
P653 HW2

Due Sept 8, 2005

Problem 1. Information Theoretic Definition of Entropy

Entropy is a measure of the uncertainty in an ensemble. Here we will use some simple information

theoretic ideas (due to Shannon) to calculate the entropy for a generic ensemble – even one which

is not in equilibrium.

Our setup is that we know that our system is in one of N states, and that each state i occurs in

the ensemble with probability pi.

Suppose we measure that the system is in state i. Let us assume that we can quantify the amount

that we learn from this measurement. Call this ki. Clearly ki is larger if the probability pi is

smaller. We will define ki so that it is only a function of the probability pi, ie

ki = k(pi).

We will define the entropy of information SI (for the remainder of this question we drop the I) to

be the average amount of information gained from a measurement:

S =
∑

i

pik(pi).

1.1. Entropy, as a state variable is extensive. Suppose we build a larger system out of two inde-

pendant subsystems A and B. The entropy of the whole should be

S = SA + SB ,

where SA and SB are the entropies of the parts.

Use this relationship to derive a functional relationship that k must obey.

[Hint 1: Recall that independance means that the probability of A being in state i and B being in

state j is pij = pipj .]

[Hint 2: You will need to use that
∑

i pi = 1.]
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Solution 1.1. The entropy of the whole is

S =
∑

ij

pijk(pij) =
∑

i

pik(pi) +
∑

j

pjk(pj)

=
∑

ij

pipj [k(pi) + k(pj)] ,

where we have used the fact that
∑

i pi = 1. Equating terms in the sum, we have that

k(xy) = k(x) + k(y).

1.2. Show that this functional relationship is obeyed by

k(x) = −k log(x),

for any constant k.

Prove that these are the only solutions to this relationship. [Feel free to assume that k(x) is

differentiable, and you may use standard uniqueness theorems.]

Solution 1.2. It is obvious that the suggested form obeys the functional relationship. To prove

uniqueness, we first set x = y = 1 to find that k(1) = 0. We then let y = 1 + δ where δ is an

infinetesmal. To lowest order in δ one finds

δxk′(x) = δk′(1).

The uniqueness of the solution to this differential equation gives the desired result.

1.3. We need that the entropy will be maximized in equilibrium. What constraint does that place

on the sign of k?

Solution 1.3. Suppose we have the equilibrium pi’s. If we let p1 → p1 + δ and p2 → p2 − δ the

entropy changes be

∆S = −kδ log(p1p2) > 0.

Since pj < 0, this requires that k > 0.

As the notation might suggest, we will take the constant k to be Boltzmann’s constant. We have

therefore arrived at the definition

SI = −kb

∑

i

pi log pi,

where the I stands for information.

1.4. Show that the thermodynamic entropy in the microcannonical ensemble is equal to the infor-

mation entropy.
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Solution 1.4. In the microcannonical ensemble, pi = 1/Ω, where Ω is the number of states.

Therefore

SI = −kb

∑

i

pi log(pi) = −kb log(1/Ω) = kb log(Ω), (1)

which is the definition of the microcannonical entropy.

1.5. Show that the thermodynamic entropy in the cannonical ensemble is equal to the information

entropy.

Solution 1.5. In the cannonical ensemble, pi = e−βEi/Z, where Z = e−βF is the partition

function. The information entropy is

SI = kb

∑

i

e−βEi

Z
(βEi − log Z) =

1

T
(〈E〉 − F ), (2)

which is the thermodynamic entropy.

Problem 2. Maximum Entropy Principle Consider the set of all possible states i of a system.

Each of these state contains a given number of particles Ni and has energy Ei. We define an

ensemble of these states by specifying the probability pi for the system to be in a given state.

Find the pi’s for the ensemble which maximizes the entropy SI subject to the constraint that the

expectation value of the energy and particle number are fixed,

〈E〉 =
∑

i

piEi

〈N〉 =
∑

i

piNi

[Don’t forget that the probabilities are constrained by
∑

i pi = 1.]

