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Setting

• Hilbert space of N particles/spins/modes/qubits: exponentially big

• Central question in QIT: what can I do more efficiently with N qubits 
than with bits?
– IT tasks: Quantum Computing, Quantum Cryptography
– Physics tasks: Quantum Simulation  (condensed matter systems, 

quantum chemistry, …)

• Central theoretical problems (not mentioning experimental related 
ones):
– What are the minimal requirements to be able to do universal quantum 

computation?
– What is the role of entanglement?
– Can coherence be preserved in arbitrary large systems for arbitrary long 

times? (quantum fault tolerance)
– What is the complexity of simulating quantum systems?

• What computational power would it give me if I could e.g. find the 
ground state of  a certain class of Hamiltonians



Topics

• Hilbert space is a convenient illusion

• Computational complexity of simulating strongly correlated quantum 
systems

• Entanglement structure of ground states of many-body Hamiltonians 
on the lattice

• Quantum circuits for simulating quantum Hamiltonians



Accessibility of full Hilbert space is an illusion

• Size of Hilbert space of system of N particles / modes / … scales exponentially with 
N. 

– What is the fraction of states that are physical, i.e. can be created as by a 
quantum computer in a time that scales polynomially with the systems size?  
Exponentially small :   A quantum computer cannot explore the full Hilbert space 

– All physical states live on a tiny submanifold: this opens up the possibility of 
parameterizing this corner in Hilbert space   (opens door for variational methods)

• Lots of work on random states: e.g. Popescu, Winter et al.: take a random state with 
a given energy, and look at a small subsystem: looks like 
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Quantum simulation from the computer science 
point of view

• What is the computational complexity of finding ground states of
general local Hamiltonians (e.g. nearest neighbour interactions on a 
square lattice)?

• Kitaev/Aharonov/Kempe/Terhal/Irani/Gottesman/…: QMA-hard as a 
function of N for local lattice Hamiltonians in any dimension!

P

BQP

NP

QMA

• P: class of problems that can be 
solved efficiently using classical 
computer

• BQP: class of problems that can be 
solved efficiently using quantum 
computer

• NP: class of problems whose 
solution can be checked efficiently 
using classical computer

• QMA: class of problems whose 
solution can be checked efficiently 
using quantum computer



• What about reasonable Hamiltonians?

– Take e.g. the problem of estimating the ground state energy of a
system of N electrons interacting via the Coulomb force in an 
external potential (input variables = external potential): QMA-hard

– Direct implications:
• An efficient specification of the universal density functional as used in 

density functional theory would imply QMA=P
• Hubbard model with constant t and U but varying onsite magnetic 

fields: QMA-complete

• Central problem in field of quantum chemistry: N-representability
– Is there a N-particle quantum state compatible with the 2-particle 

density operator                     ?

• Problem is intractable: QMA-complete!
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• But: it is not because ground states are hard to find, that there is no simple 
parameterization of them: they might have a very simple structure (cfr. Spin 
glasses)

• Can we identify the corner in Hilbert space that corresponds to ground 
states of local many-body quantum Hamiltonians?

– Is so: this would lead to a systematic way of coming up with variational
ansatze

• Cfr. some of the biggest breakthroughs in condensed matter physics 
involved guessing the right wave function (BCS, Laughlin, …) 

– What is the structure of entanglement in those systems?



Entanglement structure of relevant states: Area laws
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Quantifying the amount of correlations between A and B: mutual information

All thermal states exhibit an exact area law (as contrasted to volume law)

Cirac, Hastings, Wolf, FV ‘08

• All correlations are localized around the boundary, which is a big constraint
• What happens at zero temperature?

