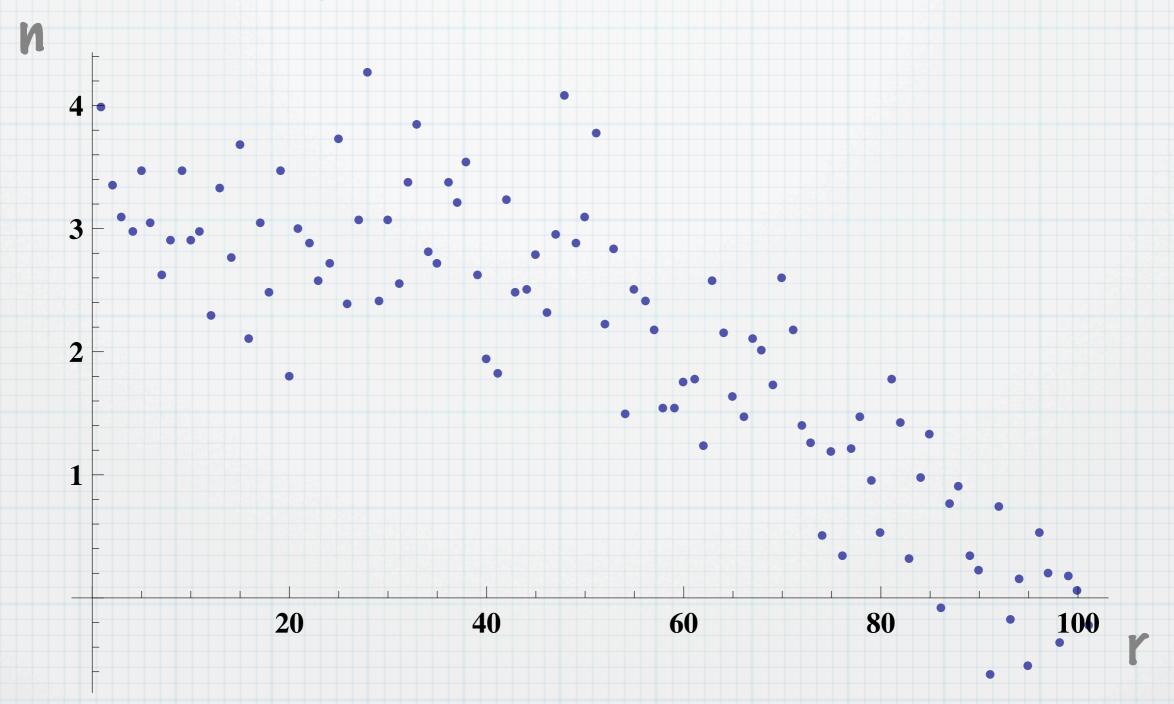
Erich Mueller Cornell University June 8, 2009

Maximum Entropy

Method for extracting information from noisy data

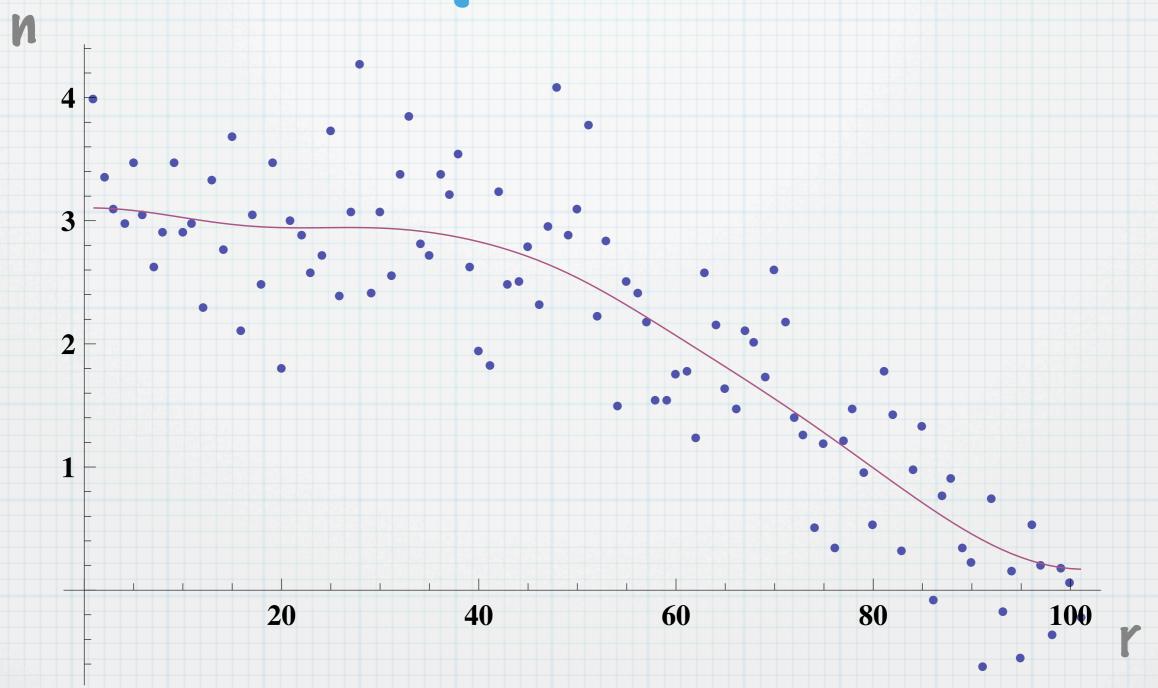
Finding Compressibilities Reconstructing 30 densities

