
P653 HW10

Due Nov 22, 2005

Problem 1. Single particle density matrix of an ideal gas

Consider an ideal gas of particles of mass m in a large three-dimensional volume V at temperature

T connected with a reservoir of chemical potential µ. The single particle density matrix can be

taken to be ρ1(r, r
′) = 1

V

∑

k nke
ik·(r−r′), where nk is the number of particles of momentum k.

1.1. For Boltzmann particles, where nk = e−β(k2/2m−µ), calculate n1(r, r
′).

Hint: Use Cartesian coordinates for the integral.

Solution 1.1. The result only depends on x = r − r′. Choose Cartesian coordinates with the ẑ

axis aligned with x so that

ρ1(x) =
eβµ

(2π)3

∫

dkx e−βk2
x/2m

∫

dky e−βk2
x/2m

∫

dkz e−βk2
z/2m+ikzx

= eβµ
(

m

2πβ

)3/2

e−mx2/2β.

1.2. For zero temperature Fermi particles, where nk = 1, for k2/2m < µ, but nk = 0 for k2/2m > µ

calculate ρ1(r, r
′) in terms of kf =

√
2mµ. Plot ρ1 as a function of r − r′.
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Solution 1.2. The result only depends on x = r − r′, so

ρ1(x) =
1

(2π)3

∫

|k|<kf

d3k eik·x

=
1

(2π)2

∫ 1

−1
d cos θ

∫ kf

0
dk k2eikxcos(θ)

=
1

2π2

∫ kf

0
dk

k

x
sin(kx)

=
1

2π2x3
(sin(kfx) − kfx cos(kfx)) .

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

kfx

6π
2

k
3 f

ρ
1

1.3. For Bose-condensed particles, µ = 0 and nk = 1/(eβk2/2m − 1) for k > 0, and n0 = N0 is the

number of condensed atoms, which is extensive. Here the integrals cannot be done in closed form.

What does ρ1 approach for large x = r − r′? Over what length scale does it approach this value

Solution 1.3. The contribution from the noncondensed particles falls off on a length-scale of

order
√

β/m, and it approaches N0/V .

Problem 2. Longitundinal and Transverse velocities In two dimensions, we can always

decompose v(r) = v‖(r) + v⊥(r), where ∇× v‖(r) = 0 and ∇ · v⊥(r) = 0.

2.1. Argue that there exists a smooth θ such that v‖(r) = ∇θ(r).

Solution 2.1. This is a consequence of ∇× v‖(r) = 0.

2.2. Show that if n(r) = ∇ × v⊥(r)/(2π), then v⊥(r) = ∇ ∫

dr′n(r′)Im log(z − z′). Assume that

n(r) is well behaved.

Solution 2.2. Taking the gradient of the suggested expression

∇v⊥(r) =

∫

dr′n(r′)∇2Im log(z − z′).

Recognizing that ∇2Im log(z − z′) = 2πδ2(r − r′) gives the desired result.
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2.3. Show that there exists a smooth φ such that v⊥(r) = ∇× (ẑφ(r)). How is φ related to n?

Hint: You may wish to remember the connection between stream functions and potential functions

[Cauchy-Riemann].

Solution 2.3. If f(z) is an analytic function then

∇f(z) = [x̂u − ŷv] + i [x̂v + ŷu] ,

where u and v are respectively the real and imaginary part of f ′(z). Thus the gradient of

the real and imaginary part of f(z) are perpendicular to one another. In particular φ(r) =

−
∫

dr′n(r′)Re log(z − z′).

2.4. Since θ is smooth we can write θ(r) =
∑

q eiq·rθq. Differentiate to prove that (v ‖)a(q) =

qaf(q). How is f(q) related to θq?

2.5. Still assuming that n(r) is well behaved, we can write n(r) =
∑

q eiq·rnq. Using that ∇×v⊥ = n,

show that (v‖)a(q) = ǫabqbg(q), where ǫxy = 1, ǫyx = −1, and ǫxx = ǫyy = 0. How is g(q) related

to nq?

We now see that the ‖ and ⊥ refer to whether the Fourier momenta of the velocity are parallel

or perpendicular to the velocity. These are known as the longitudinal and transverse velocities

respectively.

