P653 HW9

Due Nov 10, 2005

Problem 1. Susceptability of O(n) model

Consider a system of spins which sit in d-dimensional space and which can point in n dimensions,
with Landau Free energy

F= /ddr(0/2)(Vusi(r))(vusi(r))+(a/2)5i(7’)5i(7’)+(b/4)(Si(T)Si(T))(Sj(T)Sj(T)) = hi(r)Si(r),

where Einstein summation is assumed with g running from 1 to d and 4, j running from 1 to n. We
will flip between using integers and letters to denote the directions. For example if I say h = hZ,
that is equivalent to saying h; = d;1h.

In class we considered the case where h = 0, here we will consider h # 0.

1.1. First consider the case where h(r) = h;& is uniform and points in the Z direction [ie h; = hd;1].
Minimize F', and show that S = Sz, and .S satisfied the cubic equation

aS+bS%—h=0.

1.2. Fix b > 0, and find the boundary in the A — a plane between where this equation has one and
three solutions. For h # 0 this defines the spinodal.

1.3. Let h = hz + 5h||eik'ra%, and let S = S& + §Se’” 4 minimize the free energy. Calculate 65 to
linear order in /. Your expression may contain S.

The longitundinal susceptability is defined as

_ s
X|| = 5h||

Verify that when A — 0 you recover the expression from class
B 1
Xlh=o = ck2 1 2lal’
1.4. What happens to the longitudinal susceptability in the metastable state at the spinodal? [ie.

at the spinodal, one of the minima disapears. Evaluate the susceptability of that metastable state.]

1.5. Show that even in the presence of nonzero éh that S; = 0 for all j # 1, and hence that
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where h, = h”.



1.6. Now lets consider a transverse perturbation. Let h = hi+0h e 7, and let S = Si+68,e" g
minimize the free energy. To linear order in 6k, calculate 0.S,. Show that as h — 0 one recovers

the result from class that .

Xi’h:o = PR

Problem 2. Continuum limit of x-y model Consider a microscopic x-y model on a square

lattice in two dimensions,
H=-JY 8; Sj=-J5) cos(6; — 0;),
(i(j (i)
where S is the length of the spins, and 8 defines their directions. We will derive a continuum version
of this model, and evaluate the energy of some important quantities.

2.1. Suppose that ; varies slowly from one site to the next. Let 6(r) be a smooth function for
which 6(r;) = ;. Show that

_7Q2
H~ /d%—‘gs V() 2,
independent of the lattice spacing.

2.2. There can be spin configurations which are not smooth. An example is a vortex: 6(r) =
arctan(y/x) = Imlog(x + Iy). This configuration is smooth except for a region near r = 0. Let
& ~ a be a length for which 6(r) is smooth when r > £. If the size of the system is L, estimate the
contribution to the energy of a vortex configuration from all spins at » > £. This is described as
the region ”outside the vortex core”.

You should find that this energy diverges as L — oo.
Hint 1: The continuum approximation works in this region.

Hint 2: Take the sample to be circular in shape.

2.3. Estimate the energy contributions from outside the vortex cores of a vortex-antivortex pair
separated by a distance d(>> &): 0(r) = Im [log(z — d/2 + Iy) — log(x + d/2 + Iy)].

Hint 1: Take the limit of an infinite system, this energy is finite in that limit.
Hint 2: Use Stoke’s Theorem (ie integrate by parts):

/ &r|VO|? = / d40-0v6 — / 2120,
Q o0 Q

Note that V20 = 0. Look out for branch cuts.



Problem 3. Correlation functions in harmonic crystal

As a simple model of a crystal, consider a system of particles that want to for a square lattice in d
dimensions, with lattice constant a. If we only consider the interaction between neighboring atoms

one can approximate the Hamiltonian as

o

H=Y V(r—rj)+ S

(i)
where r; is the position of the ¢’th particle and p; is the momentum of that particle. We now assume

(0)

; , in which case r; = r© + ;. Presumably

that each particle stays near its equilibrium position, r ;

V' has a minimum at this point, so we can expand and get to an Einstein model,
H=Y "0 524y B
w T

3.1. Find the normal modes and their frequencies. What is the energy cost of exciting each of
these modes with some given amplitude.

This is a system with a spontaneously broken continuous symmetry. How is Goldstone’s theorem

manifested in these modes?

3.2. The equipartition theorem says that at finite temperature each degree of freedom should have
an energy kT/2. Use the equipartition theorem and the normal modes to estimate (|5;]|?) as the

system size becomes large.
What happens for d = 1,27
Hint 1: This result is independant of 4, so you might as well take r¥ = 0.

Hint 2: Turn the sum into an integral. The integral is dominated by the modes of lowest energy.
Approximate cos(z) ~ 1 — z%/2.

3.3. Use the same method to write down an integral for g;; = (6;9;

as a function of the distance
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. How does this integral behave in the infinite system as r; — 0.

How is this related to the Mermin-Wagner theorem?



