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Learning Goals

Idea of probing collective modes

phonons, plasmons,...

Equations of motion (collective 
coordinate) approach

Virial Theorem

Sum Rules

Linear Response

Very specific 
example



Setup
N atoms in harmonic trap (anisotropic)

Measure in an experiment:

H =
∑

i

[
p2

i

2m
+

∑

α

1
2
mω2

αr2
iα

]
+

U0

2

∑

i<j

δ(ri − rj)

Change omega’s and watch response

Qα =
∑

j

r2
jα

(breathing modes, 
quadrupole modes)

Goal today:
calculate frequencies



Equation of motion 
approach

Q̇α =
1
i! [Qα, H] =

1
m

∑

i

riαpiα + piαriα

Q̈α =
1
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4
m

(
Tα − Vα +

1
2
U

)

Tα =
∑
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∑

i

δ(ri − rj)

(AKA collective coordinates)
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= “virial”



Virial Theorem
Q̈α =

1
i! [Q̇α, H] =

4
m

(
Tα − Vα +

1
2
U

)

In equilibrium Q is time independant

〈Tα〉 − 〈Vα〉 +
1
2
〈U〉 = 0

H =
∑

α

Tα +
∑

α

Vα + U

Also useful to note



Closing the equations
Q̈α =

1
i! [Q̇α, H] =

4
m

(
Tα − Vα +

1
2
U

)

Case 1: U=0

Hα = Tα + Vα is constant of motion

Q̈α = −4ω2
α

[
Qα −

Hα

mω2
α

]

Shift Q: Q̃α = Qα −
Hα

mω2
α

¨̃Qα = −4ω2
αQ̃α Oscillates at twice trap frequency



Closing the equations
Q̈α =
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4
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1
2
U

)

Case 2: T=0 (good approximation for a BEC)
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
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(shift away) eigenvalues give oscillation frequencies
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Q: if all omegas are equal, 
what are oscillation frequencies?



Closing the equations
Generically the equations do not close so easily
-- introduce more formal tools for dealing with it 

Changing trap constants for short time:

Hpert = λα(t)Qα

Response

〈Qβ(t)〉 = 〈Tei
R t dτ(H0+Hpert)Qβe−i

R t dτ(H0+Hpert)〉
= 〈Qβ〉0 +

∫
dt′χR

αβ(t − t′)λα(t′) + · · ·

χR
αβ =

θ(t)
i

〈[Qβ(t), Qα(0)]〉0



Interaction picture
(only if requested)

U = Te−i
R t dτ(H0+H′)

Ū = eiH0tU

i∂tŪ = eiH0tH ′U

= H ′(t)Ū

so

Ū(t) ≈ 1− i

∫ t

dτH ′(τ)



Equations of motion
χR

αβ =
θ(t)
i

〈[Qβ(t), Qα(0)]〉0

∂2
t χαβ =

δ′(t)
i

〈[Qβ(0), Qα(0)]〉0+
δ(t)
i

〈[Q̇β(0), Qα(0)]〉+ θ(t)
i

〈[Q̈β(t), Qα(0)]〉

Substitute in EOM for Q
When EOM for Q close -- so do EOM for chi

0

〈[Q̇β(0), Qα(0)]〉 = δαβ
4〈Qα〉

m

Q̇α =
1
i! [Qα, H] =

1
m

∑

i

riαpiα + piαriα



Expected Structure:
Damped Harmonic oscillator

χ(t)

t

Im[χ(ω)]

ω

Probe and response commute 
at t=0

Sum rules:

Make Ansatz for chi(t)
Fit parameters from t=0

chi and derivatives



Sum Rulesχ(t)

t

Im[χ(ω)]

ω

f-sum rule:

=
4
m

〈Qα〉δαβ

(always set by kinematics)

M3 =
∫

dω

2π
(iω)3χ(ω) = −i〈[Q′′(0), Q′(0)]〉

M1 =
∫

dω

2π
(iω)χ(ω) = −i〈[Q′(0), Q(0)]〉

=
8

m2

[
δαβ(2〈Tα〉 + 2〈Vα〉) +

1
2
〈U〉

]



Sum Rulesχ(t)

t

Im[χ(ω)]

ω

Estimate frequency

−ω−2 ≈ eigenvalues(M−1
1 M3)

Other tools:

M−1 = lim
t→0

∫
dω

2π
eiωt χ(ω)

iω
= lim

t→0

∫ t

∞
χ(t′)dt′

= χ(ω = 0)

(or use Kramers-Kronig)

Static Response

Compressibility sum rule



2-component Fermi Gas
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FIG. 3: Zero temperature axial breathing mode frequency of
a two component Fermi gas in a highly elongated (λ = 0.001)
trap within the BCS-BEC crossover region. The frequency
is given as a function of dimensionless parameter (kfas)−1.
Notice, at the weak coupling BCS limit [(kfas)

−1 → −∞],

ω−/ωz →
√

12

5
and at the weakly repulsive BEC limit

[(kfas)−1 → ∞], ω−/ωz →
√

5

2
as one expects from hydro-

dynamic theory. At unitarity, ω−/ωz →
√

12

5
as required by

universality. The solid circles are finite temperature experi-
mental results from Ref [16].

