Quantum Simulations using Fermionic Atoms in Optical Lattices

Ken O'Hara

The Pennsylvania State University

Fermi Gas Group at Penn State

Ken O'Hara John Huckans Ron Stites Eric Hazlett Jason Williams Yi Zhang

Outline

- Ultracold Fermionic Atoms
- The Hubbard Model
 - Quantum Magnetism
 - High-temperature superconductivity
- Reducing the Entropy of Atoms in a Lattice
- Three-Component Fermi Gases
 - The quantum 3-body problem
 - SU(3) Hubbard model: Color Superfluidity

Two-State Mixtures in ⁶Li

Hyperfine States

Feshbach Resonances

BEC-BCS Crossover with a Feshbach Resonance

Making Degenerate Fermi Gases

- Magneto-Optical Trap
- Optical Trap
- Evaporative Cooling (at 760 Gauss)

Vertical crossed-dipole trap: Two 80 Watt 1064 nm beams

 U_f = 38 µK/beam v_y = 106 Hz v_z = 965 Hz v_x = 3.84 kHz N = 2 x 10⁵ atoms T_F = 3 µK

Making Degenerate Fermi Gases

- Magneto-Optical Trap
- Optical Trap
- Evaporative Cooling (at 760 Gauss)
- Transfer to Large Volume Trap

Large Volume Dipole Trap: Two 20 Watt 1064 nm beams

U_f = 2 μ K/beam		
$v_v =$	21 Hz	
v_z =	35 Hz	
ν _x =	92 Hz	
$N = T_F =$	2 x 10⁵ atoms 160 nK	

BEC and DFG of ⁶Li

BEC of Li₂ Molecules Absorption Image after Expansion

 $t_{\rm TOF} = 10 {\rm ms}$

*

2-State Degenerate Fermi Gas

Absorption Image after Expansion

 $N_{\uparrow} = N_{\downarrow} = 10^5 \qquad T \le 0.1 T_F$ $T_F = 160 \,\mathrm{nK} \qquad T \le 16 \,\mathrm{nK}$

High-Temperature Superconductors

 $La_{2-x}Sr_{x}CuO_{4}$ Crystalline Structure

Typical Phase Diagram of the Cuprates

Weakly Coupled Square-Planar Sheets of CuO Antiferromagnetism Adjacent to Superconductivity

The 2D Hubbard Model

• Simplest Model that includes Band Structure & Interactions

Square 2D Lattice

t = hopping term, describes tunneling between lattice sites

U = Interaction term, describes energy cost of filling doubly occupied sites

• Repulsive-U Hubbard Model

U > 0: Mimics Coulomb Repulsion between Electrons

Large U: Mott Insulator

- $U_t \rightarrow \infty$ Insulator
- Ground State: Mott Insulator

Non-zero t: Exchange Interactions

- Small, but nonzero t
- Matrix element *t* couples to doubly occupied sites

Anti-Ferromagnetic Mott Insulator

Phase Diagram of the Hubbard Model

Phase Diagram in Fluctuation-Exchange Approximation

W. Hofstetter et al., PRL 89, 220407 (2002)

Realization of the Hubbard Model

Observation of the Mott Insulator

T. Esslinger et al., Science 322, 1520 (2008)

I. Bloch et al., Nature 455, 204 (2008)

Observation of the Mott Insulator

Removing Entropy from the System

Hollow Laguerre-

Cylindrical "Box" Potential

for Atoms

Gaussian Beam

Cylindrical

Beam Endcaps

Load atoms at high density (partially fill 2nd band)

• Selectively remove atoms from higher bands

Filtering higher bands in 1D w/ harmonic confinement J. I. Cirac et al., New J. Phys. 8, 164 (2006).

Selective Removal from 2nd Band

- Amplitude Modulation
 - Selectively Excite $2^{nd} \rightarrow 4^{th}$ Band

- Band Excitation by Rapid Adiabatic Passage
- Irreversible Removal of Atoms
- Reduction in Entropy

Projected Final Temperatures

• Numerical Results for Loading 35 E_R Lattice and Filtering

- Achieve $T = 0.003 T_F$ with 13% atom loss
- Initial $S/N = 0.28 k_B$, Final $S/N = 0.024 k_B$
- Adiabatically Lowering Lattice to 5 E_R gives $T < 0.001 T_F$

J. R. Williams, J. H. Huckans, R. W. Stites, E. L. Hazlett, & K. M. O'Hara, arXiv:0804.2915

Outline

- o Ultracold Fermionic Atoms
- o The Hubbard Model
 - Quantum Magnetism
 - High-temperature superconductivity
- o Reducing the Entropy of Atoms in a Lattice
- Three-Component Fermi Gases
 - SU(3) Hubbard model: Color Superfluidity
 - The quantum 3-body problem

A Three-Component Fermi Gas

- +3/2Three different internal states of $2^{2}P_{3/2}$ ⁶Li – labeled by color Mixture is stable against • ⁶Li |3)★ 2-body inelastic collisions Absorption (arb.) (+1/2 **Tunable interactions** $2^{2}S_{1/2}^{1/2}$
 - Equal & strongly attractive a_{12} interactions at high field a_{23} a_{13} $(a_t = -2140 a_0)$ BCS Pairing with 3 types of

-1000

-1050

|2⟩₩

-950

0.5 mm

|1)₩

-850

-900

0.5 mm

Huckans, Williams, Hazlett, Stites & O'Hara, PRL 102, 163502 (2009)

"Color" Superconductivity

• BCS superfluid with three types of Cooper pairs

- Optical lattice: controls ratio of interaction energy to kinetic energy
- Quantum phase transition from "color superfluid" to "baryons" (RGB bound states) as interaction energy is increased

Rapp, Hofstetter & Zaránd, PRB 77, 144520 (2008)

NEWS & VIEWS

Lifestyles of the small and simple

Ultracold atoms in optical lattices are already used to simulate complex solid-state phenomena. But could the same platform also give us a better grasp of how quarks group together?

