
Chapter 6

Finite DMRG, Conserved Quantities,

and other Tricks

A. Matrix Product Operators

In our DMRG code, we needed to keep track of two matrices: ZL
j and HL

j . As we add more terms to our

Hamiltonian we need to keep track of more and more things. Moreover, we would like our code to be easily

modifiable to work with di↵erent Hamiltonians.

The book-keeping can be simplified if we rewrite out Hamiltonian as a ”Matrix Product Operator.” We

want to find tensors H1, · · · , H5 that satisfy:

σ'1 σ'2 σ'3 σ'4 σ'5

σ1 σ2 σ3 σ4 σ5

H =
σ'1 σ'2 σ'3 σ'4 σ'5

σ1 σ1 σ1 σ1 σ1

α1 α2 α3 α4H1 H2 H3 H4 H5 . (6.1)

We then just need to feed the Hj into our code. The object we need to minimize

Q†He↵Q =

s'1s'2s'3t'1 t'2 t'3

σ'1 σ'2 σ'3 σ'4 τ'1τ'2τ'3τ'4

s1s2s3t1 t2 t3

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

L1 L2 L3 R3 R2 R1Q4

L*1 L*2 L*3 R*
3 R*

2 R*
1

Q*
4

H (6.2)

is then constructed as

s'1s'2s'3t'1 t'2 t'3

σ'1 σ'2 σ'3 σ'4 τ'1τ'2τ'3τ'4

s1s2s3t1 t2 t3

σ1 σ2 σ3 σ4 τ1τ2τ3τ4

L1 L2 L3 R3 R2 R1Q4

L*1 L*2 L*3 R*
3 R*

2 R*
1

Q*
4

H =

s'3t'3

σ'4 τ'4

s3t3

α3 α4 α5

σ4
τ4

!" ! !# !! " ! #

! !

! !
!

. (6.3)

69

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 70

We update the left-block operator via

!"!

!!

α!

!" !
=

!"!

!!

α!

!""

σ"!

!"

α"

σ!

!" ! ! "

! !
"

! "

. (6.4)

A.1. Explicit Construction

Just as any wavefunction can be expressed as a matrix product wavefunction, and operator can be expressed

as a matrix product operator. Not all can be encoded e�ciently though. The sort of local Hamiltonians

which describe physical systems can be.

Limiting ourselves to 5 sites, the operator we want is

σ'1 σ'2 σ'3 σ'4 σ'5

σ1 σ2 σ3 σ4 σ5

H = �h

!

"
#

σ!!

σ!

! !
+

σ!!

σ!

! !
(6.5)

+
σ!!

σ!

! !
+

σ!!

σ!

! !

+
σ!!

σ!

! !

$

%
&

�J

!

"
#

σ!! σ!"

σ! σ"

! ! ! "
+

σ!! σ!"

σ! σ"

! ! ! "

+
σ!! σ!"

σ! σ"

! ! ! "
+

σ!! σ!"

σ! σ"

! ! ! "

$

%
& .

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 71

One can readily verify that you get exactly that operator by multiplying out

H =

!

1 �J

σ'1

σ1

Z1 �h

σ'1

σ1

X1

$

&

!

"
"
"
"
"
"
"
"
#

1 �J

σ'2

σ2

Z2 �h

σ'2

σ2

X2

σ'2

σ2

Z2

1

$

%
%
%
%
%
%
%
%
&

!

"
"
"
"
"
"
"
"
#

1 �J

σ'3

σ3

Z3 �h

σ'3

σ3

X3

σ'3

σ3

Z3

1

$

%
%
%
%
%
%
%
%
&

(6.6)

⇥

!

"
"
"
"
"
"
"
"
#

1 �J

σ'4

σ4

Z4 �h

σ'4

σ4

X4

σ'4

σ4

Z4

1

$

%
%
%
%
%
%
%
%
&

!

"
"
"
"
"
"
"
"
#

�h

σ'5

σ5

X5

σ'5

σ5

Z5

1

$

%
%
%
%
%
%
%
%
&

The generalization to other Hamiltonians should be clear.