Mott Shells?

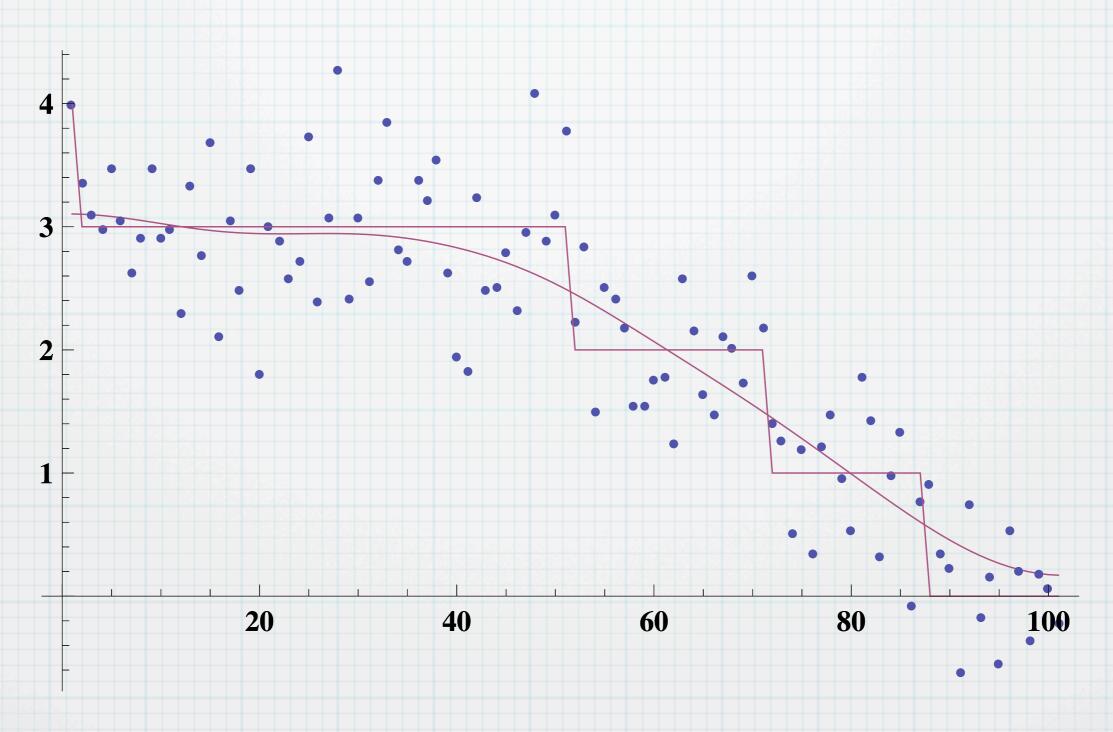


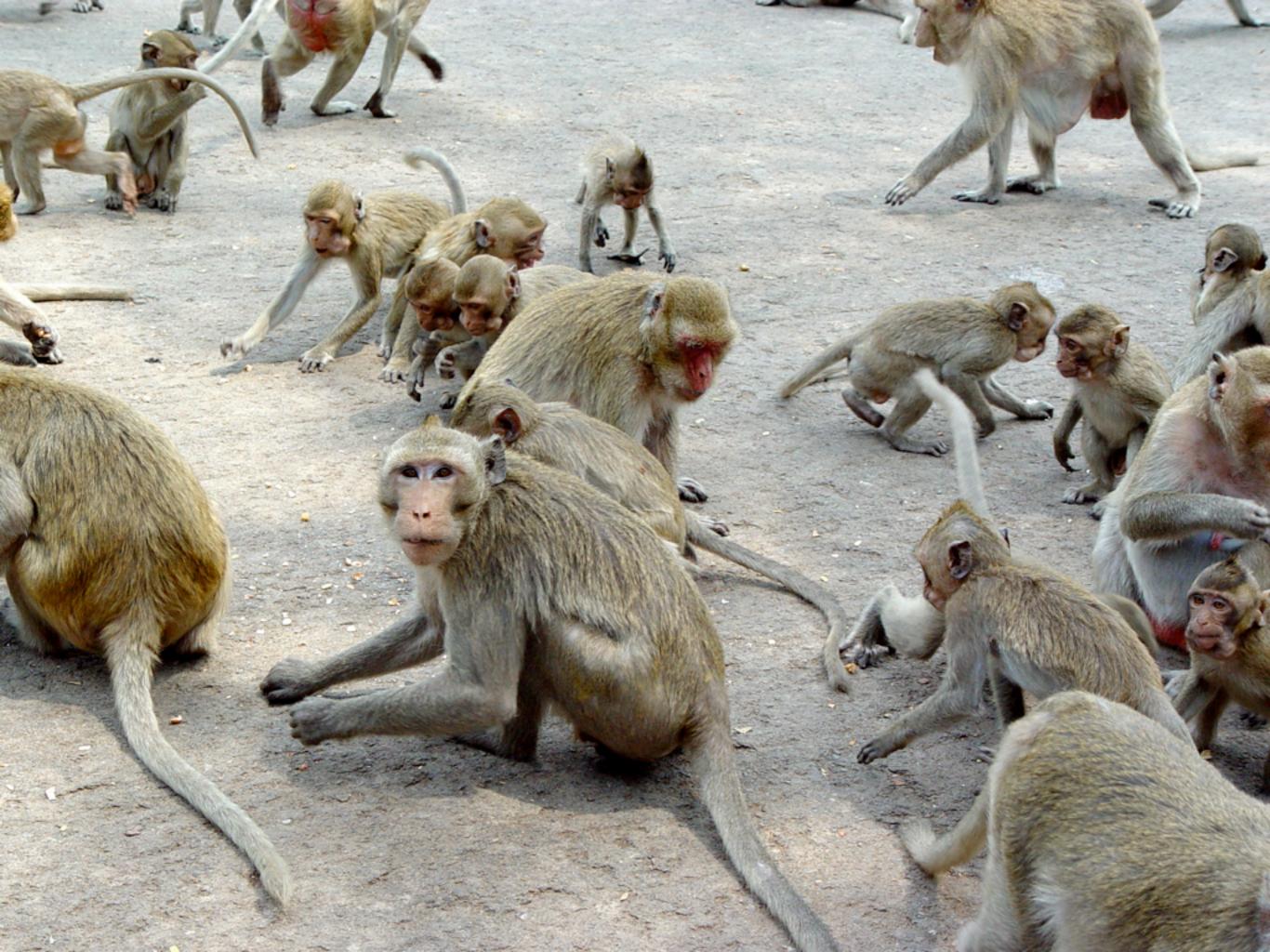
Maybe?

Maybe not?



How to tell?





Monte-Carlo Approach

Generate smooth random data which is consistent with experimental data

Fraction of random data that has Mott plateaus gives probability that there is a Mott plateau

