lett. 94, 080403 (2005)
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Early Fermi-Hubbard Data
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M. Kohl et al., Esslinger group, Phys. Rev. Lett. 94, 080403 (2005)




Recent Fermi-Hubbard Data

A Metal:

U<E<12J
J>0 1 : : -
© |
= 0.5
0 . . ,
-50 0 50
delocalized atoms
B Mott-Insulator: U>»E;>12J
1 . . v .
205
<
(] N N 2
-50 0 50
localized atoms
C Band-Insulator: E;»12J, U

205} [ \ |
v
0 .
50 0 5

0
Distance from

trap center r (d)
R. Jordens et al., Esslinger group, Nature 455, 204 (2008)
U. Schneider et al., Bloch group, Science 322, 1520 (2008)

J=0

Moo= 0-1, p = 0-1

n0.0= 0.5, p - 0

n0,0= 10 p .1



Compressibility xz_(d?)

Recent Fermi-Hubbard Data 11

1 15 20
. T/T;
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0 ] — : 30 . - 2 -
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E,N2J E,/12J

Compressibility: A=non-interacting, B=Moderate Interactions,
C=Strong Interactions, D=Calculated; E,F = Density



Quantum Simulators of the (near) future



Quantum Simulators of the (near) future

@ 1D Physics — a good starting point
@ Spin models — alkali earth atoms, spin liquid

@ Interplay between interactions and disorder
+ Beyond Anderson Localization



Quantum Simulators of the (near) future

@ 1D Physics — a good starting point
@ Spin models — alkali earth atoms, spin liquid

@ Interplay between interactions and disorder
+ Beyond Anderson Localization

@ Topological phases — quantum computing



Quantum Simulators of the (near) future

@ 1D Physics — a good starting point
@ Spin models — alkali earth atoms, spin liquid

@ Interplay between interactions and disorder
+ Beyond Anderson Localization

@ Topological phases — quantum computing
@ Far-from-equilibrium dynamics



Quantum Simulators of the (near) future

@ 1D Physics — a good starting point
@ Spin models — alkali earth atoms, spin liquid

@ Interplay between interactions and disorder
+ Beyond Anderson Localization

@ Topological phases — quantum computing
@ Far-from-equilibrium dynamics



Quantum Simulators of the (near) future

@ 1D Physics — a good starting point
@ Spin models — alkali earth atoms, spin liquid

@ Interplay between interactions and disorder
+ Beyond Anderson Localization

@ Topological phases — quantum computing
@ Far-from-equilibrium dynamics

@ Recent reviews:
+ [ewenstein ef al., Adv. Phys. 56, 243 (2006)
+ Bloch et al., Rev. Mod. Phys. 80, 885 (2008)
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How can quantum simulations help?

@ Statics:
%+ Quantum Monte Carlo
+ Dynamical Mean Field Theory
+ Density Matrix Renormalization Group Methods

@ Dynamics
+ Projected Entangled Pair States (PEPS) and variations
#+ Vidal’s Time Evolving Block Decimation (TEBD) Algorithm

« Cut-off in entanglement, 1.e., Schmidt number
» % = # of non-zero eigenvalues in reduced density matrix
» Conserved under local unitary operations
 Algorithm scales as ~ L 3 d?
 Recall L sites, spin-1/2 particles, dim(H)=2".
» d = on-site dimension
» L = system size

- G Vidal, Phys. Rev. Lett. 91, 147902 (2003)



How can quantum simulations help?

@ Statics:
%+ Quantum Monte Carlo
+ Dynamical Mean Field Theory
+ Density Matrix Renormalization Group Methods
@ Dynamics
+ Projected Entangled Pair States (PEPS) and variations
#+ Vidal’s Time Evolving Block Decimation (TEBD) Algorithm

« Cut-off in entanglement, 1.e., Schmidt number
» % = # of non-zero eigenvalues in reduced density matrix
» Conserved under local unitary operations
 Algorithm scales as ~ L 3 d?
 Recall L sites, spin-1/2 particles, dim(H)=2".
» d = on-site dimension
» L = system size

- G Vidal, Phys. Rev. Lett. 91, 147902 (2003)

Is there a simple idea behind these new dynamical methods?