sum rules begins to be below the measured axial mode
frequencies. As suggested by Bartenstein et al [16], this
jump may indicate a breakdown of the hydrodynamic
theory, and is undoubtedly related to pair breaking as
at this point the mode frequency is comparable to twice
the gap. If the experiment is done in the ranges of densi-
ties and temperatures where the threshold energy of the
two-particle continuum 2Eg (where Eg = ∆̃ for µ > 0

and Eg =
√

µ2 + ∆̃2 for µ < 0, is the single particle

excitation gap) is smaller than the collective energies,
then the collective modes can become overdamped, leav-
ing the system to simply oscillate at a multiple of the
trap frequency. Since we work in LDA and make mean
field approximations our upper bound is not rigorous in
this region.

As shown in FIG. 4, our prediction for the transverse
breathing mode frequencies are in quantitative agreement
with the finite temperature experimental measurements
by Kinast et al [15]. The experimental data points at
(kfas)−1 ∼ −0.42 represent different temperatures. Sur-
prisingly, we have a good agreement with higher tem-
peratures at (kfas)−1 ∼ −0.42. Our predictions do not,
however, agree with the transverse breathing mode data
reported in Ref. [16], which show an abrupt change and
large damping close to the unitary limit. This disagree-
ment may be due to ellipticity in their optical trap [37].

Finally, our results can be compared to the other the-
oretical approaches. We have very good agreements in
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FIG. 4: Zero temperature transverse breathing mode fre-
quency of a two component Fermi gas in a highly elon-
gated (λ = 0.001) trap within the BCS-BEC crossover re-
gion. The frequency is given as a function of dimensionless
parameter (kfas)−1. Notice, at the weak coupling BCS limit

[(kfas)
−1 → −∞], ω+/ω⊥ →

√

10

3
and at the weakly repul-

sive BEC limit [(kfas)−1 → ∞], ω+/ω⊥ → 2 as one expects

from hydrodynamic theory. At unitarity, ω+/ω⊥ →
√

10

3
as

required by universality. The solid circles are finite temper-
ature experimental results from Ref [15]. The multitude of
experimental data points at (kfas)−1 ∼ −0.42 represent dif-
ferent temperatures.

the entire BCS-BEC crossover region with the theories
proposed by Hu et al [20] using a scaling ansatz together
with a mean field description of the BCS-BEC crossover
and Kim et al [22] using an approach based on the frame-
work of hydrodynamic theory. However, our predictions
are in disagreement in the BEC regime with the findings
of Stringari [19], Heiselberg [21], and Manini et al [23],
which predict a maximum in the transverse breathing
collective mode frequency on the BEC side of resonance.
This difference is probably due to our neglect of beyond
mean field corrections [38, 39].

In conclusion, we have used a sum rule approach to
study the collective oscillations of a two component
trapped atomic Fermi gas in the BCS-BEC crossover
region. This approach allowed us to simply compute
the moments of the susceptibility without evaluating
the full response function of the system. We explicitly
treated the molecular bosons and were able to retain ef-
fective interaction between Feshbach molecular bosons in
the entire crossover region. Our calculation shows non-
monotonic behavior of the breathing modes in the BCS-
BEC regime. In the weak coupling BCS and BEC lim-
its, our calculated breathing modes approach well known
hydrodynamic results. At unitarity the breathing modes
have same frequencies as those of a non interacting Fermi
gas, as required by universality. The quadrupole mode



So What
Measurement Calculation

Agreement

Aside from learning that our sum rules work -- 
what do we learn?

A: Modes depend on equation of state -- 
learn about it



Simpler Case
Dipole Mode (Kohn Mode)

Shift Trap center:

X =
∑

i

xi
P =

∑

i

pxi

Hpert = λ(t)X

χ =
θ(t)
i

〈X(t)X(0) − X(0)X(t)〉

Equations of motion:

∂tX = P/m ∂tP = −mω2
xX

X(t) = cos(ωt)X(0) + (m/ω) sin(ωt)P (0)
Solution



Response function

χ =
m

ω
θ(t) sin(ωt)

χ =
θ(t)
i

〈X(t)X(0) − X(0)X(t)〉

Useful to introduce “structure factors”

χ> = 〈X(t)X(0)〉

= 〈X2〉 cos(ωt) + (m/ω)〈XP 〉 sin(ωt)

χ< = 〈X(0)X(t)〉

=
m

2ω
(coth(βω/2) cos(ωt) + i sin(ωt))

=
m

2ω
(coth(βω/2) cos(ωt)− i sin(ωt))

(we will see these
next when we

discuss Scattering)

know about T



Detailed Balance

Fourier Transform:

χ>(ν) = χ<(−ν) = eβνχ>(−ν)

χ>(t) = Tre−βHeiHtXe−iHtX

= Tre−βHXe−βHeiHtXe−iHteβH

= χ<(t + iβ)

ν

Energy taken from probeEnergy added to probe
(vanishes at T=0)

χ>