Maximum Entropy

Extension: Can produce most probable smooth reconstruction
bin consistent random data
bin with most elements = most probable

Tricks

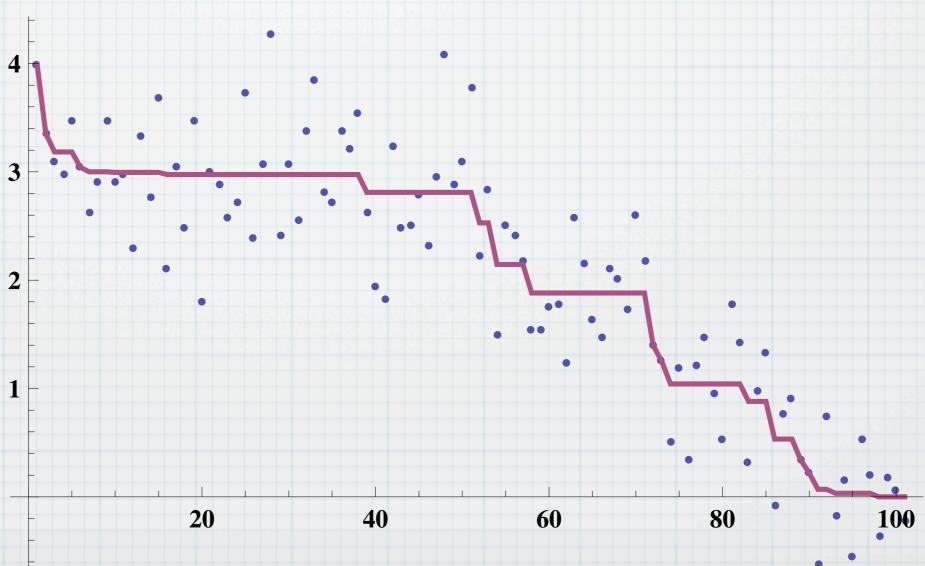
Enforce known symmetries/constraints:

Pensity is positive slope is negative

Best Fit with these constraints

$$\chi^2 = 0.87$$

(slightly overfit)



