
P653 HW9

Due Nov 10, 2005

Problem 1. Susceptability of O(n) model

Consider a system of spins which sit in d-dimensional space and which can point in n dimensions,

with Landau Free energy

F =

∫

ddr(c/2)(∇µSi(r))(∇µSi(r)) + (a/2)Si(r)Si(r) + (b/4)(Si(r)Si(r))(Sj(r)Sj(r))− hi(r)Si(r),

where Einstein summation is assumed with µ running from 1 to d and i, j running from 1 to n. We

will flip between using integers and letters to denote the directions. For example if I say h = hx̂,

that is equivalent to saying hj = δj1h.

In class we considered the case where h = 0, here we will consider h 6= 0.

1.1. First consider the case where h(r) = h1x̂ is uniform and points in the x̂ direction [ie hi = hδj1].

Minimize F , and show that S = Sx̂, and S satisfied the cubic equation

aS + bS3 − h = 0.

1.2. Fix b > 0, and find the boundary in the h− a plane between where this equation has one and

three solutions. For h 6= 0 this defines the spinodal.

1.3. Let h = hx̂ + δh‖e
ik·rx̂, and let S = Sx̂ + δSei·rx̂ minimize the free energy. Calculate δS to

linear order in δh‖. Your expression may contain S.

The longitundinal susceptability is defined as

χ‖ =
δS

δh‖

Verify that when h → 0 you recover the expression from class

χ‖

∣

∣

∣

h=0
=

1

ck2 + 2|a|
.

1.4. What happens to the longitudinal susceptability in the metastable state at the spinodal? [ie.

at the spinodal, one of the minima disapears. Evaluate the susceptability of that metastable state.]

1.5. Show that even in the presence of nonzero δh‖ that Sj = 0 for all j 6= 1, and hence that

χyx =
δSy

δhx
= 0,

where hx = h‖.
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1.6. Now lets consider a transverse perturbation. Let h = hx̂+δh⊥eik·rŷ, and let S = Sx̂+δSye
i·rŷ

minimize the free energy. To linear order in δh⊥, calculate δSy. Show that as h → 0 one recovers

the result from class that

χ⊥|h=0 =
1

ck2
,

Problem 2. Continuum limit of x-y model Consider a microscopic x-y model on a square

lattice in two dimensions,

H = −J
∑

〈i〈j

Si · Sj = −JS2
∑

〈ij〉

cos(θi − θj),

where S is the length of the spins, and θ defines their directions. We will derive a continuum version

of this model, and evaluate the energy of some important quantities.

2.1. Suppose that θi varies slowly from one site to the next. Let θ(r) be a smooth function for

which θ(ri) = θi. Show that

H ≈

∫

d2r
−JS2

2
|∇θ(r)|2,

independent of the lattice spacing.

2.2. There can be spin configurations which are not smooth. An example is a vortex: θ(r) =

arctan(y/x) = Im log(x + Iy). This configuration is smooth except for a region near r = 0. Let

ξ ∼ a be a length for which θ(r) is smooth when r > ξ. If the size of the system is L, estimate the

contribution to the energy of a vortex configuration from all spins at r > ξ. This is described as

the region ”outside the vortex core”.

You should find that this energy diverges as L → ∞.

Hint 1: The continuum approximation works in this region.

Hint 2: Take the sample to be circular in shape.

2.3. Estimate the energy contributions from outside the vortex cores of a vortex-antivortex pair

separated by a distance d(≫ ξ): θ(r) = Im [log(x − d/2 + Iy) − log(x + d/2 + Iy)].

Hint 1: Take the limit of an infinite system, this energy is finite in that limit.

Hint 2: Use Stoke’s Theorem (ie integrate by parts):

∫

Ω
d2r|∇θ|2 =

∫

∂Ω
dℓ·θ∇θ −

∫

Ω
d2rθ∇2θ.

Note that ∇2θ = 0. Look out for branch cuts.
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Problem 3. Correlation functions in harmonic crystal

As a simple model of a crystal, consider a system of particles that want to for a square lattice in d

dimensions, with lattice constant a. If we only consider the interaction between neighboring atoms

one can approximate the Hamiltonian as

H =
∑

〈ij〉

V (ri − rj) +
∑

i

p2
i

2m
,

where ri is the position of the i’th particle and pi is the momentum of that particle. We now assume

that each particle stays near its equilibrium position, r
(0)
i , in which case ri = r

(0)
i + δi. Presumably

V has a minimum at this point, so we can expand and get to an Einstein model,

H =
∑

〈ij〉

mω2
0

2
(δi − δj)

2 +
∑

i

p2
i

2m
.

3.1. Find the normal modes and their frequencies. What is the energy cost of exciting each of

these modes with some given amplitude.

This is a system with a spontaneously broken continuous symmetry. How is Goldstone’s theorem

manifested in these modes?

3.2. The equipartition theorem says that at finite temperature each degree of freedom should have

an energy kT/2. Use the equipartition theorem and the normal modes to estimate 〈|δi|
2〉 as the

system size becomes large.

What happens for d = 1, 2?

Hint 1: This result is independant of i, so you might as well take r0
i = 0.

Hint 2: Turn the sum into an integral. The integral is dominated by the modes of lowest energy.

Approximate cos(x) ≈ 1 − x2/2.

3.3. Use the same method to write down an integral for gij = 〈δiδj〉 as a function of the distance

r
(0)
i − r

(0)
j . How does this integral behave in the infinite system as r

(0)
i − r

(0)
j → ∞.

How is this related to the Mermin-Wagner theorem?
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