
P653 HW3

Due Sept. 15, 2005

Problem 1. Alben model (Plischke and Bergersen 3.14)

The symmetry breaking aspect of second order phase transitions can be nicely illustrated in a simple

mechanical model [R. Alben, American Journal of Physics 40, 3 (1972)]. An airtight piston of mass

M is inside a tube of cross sectional area a. The tube is bent into a semicircular shape of radius R.

a

φ

M

R

The system is kept at temperature T . On each side of the piston there is an ideal gas consisting

of N atoms. The volume to the right of the piston is aR(π/2 + φ), while the volume to the left is

aR(π/2 − φ). Using the free energy of an ideal gas, F = −NkB [1 − ln(Nλ3/V )], one finds

F = MgR cos(φ) − NkBT

[

2 + ln

(

aR(π/2 + φ)

Nλ3

)

+ ln

(

aR(π/2 − φ)

Nλ3

)]

,

where λ2 = h̄2/(2πmkBT ).

1.1. Show by minimizing the free energy that the system undergoes a symmetry breaking phase

transition (φ 6= 0) at a temperature

Tc =
MgRπ2

8NkB
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Solution 1.1. Making F stationary, we find

∂F

∂φ
= −MgR sin(φ) +

2NkBTφ

(π/2)2 − φ2
= 0.

It suffices to consider φ ≥ 0 in which case,

MgR sin φ ≤ MgRφ

2NkBTφ

(π/2)2 − φ2
≥

2NkBTφ

(π/2)2
.

Thus if MgR < 8NkBT/π2 the only possible solution is φ = 0.

Looking at the curvature
∂2F

∂φ2

∣

∣

∣

∣

∣

φ=0

= −MgR +
8NkBT

π2
,

we see that the φ = 0 solution is a local maximum if MgR > 8NkBT/π2, Therefore, in this low

temperature regime, the minimum must occur at nonzero φ.

1.2. Plot the “order parameter” φ vs T/Tc for T < Tc.

Solution 1.2. The angle φ obeys

T

Tc
=

1 − (2/π)2φ2

φ
sin(φ),

which gives
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1.3. Describe what happens to the phase transition if the number of atoms on the left and right

side of the piston is N(1 − δ) and N(1 + δ) respectively.

Solution 1.3. In the T − δ plane, there is a critical point at T = Tc and δ = 0. A first order

phase transition line extends from Tc to T = 0.
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1.4. At a certain temperature the right chamber (containing N(1 + δ) molecules) is found to

contain a puddle of liquid coexisting with its vapor. Which of the following statements may be true

at equilibrium:

1. The left chamber will contain a liquid in coexistence with its vapor.

2. The left chamber contains only vapor.

3. The left chamber contains only liquid.

Solution 1.4. In the coexistence region, the free energy per particle of the liquid and gaseous

phases must be the same. Thats why they coexist! Therefore the free energy of the fluid on the

right hand side has no φ dependence, and can be ignored.

We now consider each of the possibilities:

1. The left chamber contains a liquid in coexistence with its vapor. By the above argument, the

only φ dependence of F is F = MgR cos(φ). The piston therefore moves to one side until one

side becomes all gas or all liquid. Therefore, this is not a possibility.

2. The left chamber contains only vapor. This may be locally stable if φ > 0 so the pressure on

the left is smaller than the pressure on the right. If δ > 0 then this will be only locally stable

(metastable), but if δ < 0 this will be the global minimum of the free energy.

3. The left chamber contains only liquid. This may be stable if φ < 0 so the pressure on the left is

greater than the pressure on the right. If δ < 0 then this will be only locally stable (metastable),

but if δ > 0 this will be the global minimum of the free energy.

Problem 2. Bethe Approximation (Plischke and Bergersen sec. 3.4)

Here we work through a more general mean field theory for the Ising model, where we include some

short range correlations. As before, we select out one site, with spin σ0, but we also select out all

q of its neighboring sites. We assume that none of the neighbors are neighbors to each-other. The

Hamiltonian of these q + 1 sites will be approximated by

Hc = −Jσ0

q
∑

j=1

σj − hσ0 − h′
q

∑

j=1

σj .

The h′ is the effective field that each of the q neighbors feels, which includes the effect of all the

spins (except σ0) which are their neighbors.

2.1. Calculate the partition function for this cluster

Zc =
∑

σj=±1

e−βHc .
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Solution 2.1.

Zc =
∑

{σk}

e−βHc

=
∑

σ0

eβhσ0

[

∑

σ1

eβ(Jσ0+h′)σ1

]

· · ·





∑

σq

eβ(Jσ0+h′)σq





=
∑

σ0

eβhσ0
[

2 cosh[β(Jσ0 + h′)]
]q

= eβh [

2 cosh[β(J + h′)]
]q

+ e−βh [

2 cosh[β(J − h′)]
]q

.