Statistical Mechanics

 χ^2 plays roll of energy

Microcanonical:

Generate all configurations of fixed χ^2

Canonical:

Minimize Free energy

$$\chi^2 - TS$$

$$rac{1}{T} = rac{\partial S}{\partial \chi^2}$$
 = Lagrange Multiplier

Choose so fit is appropriate

Entropy

Correct entropy depends on algorithm used to randomly generate data

Typical Choice: Shannon Entropy

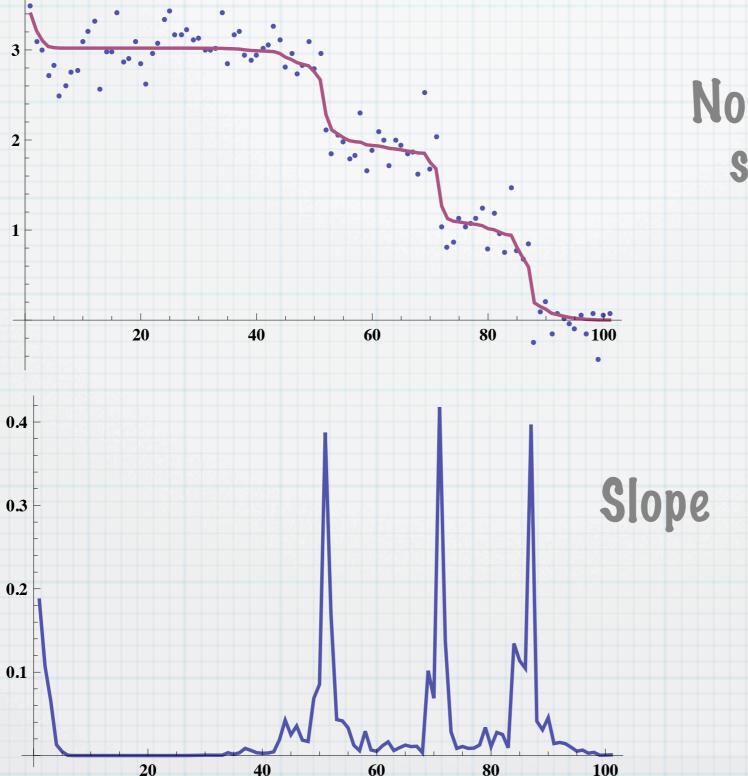
$$S = -\sum_{j} \frac{n_j}{N} \log \frac{n_j}{N}$$

$$N = \sum_{j} n_{j}$$

(I take nj= slope at position j)

Results

Better Vata



Not biased against sharp features

Abstract Picture

Model Space

 S_i

slopes

map

trapezoid rule

Vata Space

 d_i

density

data: n_i

noise: σ_i

want model that describes data

Model Space

 S_i

slopes

trapezoid rule

Vata Space

 d_i

density

data: n_i noise:

 σ_i

Fitting:

$$\chi^2 = \sum_i rac{(n_i - d_i)^2}{\sigma_i^2}$$
 — minimize wrt s_i

finite difference derivative

overfit:
$$\min(\chi^2) = 0$$

Model Space

slopes S_i

trapezoid rule

Vata Space

 d_i

density

data: n_i noise:

 σ_i

Better:

$$\chi^2 = \sum_{i} \frac{(n_i - d_i)^2}{\sigma_i^2} = N_{\text{pixels}}$$

but does not uniquely determine S_i

Bayesian Approach

Find S_i

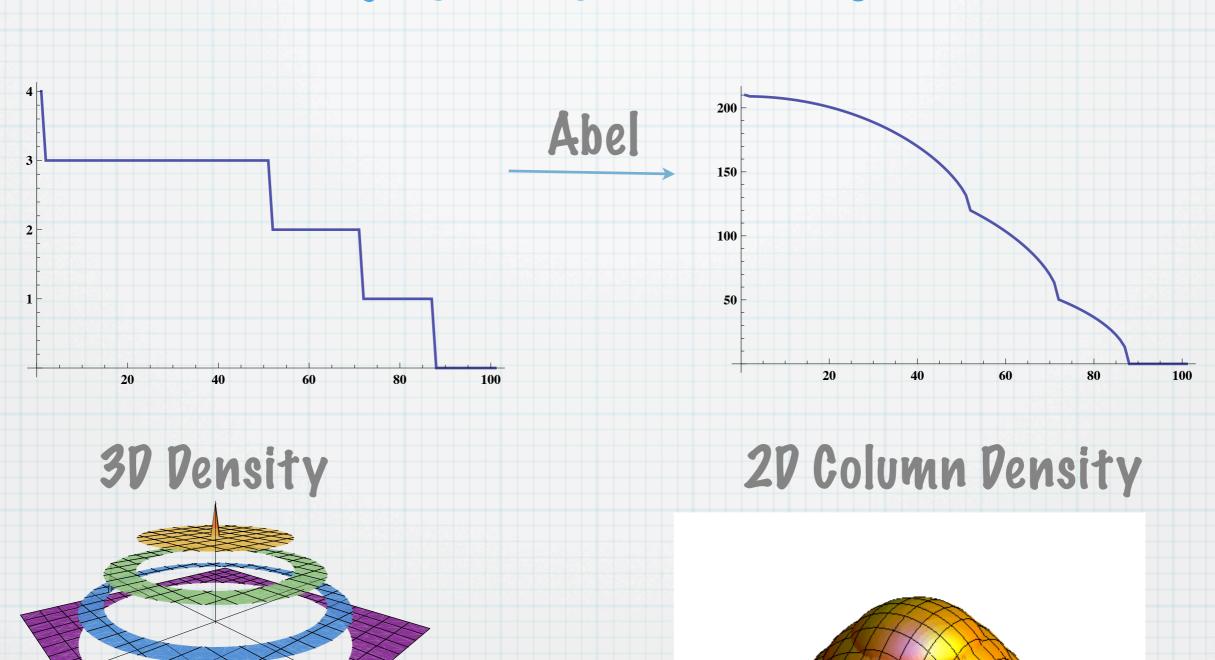
for which

$$\chi^2 = \sum_{i} \frac{(n_i - d_i)^2}{\sigma_i^2} = N_{\text{pixels}}$$