B. Conserved Quantities

There are a number of important tricks which are important for e�ciency of a DMRG code. One is taking

advantage of conservation laws – a trick which can speed up code by several orders of magnitude. It is also

a deeply physical story.

There are not a lot of conservation laws to take advantage of with the transverse field Ising model, so

the example to have in mind is the XXZ model,

H =
'

j

Jx(�
x
j �

x
j+1 + �y

j �
y
j+1) + Jz(�

z
j�

z
j+1). (6.7)

This has a global U(1) symmetry, corresponding to an invariance under rotations about the ẑ axis:

�z ! �z (6.8)

�y ! �y cos(�)� �x sin(�) (6.9)

�x ! �x cos(�) + �y sin(�). (6.10)

This invariance leads to conservation of total Sz: No terms in the Hamiltonian changes the total number of

up-spins. Consequently the eigenstates are also eigenstates of SZ , with quantum number m.

A further consequence is that the reduced density matrix of part of the system will be block diagonal,

with each block corresponding to a di↵erent value of m. To explicitly see that, imagine that |mR,↵iR form

an arbitrary orthonormal basis for the right half of the system – this arbitrary basis can always be chosen

so that any given state within it is and eigenstate of Sz. We then consider the reduced density matrix,

⇢̂L =
'

mR

'

↵

RhmR,↵| ih |mR,↵iR. (6.11)

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 72

Since the total spin of the system is m, then RhmR,↵| i is a state of the left part of the system, with total

spin mL = m�mR. We see that ⇢̂L only involves sums of terms where each ket-bra product has the same

mL for the ket and the bra. Hence ⇢L does not mix sectors with di↵erent mL.

This means that the Schmidt states are all eigenstates of Sz: Every bond index (which encode the Schmidt

states) can be labeled with a quantum number m. Similarly, every spin index can also be labeled by m.

Here is where the arrows in our notation come in. The sum of all the incoming m’s minus the outgoing m’s

is denoted the “valence” of a tensor. For an eigenstate, all of the non-zero terms for any given matrix will

all have the same valence. An example will help. Consider the most general four-site wavefunction where

there are two up-spins, and two down-spins. This is clearly analogous to the 2-particle wavefunctions from

the first class, and can be written

| i =
(

"
)

*
"

"

+
!

"
"
"
#

 34 "
 24 # 23 "
 14 # 13 "

 12 #

$

%
%
%
&

*
"
#

+

(6.12)

(This can of course be recognized as the mixed Canonical Form.) To make book-keeping simpler, we give an

" a valence of +1 – rather than the more standard 1/2 – similarly # gets a �1. The dummy indices for the

columns of the first matrix (and the rows of the second) are denoted a�, a+. The indices for the columns

of the second (and the rows of the third are b�2, b0, b00, b+2, the columns of the third (and the rows of the

fourth) are c�, c+. We will label the matrices A, B, C, D. We will write in-coming indices down-stairs, and

outgoing upstairs. The non-zero elements are

Aa�
= 1

Aa+

" = 1

Bb�2

a�# = 1

Bb0
a�" = 1

B
b00
a+# = 1

Bb2
a+" = 1

Cc�1

b�2" = 34

Cc�1

b0# = 24

Cc1
b0" = 23

Cc�1

b00#
= 14

Cc1
b00"

= 13

Cc1
b2# = 12

Dc�1" = 1

Dc1# = 1

As you can see, each tensor has a valence of zero: The upstairs indices – representing outgoing bonds –

have the same net spin as the downstairs indices. The sum of the valence of all of the tensors will be the net

spin.

This sparsity helps in several ways: (1) The tensors take up less memory – one only needs to store blocks

with a fixed valence. (2) Tensor operations (adding, multiplying, contracting) are faster, since one can take

advantage of the sparsity. (3) The eigensolver is more e�cient – as you can drop the components of the

wavefunction that are in blocks with di↵erent valence. (4) The SVD’s can be done block by block. All of

this technology works in the background – one just needs to define the methods for your tensor class to take

advantage of it.

Any Abelian symmetry can be dealt with in this way. Non-abelian symmetries (such as the rotational

invariance of the Heisenberg model) are a bit more complicated.

