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Setting

Hilbert space of N particles/spins/modes/qubits: exponentially big

Central question in QIT: what can | do more efficiently with N qubits
than with bits?

— IT tasks: Quantum Computing, Quantum Cryptography

— Physics tasks: Quantum Simulation (condensed matter systems,
quantum chemistry, ...)

Central theoretical problems (not mentioning experimental related
ones):

What are the minimal requirements to be able to do universal quantum
computation?

What is the role of entanglement?

Can coherence be preserved in arbitrary large systems for arbitrary long
times? (quantum fault tolerance)

What is the complexity of simulating quantum systems?

» What computational power would it give me if | could e.g. find the
ground state of a certain class of Hamiltonians




Topics

Hilbert space is a convenient illusion

Computational complexity of simulating strongly correlated quantum
systems

Entanglement structure of ground states of many-body Hamiltonians
on the lattice

Quantum circuits for simulating quantum Hamiltonians




Accessibility of full Hilbert space is an illusion

Size of Hilbert space of system of N particles / modes / ... scales exponentially with
N.

— What is the fraction of states that are physical, i.e. can be created as by a
quantum computer in a time that scales polynomially with the systems size?
Exponentially small : A quantum computer cannot explore the full Hilbert space
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— All physical states live on a tiny submanifold: this opens up the possibility of
parameterizing this corner in Hilbert space (opens door for variational methods)

Lots of work on random states: e.g. Popescu, Winter et al.: take a random state with
a given energy, and look at a small subsystem: looks like e—ﬂH




Quantum simulation from the computer science
point of view

 What is the computational complexity of finding ground states of
general local Hamiltonians (e.g. nearest neighbour interactions on a
square lattice)?

P: class of problems that can be
solved efficiently using classical
computer

BQP: class of problems that can be
solved efficiently using quantum
computer

NP: class of problems whose
solution can be checked efficiently
using classical computer

QMA: class of problems whose
solution can be checked efficiently
using quantum computer

« Kitaev/Aharonov/Kempe/Terhal/lrani/Gottesman/...: QMA-hard as a
function of N for local lattice Hamiltonians in any dimension!




 \What about reasonable Hamiltonians?

— Take e.g. the problem of estimating the ground state energy of a
system of N electrons interacting via the Coulomb force in an
external potential (input variables = external potential): QMA-hard

. L N. Schuch, FV ‘08
— Direct implications:

» An efficient specification of the universal density functional as used in
density functional theory would imply QMA=P

« Hubbard model with constant t and U but varying onsite magnetic
fields: QMA-complete

« Central problem in field of quantum chemistry: N-representability
— Is there a N-particle gtiantugn state compatible with the 2-particle

density operator (& &;8, &, ) ?

* Problem is intractable: QMA-complete!
Liu, Christandl, FV, PRL ‘07




« But: it is not because ground states are hard to find, that there is no simple
parameterization of them: they might have a very simple structure (cfr. Spin
glasses)

« Can we identify the corner in Hilbert space that corresponds to ground
states of local many-body quantum Hamiltonians?

— Is so: this would lead to a systematic way of coming up with variational

ansatze

« Cfr. some of the biggest breakthroughs in condensed matter physics
involved guessing the right wave function (BCS, Laughlin, ...)

— What is the structure of entanglement in those systems?




Entanglement structure of relevant states: Area laws

Quantifying the amount of correlations between A and B: mutual information

| e = S(pA)+S(pB)_S(pAB)

All thermal states exhibit an exact area law (as contrasted to volume law)
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» All correlations are localized around the boundary, which is a big constraint
« What happens at zero temperature?
Classical: nothing

Quantum: gapped systems still seem to obey area law, critical systems
might get a logarithmic correction (still exponentially smaller than what
we get for random states) Kitaev, Vidal, Wolf, Korepin, ...
Gapped 1-D quantum spin systems: always obey strict area law!
Hastings ‘08




Cirac, FV ‘06

Matrix Product States

« If an area law applies, then a state can efficiently be parameterized by a so-
called matrix product state (MPS) / valence bond state / finitely correlated
state

— MPS: most general state in 1-D that obeys a strict area law by
construction: rank of reduced density operators is cst (D?)

