
P653 HW11

Due Dec 1, 2005

Problem 1. Deterministic laser model

A laser involves a high-Q cavity containing a gain medium which is being pumped. Due to stimu-

lated emission, the rate of photons produced by the gain medium is proportional to the number of

photons present. However, at some point this gain must saturate. The maximum rate of photon

production is limited by the rate of pumping. A simple model which captures this picture is

dn

dt

∣

∣

∣

∣

gain
= fgain(n) =

A(n + 1)

1 + (B/A)n
,

where A > 0 is the gain coefficient in the linear regime, 1/B ≫ 1 is the rate of photon production

when the process is saturated, and n is the number of photons in the cavity. The 1 in n + 1 is due

to spontaneous emission into the cavity mode.

The cavity leaks photons (this is how the light gets out). Each photon has a certain probability to

escape, leading to a loss
dn

dt

∣

∣

∣

∣

loss
= floss(n) = −Cn,

where C > 0 is a constant.

1.1. In steady state dn/dt = 0. Find the possible steady state populations – note that n > 0.

Separately consider the cases A > C and A < C. Neglect spontaneous emission (ie. replace the

(1 + n)’s by n’s).

1.2. What is the stability of each of these solutions? ie. If n is slightly above/below each of them,

does n get closer or farther away.

Note: The interesting parameter range is where A ∼ C. This is referred to as ”threshold”. near

threshold one can approximate

dn

dt

∣

∣

∣

∣

gain
=

A(n + 1)

1 + (B/A)n
≈ A(n + 1) − Bn2.

Below theshold, where the number of photons quickly drops to 0, one can make the more drastic

approximation
dn

dt

∣

∣

∣

∣

gain
≈ A(n + 1).

Far above threshold, where the equilibrium number of photons is large, one can make the approxi-

mation,
dn

dt

∣

∣

∣

∣

gain
≈ A2/B.
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Problem 2. Stochastic laser model.

A more accurate laser model would instead consider a the probability distribution p(n), which is

the probability of having n photons in the cavity.

2.1. Write down a set of coupled differential equations which gives the rate of change of p(n) in

terms of p(n + 1), p(n − 1) and p(n). This is known as a ”master equation”.

2.2. Use the principle of detailed balance to relate the steady state value of p(n) to p(n + 1).

2.3. Consider the linear approximation, valid below threshold, where one sets B = 0. In this case,

your expression from the last problem should read

p(n + 1)

p(n)
=

A

C
. (1)

Assuming that A < C, and that
∑

n p(n) = 1, use equation (1) to calculate the steady-state

probability distribution. Compare your result to the Planck black-body spectrum

p(n) = (1 − e−h̄ν/kBT )e−nh̄ν/kBT .

Note that despite the superficial similarities, the Planck spectrum describes a system in thermal

equilibrium, while here we have an open system with energy entering and leaving. Also note that

this structure is very different from that seen in the deterministic laser model, where below threshold

there were no photons in the system.

2.4. Consider the opposite limit, valid far above threshold, where fgain ≈ A2/B. In this limit,

your result from problem 2.2 should reduce to

p(n + 1)

p(n)
=

A2

BCn
.

Find the steady state distribution. Note: this equation only makes sense if one takes p(0) = 0.

Having arrived at some understanding of the limits A ≪ C and A ≫ C, we can now look at the

general case. In both 2.3 and 2.4 the distribution was strongly peaked. In the former case it was

peaked about zero, while in the latter case it was peaked about a finite value. We will assume

that the distribution is always strongly peaked, and expand about the peak. As usual in statistical

mechanics, it makes most sense to expand log p, rather than p itself.

2.5. Let p(n) = exp(f(n)). Use your expression from problem 2.2 to relate f(n + 1) and f(n)

2.6. We can replace this difference equation with a differential equation if we assume that f is

smooth. To lowest order, f(n + 1) = f(n) + f ′(n). Derive an equation for f ′(n).

2.7. Find the most probable n. (Separately consider A > C and A < C – recall n > 0.) How does

this compare to the results of the deterministic laser model.

2.8. Linearize your equation for f ′(n) about these peak values. Solve for f(n), and thus calculate

p(n) (you don’t need to calculate the normalization). You may want to look at homework 1 to

remind yourself what these one-sided Gaussian distributions mean.
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Problem 3. Thomas-Fermi Approximation

In typical experiment on cold atoms the atoms are trapped in some sort of potential [typically by

magnetic dipole forces]. On general grounds the trapping force is harmonic.

If the potential is sufficiently smooth one can assume that at every point in space the system

is locally homogeneous. That is, at each point in space one defines a local chemical potential

µ(r) = µ0 − V (r), where V (r) is the external potential. The density at that location n(r) is then

simply the density of a uniform gas with that chemical potential. This approximation is known as

the ”Thomas-Fermi” approximation.

Here we will illustrate this approximation by considering a one dimensional gas of noninteracting

Fermions in a harmonic trap.

3.1. What is the density of a zero temperature 1D fermi gas in free space with chemical potential

µ?

3.2. Using the result from (3.1) and the Thomas-Fermi approximation, µ(x) = µ0−V (x), calculate

the density profile of a trapped 1D gas with chemical potential µ0 in a trap of the form V (x) =

mω2x2/2.

3.3. Given that N =
∫

dxn(x), relate µ0 to N .

3.4. The exact density profile for N fermions in a 1-D harmonic trap is

n(x) =
N−1
∑

j=0

|φj(x)|2

φj(x) =
1

(πd)1/4

1√
2nn!

Hn(x/d)e−x2/(2d2),

where d =
√

h̄/mω and Hn(y) is the n’th Hermite polynomial.

Numerically graph the exact 5-particle density and compare it with the Thomas-Fermi prediction

for N = 5.
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