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 73

C. Finite DMRG

If you need to deal with finite or inhomogeneous systems, the iDMRG algorithm does not work. There

is, however, a very e�cient way to optimize finite matrix product states – which is usually just called the

DMRG. Historically, the lore was that iDMRG was not as e�cient as the finite DMRG. I believe with modern

algorithms they are roughly equivalent in cost. Nonetheless, when people say DMRG they mean the finite

algorithm.

Imagine that we have a MPS in the right cannonical form. Given n sites, one first generates and stores

the right-most “environment” matrix

HRn =

!! ! !

α! ! !

!"! ! !

!" !
=

!! ! !

α! ! !

!"! ! !

σ!

σ"!

! !

" !
!

" !

. (6.13)

One then sequentially generates further matrices via

HRj =

!!! !

α!! !

!"!! !

!" ! =

!!! !

α!! !

!"!! ! !"!

σ"!

!!

α!

σ!

!" !! !! !

" "
!

" !

. (6.14)

One continues on until j = 3 – so that we have the environment for the left two sites. If the bond dimension

is very large these would be stored on disk, rather than in memory.

One then generates

He↵
12 =

!!

σ" σ!

!"!

σ"" σ"!

α" α!

!" !! "! #
. (6.15)

One then solves the eigenvalue problem

!"!

σ"" σ"!

!!

α" α!

σ" σ!

!" !! "! #

#

= E
!!

σ" σ!

! ! . (6.16)

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 74

Next one uses a SVD to decompose Q12, putting our wavefunction into the mixed canonical form,

| i =

σ1 σ2 σ3 σ4 σ5 σ6 σ7

s2 s3 s4 s5 s6t1L1 R3 R4 R5 R6 R7M2

Q12

(6.17)

One also constructs

HL1 =

!"1

!1

α1HL!
=

!"!

α"

!!

α!

σ"!

σ!

! !

! !
!

! !

(6.18)

and stores it to disk. One then retrieves the stored HR4, and updates the second two sites by solving

!"!

!""

σ"# σ""

!! !"

α! α# α"

σ# σ"

!" !!# " ! #! $

$ $#

= E t1

t3

σ2 σ3

Q23 (6.19)

Another SVD gives

| i =

σ! σ" σ# σ$ σ% σ& σ'

! " ! # ! $! % ! &"!! ! " " " # " $ " % " &# '

$ '"

(6.20)

We make the next left environment via

t'!

!!

α!

!" !
=

t'2

t2

α2

t'1

σ'2

t1

α1

σ2

HL1 H2

L*2

L2

. (6.21)

We continue in this manner until we have updated all of the tensors. We then sweep back the other way. At

each step using our stored environments, updating the right-environments as we sweep left.

We keep sweeping back and forth until we have converged. For many models the convergence is surpris-

ingly fast – taking only 2-3 sweeps.

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 75

D. Delayed Evaluation

One simple trick is that one never actually calculates matrices such as

He↵ =

t'1

t3

σ2 σ3

t'3

σ'2 σ'3

t1

α1 α2 α3 HR4HL1 H3H2 . (6.22)

Rather, one stores the componentsHL,H2, H3, HR. In your iterative eigenvalue solver you e�ciently contract

the network

He↵Q =

!"!

!""

σ"# σ""

!! !"

α! α# α"

σ# σ"

!" !!# " ! #! $

$ $#

. (6.23)

When the bond dimension is large this can give substantial speedup.

E. State Prediction

An even more important trick is to use “state prediction.” One uses an iterative eigensolver – and the key

to e�ciency is to start with a good guess for the eigenvector. In the finite algorithm, it is trivial to find a

good guess. Consider, for example, trying to optimize Q23 in the second step of our algorithm,

| i =

σ! σ" σ# σ$ σ% σ& σ'

! " ! # ! $! % ! &"!! ! " " " # " $ " % " &# '

$ '"

, (6.24)

the previous step of the algorithm gave us the matrix M2, and we already had R3. Therefore we already

have a pretty good Q23 = M2R3. It will be refined by solving the eigenproblem, but nonetheless is a good

starting point.