Problem 3. Wolff Algorithm This problem illustrates that Monte-Carlo update moves need not

be just simple local updates. The following algorithm does not suffer from the critical slowing down

of the metropolis algorithm.

Consider an N × N square lattice Ising model. Given a spin configuration {σ(0)
i } we will generate

a new configuration by the following ”cluster” algorithm. In this algorithm we generate a cluster,

and flip it. Note that we always flip something [unlike the Metropolis algorithm where we often

refuse to make a change].

To start the cluster, we choose a random site i. We grow the cluster by looking at each of its

neighbors j1, j2, j3, j4. If the nieghbors are aligned with i we add them to the cluster with probability

1− e−2βJ . If they are not aligned we never add them. Bonds where a spin is successfully added are

referred to as ”accepted”, bonds which are considered, but where a spin is not added are referred

to as ”rejected”.

We further grow the cluster by looking at each of the neighbors of the newly added sites. Again

we add them with probability 1 − e−2βJ if they are aligned with the cluster spins, and never add

them if they are not aligned.
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We repeat until no spins are added to the cluster.

Having generated the cluster we then flip it. This sequence of steps: generating a cluster and

flipping it, constitutes one step of a Markov process.

3.1. As a concrete example, consider the spin configuration depicted below on the left. Dark

(blue) squares represent spin up sites, and light squares represent spin down sites. Consider the

cluster illustrated in the middle. The red lines outline the cluster. Green x’s represent accepted

bonds, while bars represent rejected bonds. The starting site is marked with a yellow disk. The

configuration to the right represents what happens the configuration looks like after this cluster is

flipped.

Given that the temperature is T , what is the probability P that this cluster was generated (starting

from that particular starting square with that particular pattern of accepted and rejected bonds)?

Solution 3.1. The probability of choosing that particular starting square is 1/25. Each rejected

bond linking two blue squares occurs with probability e−2βJ . Each accepted bond linking two

blue squares occurs with probability (1−e−2βJ ). There are 3 rejected bonds between blue squares

[note the red dash above the yellow circle] and four accepted bonds. The total probability of this

particular sequence is then

P =
1

25
e−6βJ (1 − e−2βJ )4.

3.2. What is the energy difference between the final and initial configuration, Ef − E0.

Solution 3.2. The difference in energy can only be due to the boundary of the cluster. We go

from having 8 dissastisfied bonds and two sattisfied to having 8 sattisfied and 2 dissatisfied. So

Ef − E0 = −12J .

3.3. Using the same notation, the reverse move is illustrated below. Note that not only is the

cluster the same, but the pattern of accepted and rejected bonds is the same.
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What is the probability P̄ that this reverse cluster is generated?

Solution 3.3. Using the previous argument,

P̄ =
1

25
e−18βJ (1 − e−2βJ )4.

3.4. What is the ratio P/P̄? Show that detailed balance is satisfied. Argue that it will be satisfied

for an arbitrary cluster, not just the one considered here.

Solution 3.4.
P

P̄
= e12βJ =

e−βEf

e−βEi
,

as required by detailed balance.

Generically all of the terms from bonds in the middle of the cluster will cancel between the cluster

and the reverse cluster, leaving only the surface bonds. Counting the contribution from the surface

bonds is exactly the same as counting the energy difference from flipping the cluster. Therefore

we always sattisfy

3.5. Argue that this process is ergodic: ie. one can generate any spin configuration by repeatedly

applying these cluster moves.

Solution 3.5. There is always some possiblity that only a single spin is flipped. We know that

single spin flips can generate any configuration. Hence one can generate any configurations with

this algorithm.

3.6. Suppose at T = 0 all of the spins are aligned up. What does a single Markov step do to the

configuration? How does this compare to the Metropolis algorithm?

Solution 3.6. All spins automatically flip. Conversely in the Metropolis algorithm no spins flip.

3.7. At T = ∞ what does a single Markov step do to the configuration? How does this compare

to the Metropolis algorithm?
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Solution 3.7. A single spin randomly flips at each step. The same thing happens in the Metropo-

lis algorithm.
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