Frank Wilczek

Is in the Department of Physics, Massachusetts Institute of Technology, 5 Cambridge Center, Cambridge, Massachusetts 02139, USA. e-mail: wilczek@mit.edu

uarks find other quarks — with different flavours and colours attractive. They can choose either

QCD Phase Diagram

Conjectured phase diagram for QCD

C. Sa de Melo, Physics Today, Oct. 2008

- Ultracold atoms can be used to simulate part of the QCD phase diagram
- Is the baryon-to-CSF phase transition first or second order?
- Does the color superfluid exhibit domain formation?
- What phases are possible in a spin-imbalanced 3state Fermi gas?
 (which mimics the higher mass of the strange quark)

Resonances in the 3-Body Recombination Rate!

3-Body Problem: Efimov's Solution

(1970) Efimov: An infinite number of bound 3-body states

Vitaly Efimov circa 1970

Infinitely many 3-body bound states (universal scaling):

$$E_T^{(n+1)}/E_T^{(n)} \to 1/e^{2\pi/s_0} = 1/515.03$$

A single 3-body parameter: κ_*

$$E_T^{(n)} \to \left(\frac{1}{515.03}\right)^{n-n_*} \frac{\hbar^2 \kappa_*^2}{m}$$

3-Body QM Problem: Efimov's Solution

3-Body QM Problem: Efimov's Solution

E. Braaten, H.-W. Hammer, D. Kang and L. Platter, arXiv:0811.3578

Diagram from: T. Kraemer *et al.,* Nature **440** 315 (2006)

Observed Efimov Features: (ultracold Bosons)

T. Kraemer <i>et al</i> . Nature 440 315 (20	06) [Cs]
S. Knoop et al. Nature Physics 5 227	(2009) [Cs]
G. Barontini <i>et al.</i> arXiv:0901.4584	[K, Rb]
M. Zaccanti <i>et al.</i> arXiv:0904.4453	[K]

Resonant Loss Features

Resonances in the 3-Body Recombination Rate!

Low-Field 3-Body Loss Data

Low field 3-Body loss rate (K_3) over 10 G < B < 960 G

Huckans *et al.,* PRL **102**, 165302 (2009) (Penn State) Ottenstein *et al.,* PRL **101**, 203202 (2008) (Heidelberg)

Low-Field 3-Body Loss Data

 $\hbar a^4$

 $K_3 = \frac{4677\sinh(2\eta_*)}{\sin^2[s_0\ln(0.6642|a|\kappa_*)] + \sinh^2\eta_*} \frac{\hbar a^4}{m}$

E. Braaten, et al., arXiv:0811.3578

Fit with 2 free parameters:

$$\kappa^* \text{ and } \eta^*$$

$$a_{\text{eff}} = \sqrt[4]{\frac{1}{3} \left(a_{12}^2 a_{23}^2 + a_{23}^2 a_{13}^2 + a_{12}^2 a_{13}^2 \right)}$$

Andre Wenz, Diploma Thesis (2009)

Low-Field 3-Body Loss Data

Resonant loss features at 127 and 504 Gauss

 $a_{\rm eff}$ (127 G) $\sim a_{\rm eff}$ (504 G) $K_* = 59.9 \ a_0^{-1}, \quad \eta_* = .075$

High-Field 3-Body Loss Data

High field 3-Body loss rate (K_3) over 840 G < B < 1500 G

Resonant loss feature at 910 Gauss $a_{ij} > 35 r_0$ $K_* = 79.2 a_0^{-1}$, $\eta_* = .01125$

Future Prospects

Efimov Physics with Overlapping Feshbach Resonances

- Multiple scattering lengths: (a₁₂, a₂₃, a₁₃)
 E. Braaten, *et al.*, arXiv:0811.3578 (2008)
 J. P. D'Incao and B. D. Esry, arXiv:0905.0772 (2009)
- Mutual attractive and repulsive interactions:
 (a₁₂, a₂₃ > 0 & a₁₃ < 0)

BCS Pairing in a 3-State Fermi Gas

- Pairing competition (attractive interactions)
- Unequal Fermi Surfaces (E_F)
- Superfluid Domain Formation
- Superfluid/Trion phase transition (3D Lattice)
- No condensed matter analog

PRB 77, 144520 (2008)

Feshbach Resonances

Summary

- Hubbard model can be realized with ultracold atoms
- Mott insulator state has been observed in Zurich and Mainz
- Observation of AF will require reducing the entropy
- Entropy can be significantly reduced by filtering high entropy atoms
- Three-component Fermi gases in a lattice: Quant. Sim. of QCD
- Observation of Efimov resonances with unequal scattering lengths
 - Two low-field resonances with moderate scattering lengths (127 & 504 G)
 - Third high-field resonance at 910 G (well into universal regime)
- Agreement with Efimov theory $|a| >> r_0$ and $|a| \sim r_0$
 - Fits yield 3-body parameters for ⁶Li at negative scattering lengths

Density-Density Correlations

Nature, Vol 444, 733-736 (2006)

Density-density correlation function

Limits on Universality

J. P. D'Incao, H. Suno & B. Esry, Phys. Rev. Lett. 93, 123201 (2004)

Density-Density Correlations

- TOF Expansion and Image
- Density-Density Correlations in Expanded Cloud

(I. Bloch, 2005)

Density-Density Correlations

- State Selective Imaging of TOF Expansion
- Density-Density Correlations in Expanded Cloud

