P653 HW2
Due Sept 8, 2005

Problem 1. Information Theoretic Definition of Entropy

Entropy is a measure of the uncertainty in an ensemble. Here we will use some simple information
theoretic ideas (due to Shannon) to calculate the entropy for a generic ensemble — even one which

is not in equilibrium.

Our setup is that we know that our system is in one of IV states, and that each state ¢ occurs in
the ensemble with probability p;.

Suppose we measure that the system is in state 7. Let us assume that we can quantify the amount
that we learn from this measurement. Call this k;. Clearly k; is larger if the probability p; is
smaller. We will define k; so that it is only a function of the probability p;, ie

ki = k(p:).

We will define the entropy of information S; (for the remainder of this question we drop the I) to

be the average amount of information gained from a measurement:
S = pik(ps)-
i

1.1. Entropy, as a state variable is extensive. Suppose we build a larger system out of two inde-
pendant subsystems A and B. The entropy of the whole should be

S =854+ SB,

where S4 and Sp are the entropies of the parts.
Use this relationship to derive a functional relationship that k must obey.

[Hint 1: Recall that independance means that the probability of A being in state ¢ and B being in
state j is pi; = pi + pj.]

[Hint 2: You will need to use that >, p; = 1.]
1.2. Show that this functional relationship is obeyed by
k(z) = —klog(w),

for any constant k.

Prove that these are the only solutions to this relationship. [Feel free to assume that k(x) is
differentiable, and you may use standard uniqueness theorems.|

-1



1.3. We need that the entropy will be maximized in equilibrium. What constraint does that place
on the sign of k?

As the notation might suggest, we will take the constant k to be Boltzmann’s constant. We have
therefore arrived at the definition

Sr=—k E pilog p;,
i
where the I stands for information.

1.4. Show that the thermodynamic entropy in the microcannonical ensemble is equal to the infor-
mation entropy.

1.5. Show that the thermodynamic entropy in the cannonical ensemble is equal to the information
entropy.

Problem 2. Maximum Entropy Principle Consider the set of all possible states i of a system.
Fach of these state contains a given number of particles N; and has energy FE;. We define an
ensemble of these states by specifying the probability p; for the system to be in a given state.

Find the p;’s for the ensemble which maximizes the entropy S; subject to the constraint that the
expectation value of the energy and particle number are fixed,

= ZPiE
7

= ZpiNz
7

[Don’t forget that the probabilities are constrained by >, p; = 1.]

Problem 3. Microscopic origin of dissipation
Here we look at a simple model of a dissipative classical system, namely an oscillator coupled to an
oscillator bath. For a quantum treatment, see Feynman and Vernon, Ann. Phys. 24, 118 (1963).

Consider a harmonic oscillator with position X, momentum P, and frequency €2, linearly coupled
to a bath of other oscillators with positions x;, momenta p; and frequencies w;. This system obeys

a Hamiltonian

P2
H = Mmﬁ+z(

2M

wx)—i—Z)\w,

3.1. Write the equations of motion for z;, p;, X, and P.

3.2. Fourier transform these equations of motion, using the convention

dw

Al) = 2m

e~ A(w).
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3.3. Eliminate p;(w) to write z;(w) as a function of X (w).

3.4. Eliminate z;(w) and P from the equations for X, to arrive at an equation of the form,
[w? — Q% — F(w)]X =0.
What is F(w)?

3.5. It is convenient to introduce a ”spectral density”

22
J(E) =Y —L2r6(E — w;)

P m;w;

which encodes all relevant information about the oscillator bath. Verify that

1 dE 1
C2M ) 2rw-—FE

F(w) [J(E) = J(=E)].
3.6. In the limit of a large bath, one can assume that J(FE) is smooth. We will concentrate on an
ohmic bath, where J(FE) = aF for small E. To be concrete, we will take

oE |E|<E.
0 |E| > E.

J(E) = {

Furthermore, we will assume that FE. is the largest energy in the problem. Explicitly calculate
F(w), neglecting terms of order w/E.. It may be useful to recall that

1
= —Z’]Té(ﬂ}‘—y),
r—y Ty

though this example has been cooked up so that one does not have to explicitly use this formula.

3.7. Substituting this expression for F' into equation of motion for X should give the equations of
motion for a damped harmonic oscillator. What is the frequency Q of this oscillator? Note that
in most experimental realizations of this system there is no way to measure the bare frequency §2.
Only the renormalized frequency € is physical.