— We want to bound the cost of approximating state that obeys area law
with a MPS for given precision as a function of number of spins:
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» Breaking of exponential wall: polynomial vs. exponential complexity

« Complete identification of manifold of ground states of gapped quantum
spin systems

— DMRG, MPS-based algorithms: variational methods within this class of
states!




Projected Entangled Pair States (PEPS) / Tensor
Product States (TPS)

Natural generalization of MPS to higher dimensions

Obeys area laws, ... : parameterization of every GS of gapped 2-D quantum
Hamiltonian (Hastings)

Can be generalized to fermionic systems without sign problem

What is best way of doing variational calculations with those states? _
FV, Cirac ‘04




Quantum simulators for finding ground states:
adiabatic time evolution Farhi et al. 00

H(0) H(t)

Adiabatically following the ground state of a Hamiltonian; adiabatic

condition: : :
T >>min, F(S)z I'(s)= <(de >—<dH>
A(S) ds ds

That means: we can prepare ground state in phases different from the one
we start from on a QC if no level crosssing and/or gap scales polynomial in
system size

This suggests that a very good way of representing ground states can be
found using a quantum circuit!




Quantum Circuits

* Quantum circuit is a representation of every possible Hamiltonian
evolution

« What kind of quantum circuits are needed to prepare ground states
of general Hamiltonians?

— Find inspiration in field of renormalization group methods and
perturbation theory




RG-methods as quantum circuits

* Numerical renormalization group:
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Class of states generated
like this:

Matrix Product States

Virtue: possible to
calculate any tensor
product expectation value
efficiently -> quantum
circuit that can be
simulated efficiently on a
classical computer




RG quantum circuit in the lab

Class of D-dim. MPS gives a complete characterization of all N-particle states that
can be created by sequential generation through coupling to a D-level ancillary
system (Markov chain)

— Photonic qubits generated by a cavity QED source
— Quantum dot coupled to a microcavity
Interaction of ions with phonons in ion trap

1-to-1 correspondence between maps P and unitaries occurring in “cavity”

— Constructive: MPS-structure automatically yields description of how to generate
states

Example for D=2: GHZ-, cluster-, W- states




» Other RG schemes: Ma-Dasgupta-Fisher renormalization group
— Random Heisenberg model

— Second order perturbation theory:
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— The class of wavefunctions obtained like this coincide with the
Multiscale entanglement renormalization ansatz (MERA) of G. Vidal




Vidal ‘06

MERA: coarse-graining of lattice

 What about scale-invariant states for fermions: OK Corboz, Evenbly, FV, Vidal ‘09
 PS: all MERA states obey strict area law in dimensions>1




K. Temme, FV ‘09

What happens for non-equilibrium systems?
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Quantum circuits with CP-maps instead of unitaries

Can again be very well described by MPS; figure of merit is the
entanglement of purification
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Mutual information and entropy cost / entanglement of purification as a function of ¢ IB




Quantum circuits for diagonalizing Hamiltonians

« One can in principle go further and try to diagonalize a complete
Hamiltonian using a quantum circuit (cfr. Original approach of Wilson)

— Possible because all low-energy states are “special” (effective low-
energy Hamiltonians can e.g. be theories of quasi-free particles)

UHU" =H

coarse—grained

— For 1-D Ising model in transverse field: H =UH, U" = Za)i o

— Can be done for e.g. perturbed Kitaev model

Kitaev’s toric code Hamiltonian is a
fixed point of such a coarse-graining
transformation; local perturbations can
be proven to be irrelevant perturbations
(become smaller and smaller)
Classification of fixed points leads to a
classification of topological theories

Coarse-graining at finite T: temperature
goes up!

Veznik, Rico, Schuch, FV




Conclusion

Quantum information theory offers new look at the many-body
guantum problem

— Motivation: what can we do more efficiently with qubits than with
bits
— What are fundamental limits of DFT, ...

Insights into the entanglement structure lead to novel simulation
methods : MPS, PEPS, MERA