State prediction in the iDMRG algorithm is a bit more complicated. Suppose we have just found the

following representation of the wavefunction,

| 6i =

σ1 σ2 σ3 τ1τ2τ3

s1s2s3t1 t2 t3L1 L2 L3 R3 R2 R1Λ3 .

(6.25)

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 76

We want to make a good guess for L4⇤4R4 in

| 8i =

σ! σ" σ# σ$ τ!τ"τ#τ$

! !! "! #! $"! "" "# "$! ! ! " ! # ! $ " $ " # " " " !Λ$.

(6.26)

The obvious guess would be L4 = L3, R4 = R3,⇤4 = ⇤3. It turns out that this doesn’t work. The problem

is that L3 takes you from the space described by t2 into t3. You can’t put a t2 socket into a t3 hole.

The solution is to do a SVD on R3, writing ⇤3R3 = L̃4⇤̃4. This new matrix L̃4 takes one from the t3
space to the t2 space. We use it for the guess for L4, we use ⇤̃4 as our guess for ⇤4, an we use the transpose

of ⇤̃4 as the guess for R4.

F. Noise

This section is copied from some notes I had for another purpose. I don’t think we will have time to go

through this, but I copy it here in case you find it useful. I’ll edit it to make it more clear when I have a

chance.

F.1. Getting Stuck

You will find that in some cases the DMRG algorithm gets stuck. To illustrate this, consider a strange

model where we have hard-core bosons hopping on a lattice, but where the hopping is between next-nearest

neighbors. For concreteness, lets take 5 sites and hard wall boundary conditions, and limit the occupation

per site to 0 or 1. Our Hamiltonian is

H = �t
(
a†1a3 + a†3a1 + a†2a4 + a†4a2 + a†3a5 + a†5a3

)
. (6.27)

Lets start initially with a product state 00100, which means there is one particle on the third site, and none

on any other sites.

Lets now run the standard DMRG algorithm. We “expose” the first two sites. Our bond dimension is 1,

so our e↵ective Hamiltonian is 22 ⇥ 22 – just the Hamiltonian acting on the first two sites. By inspection,

this e↵ective Hamiltonian is a matrix where every element is 0. Thus our starting state 00 is an eigenstate,

and we are happy. We do a SVD – which is trivial since we have a product state, and set A1 = |0i. We

then go on to the next two sites. Again our e↵ective Hamiltonian is 0... The algorithm never changes the

wavefuntion. We are stuck in 00100.

Steve White came up with a nice trick for getting un-stuck, which is usually referred to as a ”noise” term.

It involves modifying the SVD step.

F.2. SVDs and density matrices

To understand White’s approach, I need to remind you how to do SVDs via density matrices.

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 77

Suppose we have a matrix Mab, which we want to write as
,

µ AaµBµb, where A is left-normalized:
,

a A
⇤
aµAa⌫ = �µ⌫ . We could do this with a SVD, or alternatively we can construct

⇢aa0 =
'

b

MabM
⇤
a0b, (6.28)

which if M is a wavefunction, is just the reduced density matrix.

We then do an eigen-decomposition of ⇢, writing it as ⇢ = U⇤2U†, where ⇤2 is a diagonal matrix, and

U is unitary, meaning that U†U = UU† = 1. Hence M = UU†M . We take A = U and B = U †M . Clearly

A is left normalized. I am calling the diagonal matrix ⇤2 to connect it later with the SVD. [And since the

eigenvalues of a Hermitian matrix are always non-negative, this notation makes some sense.]

Now this procedure gives you a bond dimension equal to the dimension of the index a, which we will

call da. Suppose you want to truncate. Well you just take the largest eigenvalues. Lets order the eigenvalue

from largest to smallest,

⇢aa0 =
da'

µ=1

Uaµ�
2
µU

⇤
a0µ (6.29)

⇡
d'

µ=1

Uaµ�µU
⇤
a0µ, (6.30)

where d  da is the bond dimension we are truncating to. We then take A = Uaµ, with µ = 1, 2, · · · d, and

Bµb =
'

a0

U⇤
a0µMa0b. (6.31)

The equivalence to the SVD is seen by writing M = U⇤V , where U and V are unitary. We can

immediately calculate ⇢ = MM† = U⇤V V †⇤U† = U⇤2U †, and see that the matrices we have been working

with are the same as in the SVD.