2.2. Write an expression for 〈σ0〉 when h = 0.

Solution 2.2.

〈σ0〉 =
1

β

∂ log Zc

∂h

∣

∣

∣

∣

h=0

=
1

Zc

{[

2 cosh[β(J + h′)]
]q

−
[

2 cosh[β(J − h′)]
]q}

.

2.3. Write an expression for 〈σj〉 when h = 0.

Solution 2.3. If j 6= 0 we have

〈σj〉 =
1

βq

∂ log Zc

∂h′

∣

∣

∣

∣

h=0

=
1

Zc

{

2 sinh[β(J + h′)]
[

2 cosh[β(J + h′)]
]q−1

− 2 sinh[β(J − h′)]
[

2 cosh[β(J − h′)]
]q−1

}

.

2.4. Since the ferromagnet is translationally invarient, we require 〈σj〉 = σ0. Show that this

requirement leads to the formula

coshq−1[β(J + h′)]

coshq−1[β(J − h′)]
= e2βh′

. (1)

Solution 2.4. Equating the two expressions, gives

[

cosh[β(J + h′)] − sinh[β(J + h′)]
] [

2 cosh[β(J + h′)]
]q−1

=
[

cosh[β(J − h′)] − sinh[β(J − h′)]
] [

2 cosh[β(J − h′)]
]q−1

.

Noting that cosh(A) − sinh(A) = e−A, we arrive at the desired expression.

Equation (1) always has the solution h′ = 0. When h′ → ∞, the left hand side approaches a

constant while the right hand side diverges. Therefore a sufficient condition to have a solution with

h′ 6= 0 is to have the slopes ∂h′L.H.S > ∂h′R.H.S. at h′ = 0.
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2.5. Find the slopes at h′ = 0, and thereby find the critical temperature, at which the solutions

for h′ 6= 0 exist.

Solution 2.5. Equating these slopes gives

kBTc =
J

arctanh[1/(q − 1)]
.

2.6. For the 1 −D Ising model, q = 2. What is the critical temperature predicted by this approx-

imation? Is this better than our previous mean field approximation?

Solution 2.6. Setting q = 1 we get Tc = 0, which agrees with the exact result.

2.7. For the 2 − D Ising model on a square lattice, q = 4. What is the critical temperature?

Solution 2.7. Setting q = 4 gives kBTc = 2.89J .

2.8. What is the critical temperature in the limit of large q? How does this compare with our

previous mean field approximation?

Solution 2.8. At large q we recover our previous mean field result, qβJ = 1.

2.9. Near the transition temperature show that the magnetization obeys m(h = 0) ∝ |T − Tc|
β .

Find β.

Solution 2.9. For T near Tc, m and h′ are linearly related. Therefore h′ ∝ |T − Tc|
β , and it

suffices to find how h′ varies with T .

One needs to expand equation (1) in powers of h′ and in powers of T−Tc. The algebra is simplified

if we first symmetrize the expression, writing (1) as

e−βh′/(q−1) cosh(β(J + h′))

cosh(βJ)
− eβh′/(q−1) cosh(β(J − h′))

cosh(βJ)
= 0.

Expanding to cubic order in h′, we find

a(T )(βh) + b(T )(βh)3 + · · · = 0,

where a(T ) = 2 tanh(βJ) − 2/(1 − q) = a1(T − Tc) + · · · and 3b(T ) = tanh(βJ)[3/(q − 1)2 + 1] −

[3/(q − 1) + 1/(q − 1)3] = b0 + b1(T − Tc) + · · ·, where a1, b0, and b1 are all non-zero.

To lowest order in Tc − T , one finds

h2 = a1/b0(T − Tc),

and β = 1/2.
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Problem 3. Latent Heat (Plischke and Bergersen 3.11)

Consider the Landau free energy

G(m,T ) = a +
b

2
m2 +

c

4
m4 +

d

6
m6

and assume that b > 0, c < 0, and d > 0 so that a first-order transition takes place. Derive an

expression for the latent heat of transition. [Hint: read section 3.7]

Solution 3.1. This free energy has three local minima: m = 0,±m0, where the latter are the

solutions to the quadratic equation dm4
0 + cm2

0 + b = 0. The phase transition occurs when the

free energy of the symmetry broken phase m = ±m0 is equal to that of the symmetric phase. As

shown in section 3.7 this occurs when b = (3/16)c2/d, corresponding to m2
0 = −(3/4)c/d.

The latent heat is given by the product L = TδS, where δS is the entropy difference between the

two phases. The entropy is simply S = ∂G/∂T , where the derivative is taken while holding fixed

∂G/∂m = 0. This gives

L = −
b′T

2
m2

0 +
c′T

4
m4

0 +
d′T

6
m6

0,

where primes denote derivatives with respect to T .
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