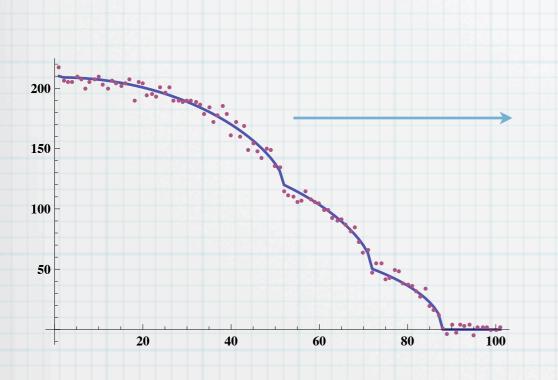
that carries least information

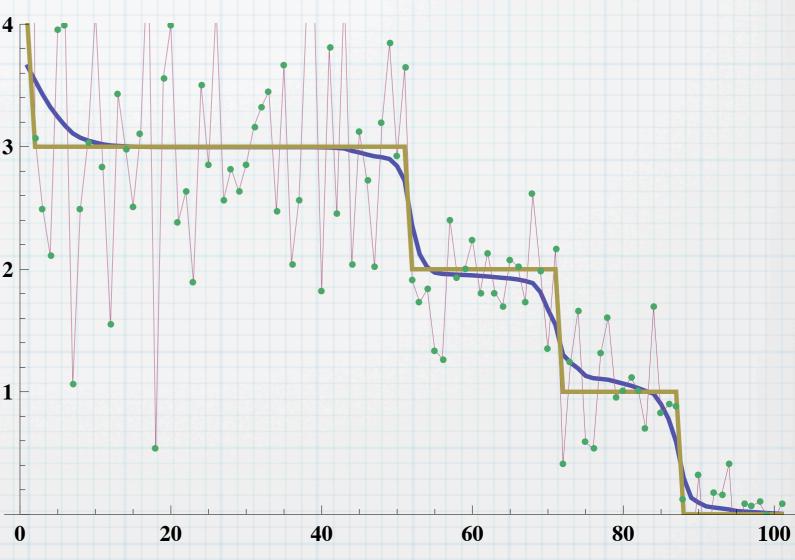
i.e. Maximize Entropy

Inverse Abel

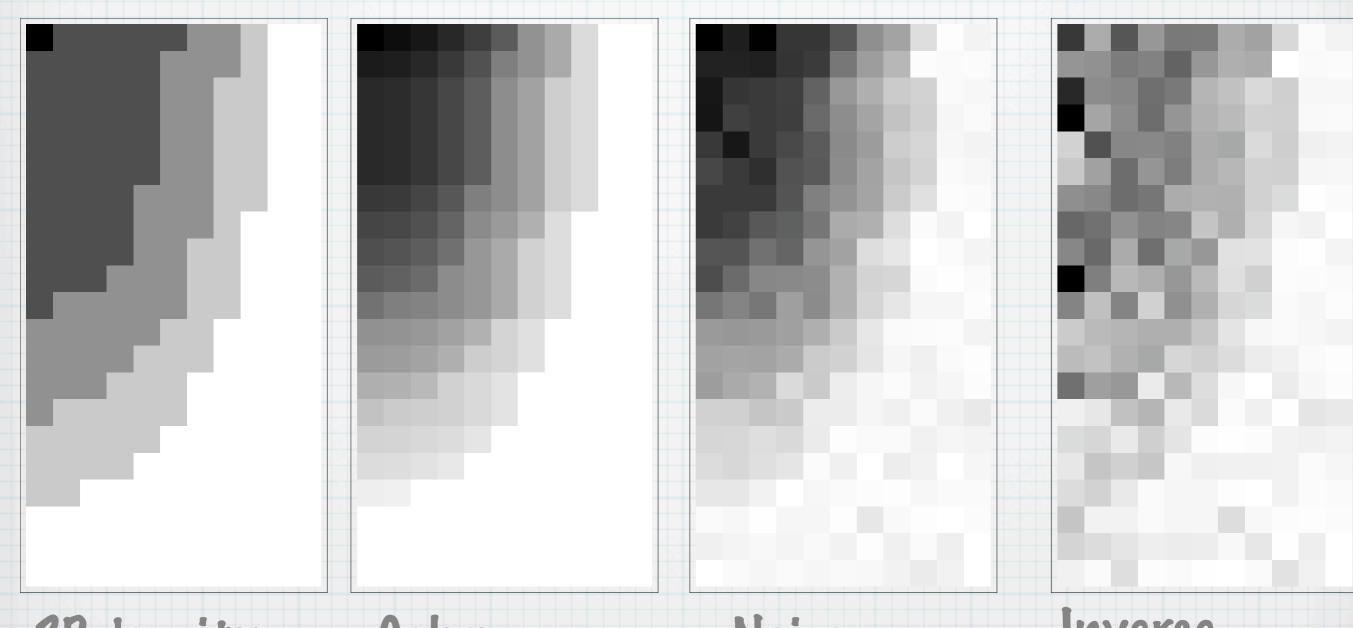


Noisy Pata





20



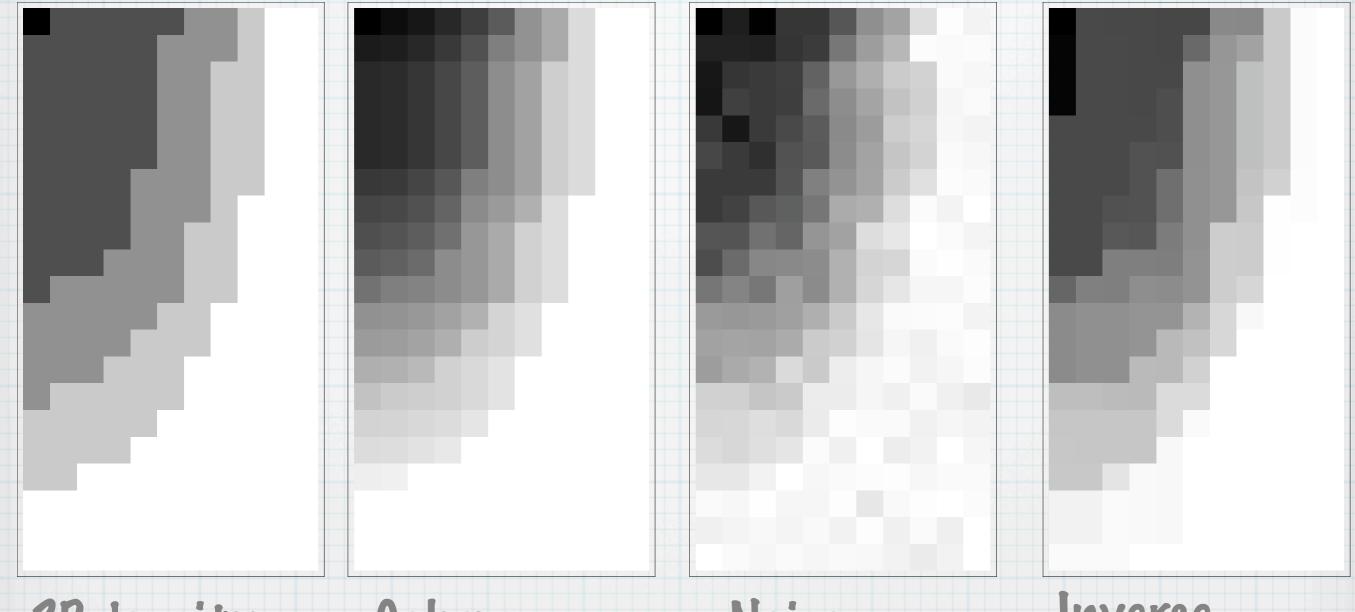
30 density

Column

Noise

Inverse (Naive)