Clearly the indices a and b can be “compound indices” representing both site and link bonds.

F.3. Noise

step 1

In the very first step of our toy problem, we follow this procedure and generate the density matrix

⇢1 = |0ih0|, (6.32)

where these bra’s and kets are acting on the first site. Now what White does is look at H and see what

operators act on the first site: in this case a1 and a†1. He then applies each of these to the density matrix,

taking

⇢̃1 = ⇢1 + ✏
(
a1⇢1a

†
1 + a†1⇢1a1

)
(6.33)

= |0ih0|+ ✏|1ih1|. (6.34)

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 78

This clearly has two eigenvalues, 1 and ✏, and get a bond dimension 2 (instead of the 1 we got without the

noise term). We take

A1 =
(

|0i |1i
)

(6.35)

and

A2 =

*
|0i
0

+

. (6.36)

The product of these matrices is again just the state |00i, but the higher bond dimension will help us in the

next step. We will call µ = 0 the first column of A1, and µ = 1 the second.

step 2

In that next step, we expose sites 2 and 3. The e↵ective Hamiltonian is now 23 ⇥ 23, since the bond

dimension on the left is 2. The matrix is sparse, so rather than writing it out, I will just list the non-zero

matrix elements. I have already defined the index µ. Lets take a to be the site index for site 2, and have

a = 0 correspond to |0i2 and a = 1 correspond to |1i2. Lets take b to be the site index for site 3, with the

same meaning.

The non-zero matrix elements in the sector we are interested in (which has one particle) are:

Hµ=0,a=0,b=1
µ0=1,a0=0,b0=0 = �t (6.37)

Hµ=1,a=0,b=0
µ0=0,a0=0,b0=1 = �t. (6.38)

All others are zero. We diagonalize this, and get (in the µ, a, b basis) 1,0,0 = 0,0,1 =
p
2, and all other

elements zero. The non-zero elements of the reduced density matrix for site 2 are then

⇢µ=1,a=0
µ0=1,a0=1 = 1/2 (6.39)

⇢µ=0,a=0
µ0=0,a0=1 = 1/2. (6.40)

Not worrying about the noise term, we get

A2 =

*
|0i 0

0 |0i

+

(6.41)

and

A3 =
1p
2

*
|1i
|0i

+

. (6.42)

and you see that we are “unstuck” as = (|10000i + |00100i)/
p
2 is closer to the ground state GS =

(|10000i +
p
2|00100i + |0001i)/2 than our starting state was. In fact after 1 full sweep we will be there

(while without the noise we would never get there).

CHAPTER 6. FINITE DMRG, CONSERVED QUANTITIES, AND OTHER TRICKS 79

G. Periodic Boundaries

In most of our theoretical work, we use periodic boundary conditions. It should be clear that the DMRG’s

e�ciency is really based upon the fact that you can start at one end of the chain and move from there. This

whole scheme is not compatible with periodic boundary conditions.

Nonetheless one can use matrix product states with periodic boundary conditions:

| i = TrMMM · · ·MMM. (6.43)

The trace makes the system periodic. Unfortunately there is no canonical form for such a periodic state

that is as nice as the Canonical forms we used for the system with boundaries, or for the infinite system.

The issue is that if we want to divide the ring into two pieces we need to cut it in two places. The Schmidt

states will then be labeled by two sets of indices corresponding to degrees of freedom at each end. I don’t

thing anyone has come up with a systematic way of dividing up the degrees of freedom.

There are a number of ad-hoc approaches which appear to work. I don’t have time to go into them.

H. Homework 4

Problem 23. For Credit Write a MPO which describes the XXZ Hamiltonian

H =
'

j

Jx(�
x
j �

x
j+1 + �y

j �
y
j+1) + Jz(�

z
j�

z
j+1). (6.44)

Problem 24. Bonus. Write a finite DMRG code for the transvere field Ising model. Take 20 sites. Start

in a product state of all spins in the ẑ-direction. Restrict bond dimension to be no larger than 20. Plot

hZi as a function of sweep number at h = 0.5, h = 0.9, and h = 1. How does convergence compare to the

iDMRG code?