How much information 1s in a matrix?
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Show [imgArray]
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imgArray = Import["C:\Professional \Presentations \2009\Toronto2009\EntangledTurtle .jpg"];
Show [imgArray]




Singular Value Decomposition

@ An m x n matrix M can be factorized as
+ M=UZV'

%+ U 1s an m X m unitary matrix

+ > 1s an m x n diagonal matrix with non-negative real
numbers on the diagonal

+ VT is a conjugate transpose of n X n unitary matrix V

m Convert to lists

n5 = bb = imgArray /. Graphics -> List;

In

[6]:=

pixelvals =bb[[1l, 1]];

Dimensions [pixelvals]

Dimensions [pixelvals][[1l]] * Dimensions [pixelvals][[2]]



Turtle Singular Values Plot
= Find the Singular values and normalize them

In[7]= svlist = SingularValuelist [N[pixelvals]];

norm = svlist.svlist;

1
In[9]:= ListLogPlot[

SingularValueList[N[pixelvals]]]
Sgrt[norm]

Lk

0.1 %

0.001
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Approximate Turtle: x=1 singular value




Approximate Turtle: ¥=5 singular values




Approximate Turtle: ¥=10 singular values




Approximate Turtle: ¥=25 singular values




Approximate Turtle: ¥=50 singular values




Approximate Turtle: =100 singular values




Why does this work?

= Compare the singular value spectrum with that of a random pixel array

nie)= £[i_, 3_] := RandomReal [1];
randamp = Array[£, {Dimensions [pixelvals][[1l]], Dimensions [pixelvals][[2]]1}];
randsvlist = SingularValuelist [N[randamp]];

norm?2 = randsvlist .randsvlist;

ListLogPlot[

1 1
{ SingularValueList [N[pixelvals]], SingularValueList[N[randamp]]}]
Sgrt[norm] Sgrt[norm2]
83
0.1F%

Random Pixels

0.001

Image

50 100 150 200 250 300



Why does this work?

= Compare the singular value spectrum with that of a random pixel array

nie)= £[i_, 3_] := RandomReal [1];
randamp = Array[£, {Dimensions [pixelvals][[l]], Dimensions [pixelvals][[2]]1}];
randsvlist = SingularValuelist [N[randamp]];

norm?2 = randsvlist .randsvlist;

ListLogPlot[

1 1
{ SingularValueList [N[pixelvals]], SingularValueList[N[randamp]]}]
Sgrt[norm] Sgrt[norm2]

1f

0.1Fy

Random Pixels

—

. 0.01
Out[20]=

0.001

Image

TN I TN TN AN TN SN N TN SN N (NN SN NN (NN SO [N SR SN T SR N T S 4

50 100 150 200 250 300

Google “Open Source TEBD” to get our free code
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A New Plattform: Ultracold Molecules

@ Molecules at edge of quantum degeneracy

+ 87Rb-40K, JILA
%+ Absolute ground state

@ New “handles” compared to atoms

+ Dipole optical dipole trap Quantum gas of “0K®Rb
+ Rotational states

L. D. Carr, David DeMille,

Roman V. Krems, and Jun Ye, n
"Cold and Ultracold Molecules: oy %
Science, Technology, and homogeneous B field 3
Applications, Nro = 3x105 OecrQ
New J. Phys. 11, 055049 (2009) Nk = 1x105 Large molecule Ground-state
K=1X (Feshbach molecule) molecule
T=120 nK om0

See Lincoln Carr and Jun Ye, "Editorial: Focus on Cold and Ultracold Molecules,"
New J. Phys. 11, 055009 (2009)



Conclusions

@ Ultracold physics a new platform for quantum
simulators
+ High Tc as one example among many

@ Quantum simulations have new methods to follow
entangled dynamics
+ Many advances 1n static methods also

@ Quantum computing will be discussed 1n public
lecture...






PEPS scalings (from Ignacio Cirac)

e InlD
¢ Open boundary conditions (coincides with TEBD): ~L*d*y>  (S. White, 1991)
« Periodic boundary conditions: =~ L’d”y>  (Porras, Verstracte, and IC, 2005)
~L[’d’y> (Whiteetal, 2008)
e [n2D
« Open boundary conditions: = L°d’y "

¢ Periodic boundary conditions: = Ld*y"

e In3D =~Ld’y”

... and 1t is not easy to parallelize

Combine with Monte Carlo

(Schuch, Wolf, Verstraete,and IC, 2008)
(see also the work of Sandvik and Vidal)



Fermi Wedding Cake

2869
1690
8|45

“x N=
- A N
+

N

0.5

O

S

® L
Rales)

m

i mwnnn
222020202

_
N

1.5

uonednoas

12

Radius

Helmes, Costi, and Rosch, Phys. Rev. Lett. 100, 056403 (2008)



Compressibility: Definition and

DMEFET Calculations
1 OR 1 / ( o o ) ,On 3
R _ 222y 201 3
TR O 3N RS O
(J Et)-1/2

| | I

X
X

1/2U) -

22 =

12 J ui2 u



More Recent Fermi-Hubbard Data
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