Solution 2.1. We need to introduce three Lagrange multipliers [β, µ, F ] to account for the three

constraints of fixed energy, number, and probability. We therefore need to minimize the function

L =
S

kB
− β [(〈E〉 − E) − µ(〈N〉) − N ] + (βF + 1)(

∑

i

pi − 1). (3)

Taking the derivative with respect to pi yields

∂L

∂pi
= [− log pi − 1] − β [Ei − µNi] + (βF + 1) = 0. (4)

Solving for pi gives

pi =
e−β(Ei−µNi)

Z
, (5)

where Z = e−βF .
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Problem 3. Microscopic origin of dissipation

Here we look at a simple model of a dissipative classical system, namely an oscillator coupled to an

oscillator bath. For a quantum treatment, see Feynman and Vernon, Ann. Phys. 24, 118 (1963).

Consider a harmonic oscillator with position X, momentum P , and frequency Ω, linearly coupled

to a bath of other oscillators with positions xi, momenta pi and frequencies ωi. This system obeys

a Hamiltonian

H =
P 2

2M
+

1

2
MΩ2X2 +

∑

i

(

p2
i

2mi
+

1

2
miω

2
i x

2
i

)

+
∑

i

λixiX.

3.1. Write the equations of motion for xi, pi, X, and P .

Solution 3.1.

ẋi = pi/mi

ṗi = −miω
2
i xi − λiX

Ẋ = P/M

Ṗ = −MΩ2X −
∑

i

λixi

3.2. Fourier transform these equations of motion, using the convention

A(t) =

∫

dω

2π
e−iωtA(ω).

Solution 3.2.

−iωxi = pi/m

−iωpi = −miω
2
i xi − λiX

−iωX = P/M

−iωP = −MΩ2X −
∑

i

λixi

3.3. Eliminate pi(ω) to write xi(ω) as a function of X(ω).

Solution 3.3.

xi =
λi

mi(ω2 − ω2
i )

X

3.4. Eliminate xi(ω) and P from the equations for X, to arrive at an equation of the form,

[ω2 − Ω2 − F (ω)]X = 0.

What is F (ω)?
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Solution 3.4.

F (ω) =
∑

i

λ2
i

Mmi(ω2 − ω2
i )

.

3.5. It is convenient to introduce a ”spectral density”

J(E) =
∑

i

λ2
i

miωi
2πδ(E − ωi)

which encodes all relevant information about the oscillator bath. Verify that

F (ω) =
1

2M

∫

dE

2π

1

ω − E
[J(E) − J(−E)] .

Solution 3.5. The formula is readily verified by substituting J(E) into the right hand side.

3.6. In the limit of a large bath, one can assume that J(E) is smooth. We will concentrate on an

ohmic bath, where J(E) = αE for small E. To be concrete, we will take

J(E) =

{

αE |E| < Ec

0 |E| > Ec

Furthermore, we will assume that Ec is the largest energy in the problem. Explicitly calculate

F (ω), neglecting terms of order ω/Ec. It may be useful to recall that

1

x − y
=

P

x − y
− iπδ(x − y),

though this example has been cooked up so that one does not have to explicitly use this formula.

Solution 3.6.

F =
α

2πM

∫ Ec

−Ec

dE E

ω − E

=
α

2πM
(−2Ec + ω log

(

1 + ω/Ec

−1 + ω/Ec

)

=
α

2πM
(−2Ec − iπω + ωO(ω/Ec)).

It should be apparent that to this order in ω/Ec, this result is actually independent of the form

of the cutoff.

3.7. Substituting this expression for F into equation of motion for X should give the equations of

motion for a damped harmonic oscillator. What is the frequency Ω̄ of this oscillator? Note that

in most experimental realizations of this system there is no way to measure the bare frequency Ω.

Only the renormalized frequency Ω̄ is physical.

Solution 3.7.

Ω̄2 = Ω2 −
αEc

πM
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