20



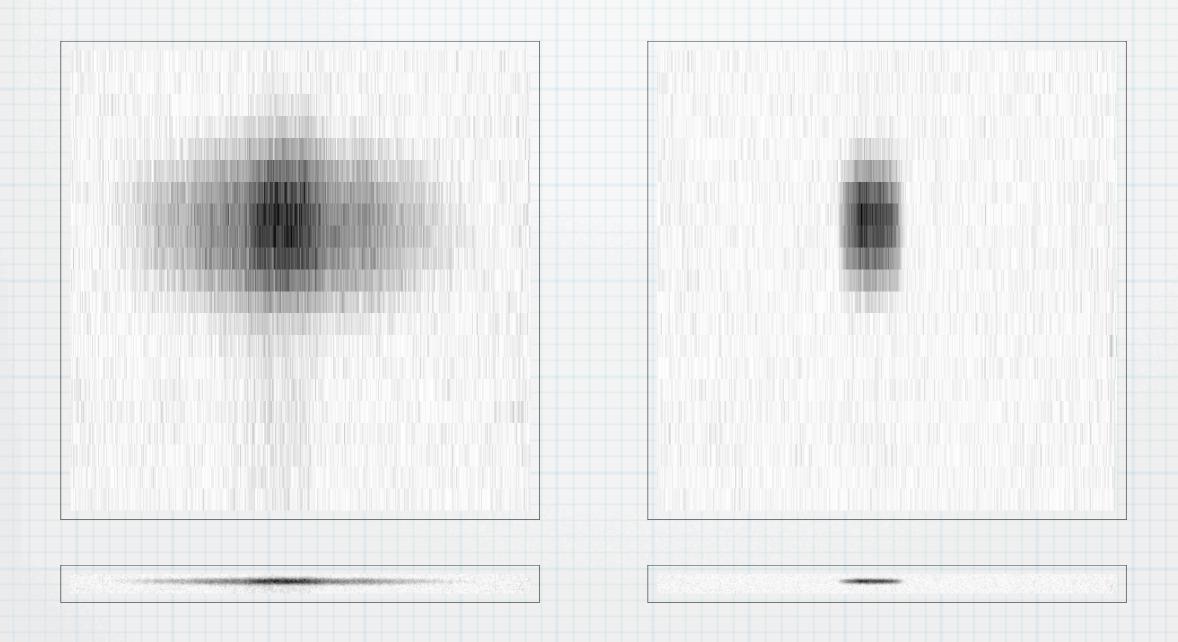
30 density

Column

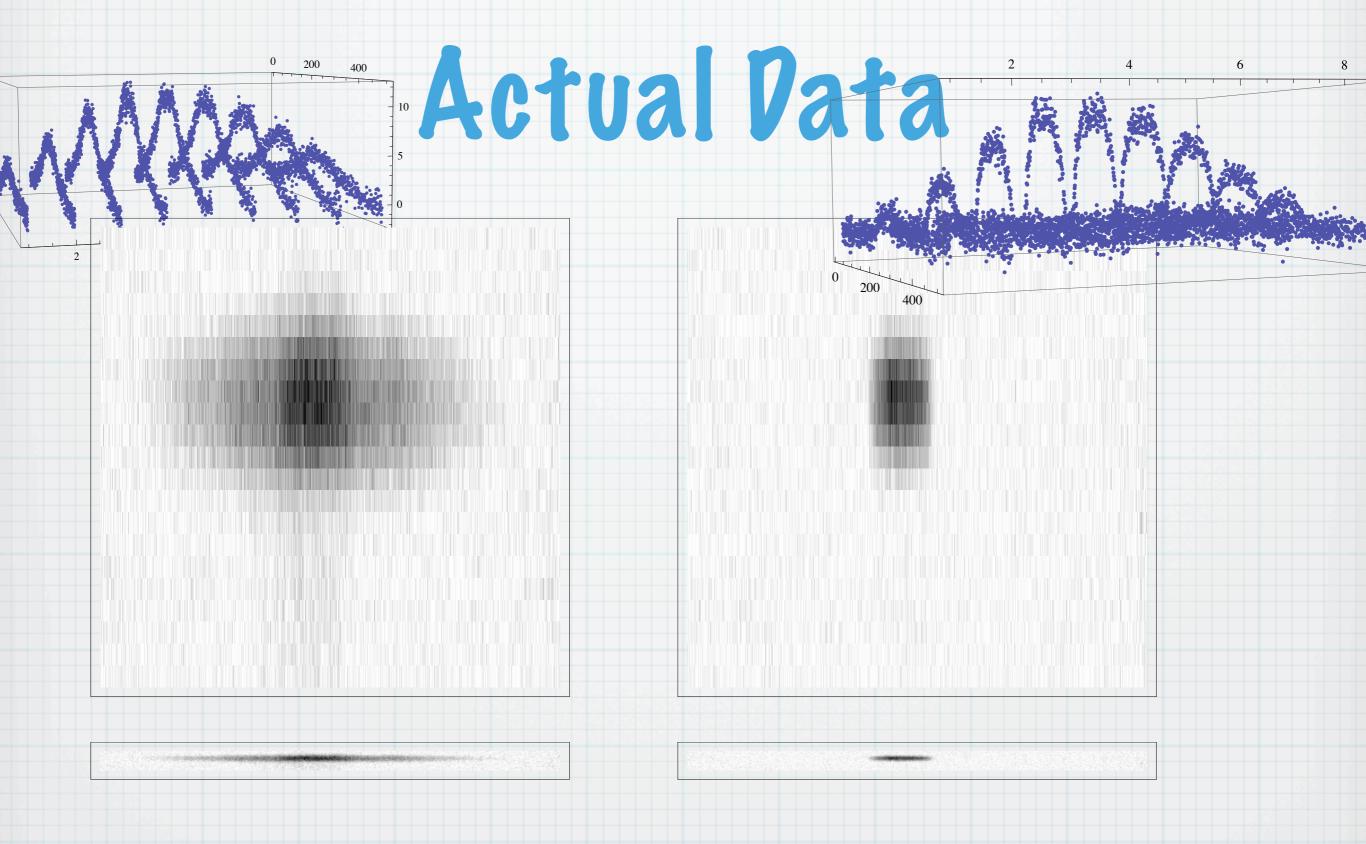
Noise

Inverse (Max Ent)

Actual Pata

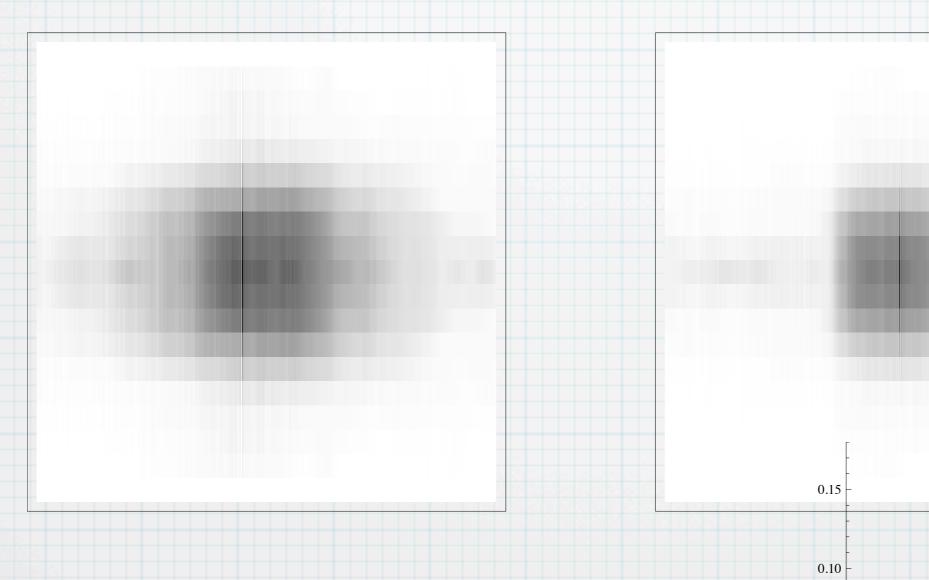


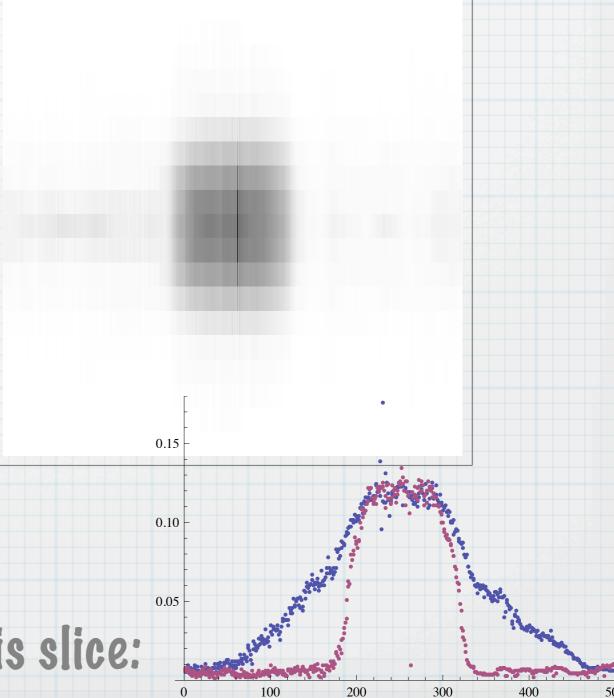
3D -- Unitary Fermi gas -- courtesy of Randy Hulet



3D -- Unitary Fermi gas -- courtesy of Randy Hulet

30 Reconstruction





off-axis slice:

Thoughts

- * Not as good as a real model
- * Introduces less bias

* Needs relatively clean data

Dreams: extract equations of state, phase diagrams, entropy (temp), superfluid density...