– Classical: nothing
– Quantum: gapped systems still seem to obey area law, critical systems 

might get a logarithmic correction (still exponentially smaller than what 
we get for random states)

– Gapped 1-D quantum spin systems: always obey strict area law! 
Kitaev, Vidal, Wolf, Korepin, …

Hastings ‘08



Matrix Product States

• If an area law applies, then a state can efficiently be parameterized by a so-
called matrix product state (MPS) / valence bond state / finitely correlated 
state

– MPS: most general state in 1-D that obeys a strict area law by 
construction: rank of reduced density operators is cst (D2)

– We want to bound the cost of approximating state that obeys area law 
with a MPS for given precision as a function of number of spins:

• Breaking of exponential wall: polynomial vs. exponential complexity

• Complete identification of manifold of ground states of gapped quantum 
spin systems

– DMRG, MPS-based algorithms: variational methods within this class of 
states!
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Projected Entangled Pair States (PEPS) / Tensor 
Product States (TPS)

FV, Cirac ‘04

• Natural generalization of MPS to higher dimensions
• Obeys area laws, … : parameterization of every GS of gapped 2-D quantum 

Hamiltonian  (Hastings)
• Can be generalized to fermionic systems without sign problem 
• What is best way of doing variational calculations with those states? 



Quantum simulators for finding ground states: 
adiabatic time evolution

• Adiabatically following the ground state of a Hamiltonian; adiabatic 
condition:

• That means: we can prepare ground state in phases different from the one 
we start from on a QC if no level crosssing and/or gap scales polynomial in 
system size 

• This suggests that a very good way of representing ground states can be 
found using a quantum circuit!
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Quantum Circuits

• Quantum circuit is a representation of every possible Hamiltonian 
evolution

• What kind of quantum circuits are needed to prepare ground states 
of general Hamiltonians?

– Find inspiration in field of renormalization group methods and 
perturbation theory
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RG-methods as quantum circuits
• Numerical renormalization group:
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Class of states generated 
like this: 

Matrix Product States

Virtue: possible to 
calculate any tensor 
product expectation value 
efficiently -> quantum 
circuit that can be 
simulated efficiently on a 
classical computer



RG quantum circuit in the lab

• Class of D-dim. MPS gives a complete characterization of all N-particle states that 
can be created by sequential generation through coupling to a D-level ancillary 
system (Markov chain)

– Photonic qubits generated by a cavity QED source
– Quantum dot coupled to a microcavity
– Interaction of ions with phonons in ion trap

• 1-to-1 correspondence between maps P and unitaries occurring in “cavity”
– Constructive: MPS-structure automatically yields description of how to generate 

states
• Example for D=2: GHZ-, cluster-, W- states

D
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• Other RG schemes:  Ma-Dasgupta-Fisher renormalization group
– Random Heisenberg model

– Second order perturbation theory:

– The class of wavefunctions obtained like this coincide with the  
Multiscale entanglement renormalization ansatz (MERA) of G. Vidal
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MERA: coarse-graining of lattice

• What about scale-invariant states for fermions: OK
• PS: all MERA states obey strict area law in dimensions>1

Vidal ‘06

Corboz, Evenbly, FV, Vidal ‘09



What happens for non-equilibrium systems?
α

β

1

Mutual information and entropy cost / entanglement of purification as a function of α β,

K. Temme, FV ‘09

• Quantum circuits with CP-maps instead of unitaries
• Can again be very well described by MPS; figure of merit is the 

entanglement of purification



Quantum circuits for diagonalizing Hamiltonians
• One can in principle go further and try to diagonalize a complete 

Hamiltonian using a quantum circuit (cfr. Original approach of Wilson)
– Possible because all low-energy states are “special” (effective low-

energy Hamiltonians can e.g. be theories of quasi-free particles)

– For 1-D Ising model in transverse field:  

– Can be done for e.g. perturbed Kitaev model

grainedcoarseHUHU −=*

Veznik, Rico, Schuch, FV

Kitaev’s toric code Hamiltonian is a 
fixed point of such a coarse-graining 
transformation; local perturbations can 
be proven to be irrelevant perturbations 
(become smaller and smaller)

Classification of fixed points leads to a 
classification of topological theories

Coarse-graining at finite T: temperature 
goes up!
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Conclusion

• Quantum information theory offers new look at the many-body 
quantum problem

– Motivation: what can we do more efficiently with qubits than with 
bits

– What are fundamental limits of DFT, …

• Insights into the entanglement structure lead to novel simulation 
methods : MPS, PEPS, MERA


