P653 HW2

Due Sept 8, 2005

Problem 1. Information Theoretic Definition of Entropy

Entropy is a measure of the uncertainty in an ensemble. Here we will use some simple information theoretic ideas (due to Shannon) to calculate the entropy for a generic ensemble – even one which is not in equilibrium.

Our setup is that we know that our system is in one of N states, and that each state i occurs in the ensemble with probability p_i .

Suppose we measure that the system is in state i. Let us assume that we can quantify the amount that we learn from this measurement. Call this k_i . Clearly k_i is larger if the probability p_i is smaller. We will define k_i so that it is only a function of the probability p_i , ie

$$k_i = k(p_i).$$

We will define the entropy of information S_I (for the remainder of this question we drop the I) to be the average amount of information gained from a measurement:

$$S = \sum_{i} p_i k(p_i).$$

1.1. Entropy, as a state variable is extensive. Suppose we build a larger system out of two independent subsystems A and B. The entropy of the whole should be

$$S = S_A + S_B$$

where S_A and S_B are the entropies of the parts.

Use this relationship to derive a functional relationship that k must obey.

[Hint 1: Recall that independence means that the probability of A being in state i and B being in state j is $p_{ij} = p_i + p_j$.]

[Hint 2: You will need to use that $\sum_i p_i = 1$.]

1.2. Show that this functional relationship is obeyed by

$$k(x) = -k\log(x),$$

for any constant k.

Prove that these are the only solutions to this relationship. [Feel free to assume that k(x) is differentiable, and you may use standard uniqueness theorems.]

-1

1.3. We need that the entropy will be maximized in equilibrium. What constraint does that place on the sign of k?

As the notation might suggest, we will take the constant k to be Boltzmann's constant. We have therefore arrived at the definition

$$S_I = -k_b \sum_i p_i \log p_i,$$

where the I stands for information.

- **1.4.** Show that the thermodynamic entropy in the microcannonical ensemble is equal to the information entropy.
- **1.5.** Show that the thermodynamic entropy in the cannonical ensemble is equal to the information entropy.

Problem 2. Maximum Entropy Principle Consider the set of all possible states i of a system. Each of these state contains a given number of particles N_i and has energy E_i . We define an ensemble of these states by specifying the probability p_i for the system to be in a given state.

Find the p_i 's for the ensemble which maximizes the entropy S_I subject to the constraint that the expectation value of the energy and particle number are fixed,

$$\langle E \rangle = \sum_{i} p_i E_i$$

$$\langle N \rangle = \sum_{i} p_i N_i$$

[Don't forget that the probabilities are constrained by $\sum_i p_i = 1$.]

Problem 3. Microscopic origin of dissipation

Here we look at a simple model of a dissipative classical system, namely an oscillator coupled to an oscillator bath. For a quantum treatment, see Feynman and Vernon, Ann. Phys. 24, 118 (1963).

Consider a harmonic oscillator with position X, momentum P, and frequency Ω , linearly coupled to a bath of other oscillators with positions x_i , momenta p_i and frequencies ω_i . This system obeys a Hamiltonian

$$H = \frac{P^2}{2M} + \frac{1}{2}M\Omega^2 X^2 + \sum_{i} \left(\frac{p_i^2}{2m_i} + \frac{1}{2}m_i \omega_i^2 x_i^2 \right) + \sum_{i} \lambda_i x_i X.$$

- **3.1.** Write the equations of motion for x_i , p_i , X, and P.
- **3.2.** Fourier transform these equations of motion, using the convention

$$A(t) = \int \frac{d\omega}{2\pi} e^{-i\omega t} A(\omega).$$

- **3.3.** Eliminate $p_i(\omega)$ to write $x_i(\omega)$ as a function of $X(\omega)$.
- **3.4.** Eliminate $x_i(\omega)$ and P from the equations for X, to arrive at an equation of the form,

$$[\omega^2 - \Omega^2 - F(\omega)]X = 0.$$

What is $F(\omega)$?

3.5. It is convenient to introduce a "spectral density"

$$J(E) = \sum_{i} \frac{\lambda_i^2}{m_i \omega_i} 2\pi \delta(E - \omega_i)$$

which encodes all relevant information about the oscillator bath. Verify that

$$F(\omega) = \frac{1}{2M} \int \frac{dE}{2\pi} \frac{1}{\omega - E} \left[J(E) - J(-E) \right].$$

3.6. In the limit of a large bath, one can assume that J(E) is smooth. We will concentrate on an *ohmic* bath, where $J(E) = \alpha E$ for small E. To be concrete, we will take

$$J(E) = \begin{cases} \alpha E & |E| < E_c \\ 0 & |E| > E_c \end{cases}$$

Furthermore, we will assume that E_c is the largest energy in the problem. Explicitly calculate $F(\omega)$, neglecting terms of order ω/E_c . It may be useful to recall that

$$\frac{1}{x-y} = \frac{P}{x-y} - i\pi\delta(x-y),$$

though this example has been cooked up so that one does not have to explicitly use this formula.

3.7. Substituting this expression for F into equation of motion for X should give the equations of motion for a damped harmonic oscillator. What is the frequency $\bar{\Omega}$ of this oscillator? Note that in most experimental realizations of this system there is no way to measure the bare frequency Ω . Only the renormalized frequency $\bar{\Omega}$ is physical.