
P653 HW10

Due Nov 22, 2005

Problem 1. Single particle density matrix of an ideal gas

Consider an ideal gas of particles of mass m in a large three-dimensional volume V at temperature

T connected with a reservoir of chemical potential µ. The single particle density matrix can be

taken to be ρ1(r, r
′) = 1

V

∑
k nke

ik·(r−r′), where nk is the number of particles of momentum k.

1.1. For Boltzmann particles, where nk = e−β(k2/2m−µ), calculate n1(r, r
′).

Hint: Use Cartesian coordinates for the integral.

1.2. For zero temperature Fermi particles, where nk = 1, for k2/2m < µ, but nk = 0 for k2/2m > µ

calculate ρ1(r, r
′) in terms of kf =

√
2mµ. Plot ρ1 as a function of r − r′.

1.3. For Bose-condensed particles, µ = 0 and nk = 1/(eβk2/2m − 1) for k > 0, and n0 = N0 is the

number of condensed atoms, which is extensive. Here the integrals cannot be done in closed form.

What does ρ1 approach for large x = r − r′? Over what length scale does it approach this value

Problem 2. Longitundinal and Transverse velocities In two dimensions, we can always

decompose v(r) = v‖(r) + v⊥(r), where ∇× v‖(r) = 0 and ∇ · v⊥(r) = 0.

2.1. Argue that there exists a smooth θ such that v‖(r) = ∇θ(r).

2.2. Show that if n(r) = ∇ × v⊥(r)/(2π), then v⊥(r) = ∇
∫

dr′n(r′)Im log(z − z′). Assume that

n(r) is well behaved.

2.3. Show that there exists a smooth φ such that v⊥(r) = ∇× (ẑφ(r)). How is φ related to n?

Hint: You may wish to remember the connection between stream functions and potential functions

[Cauchy-Riemann].

2.4. Since θ is smooth we can write θ(r) =
∑

q eiq·rθq. Differentiate to prove that (v ‖)a(q) =

qaf(q). How is f(q) related to θq?

2.5. Still assuming that n(r) is well behaved, we can write n(r) =
∑

q eiq·rnq. Using that ∇×v⊥ = n,

show that (v‖)a(q) = ǫabqbg(q), where ǫxy = 1, ǫyx = −1, and ǫxx = ǫyy = 0. How is g(q) related

to nq?

We now see that the ‖ and ⊥ refer to whether the Fourier momenta of the velocity are parallel

or perpendicular to the velocity. These are known as the longitudinal and transverse velocities

respectively.
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Problem 3. Wolff Algorithm This problem illustrates that Monte-Carlo update moves need not

be just simple local updates. The following algorithm does not suffer from the critical slowing down

of the metropolis algorithm.

Consider an N × N square lattice Ising model. Given a spin configuration {σ(0)
i } we will generate

a new configuration by the following ”cluster” algorithm. In this algorithm we generate a cluster,

and flip it. Note that we always flip something [unlike the Metropolis algorithm where we often

refuse to make a change].

To start the cluster, we choose a random site i. We grow the cluster by looking at each of its

neighbors j1, j2, j3, j4. If the nieghbors are aligned with i we add them to the cluster with probability

1− e−2βJ . If they are not aligned we never add them. Bonds where a spin is successfully added are

referred to as ”accepted”, bonds which are considered, but where a spin is not added are referred

to as ”rejected”.

We further grow the cluster by looking at each of the neighbors of the newly added sites. Again

we add them with probability 1 − e−2βJ if they are aligned with the cluster spins, and never add

them if they are not aligned.

We repeat until no spins are added to the cluster.

Having generated the cluster we then flip it. This sequence of steps: generating a cluster and

flipping it, constitutes one step of a Markov process.

3.1. As a concrete example, consider the spin configuration depicted below on the left. Dark

(blue) squares represent spin up sites, and light squares represent spin down sites. Consider the

cluster illustrated in the middle. The red lines outline the cluster. Green x’s represent accepted

bonds, while bars represent rejected bonds. The starting site is marked with a yellow disk. The

configuration to the right represents what happens the configuration looks like after this cluster is

flipped.

Given that the temperature is T , what is the probability P that this cluster was generated (starting

from that particular starting square with that particular pattern of accepted and rejected bonds)?
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3.2. What is the energy difference between the final and initial configuration, Ef − E0.

3.3. Using the same notation, the reverse move is illustrated below. Note that not only is the

cluster the same, but the pattern of accepted and rejected bonds is the same.

What is the probability P̄ that this reverse cluster is generated?

3.4. What is the ratio P/P̄? Show that detailed balance is satisfied. Argue that it will be satisfied

for an arbitrary cluster, not just the one considered here.

3.5. Argue that this process is ergodic: ie. one can generate any spin configuration by repeatedly

applying these cluster moves.

3.6. Suppose at T = 0 all of the spins are aligned up. What does a single Markov step do to the

configuration? How does this compare to the Metropolis algorithm?

3.7. At T = ∞ what does a single Markov step do to the configuration? How does this compare

to the Metropolis algorithm?
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