
P653 HW5

Due Sept 29, 2005

Problem 1. Upper Critical Dimension

By comparing the fluctuations in one coherence volume to the mean field, calculate the upper

critical dimension for a system with free energy

f = am2/2 + bm6,

where m is the order parameter. As usual, we assume that a changes sign at the critical point and

b is positive. Such a free energy corresponds to a tricritical point.
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Solution 1.1. First we need to calculate how big the order parameter is near Tc. Minimizing f

gives

m =

{

0 a > 0
(

−a
6b

)1/4
a < 0

the first corresponding to T > Tc, the latter T < Tc. In particular, assuming that a is linear near

Tc we have m ∼ |T − Tc|
1/4.

Second we need to calculate the correlation function. To do that we add a term c|∇m|2 to the

free energy, and look at linear response to a perturbation h0δ(r).

G(r) =
δ〈m(r)〉

δh0
= β [〈m(r)m(0)〉 − 〈m(r)〉〈m(0)] = βΓ(r).

For a > 0, the response function obeys a differential equation of the form

∇2G(r) −
a

2c
G(r) =

−h0

2c
δ(r),

which as we showed in class in d dimensions gives something like

G(r) ∼ r2−de−r/ξ,

where the coherence length ξ =
√

a/2c, and thus ξ ∼ |T − Tc|
−1/2.

The fluctuations in a coherence volume are then

F =

∫

Ω(ξ)
ddr Γ(r) ∼

∫

Ω(ξ)
ddr r2−d ∼ ξ2.

The strength of the order in a coherence volume is

A =

∫

Ω(ξ)
ddr m2

0 ∼ ξdm2
0.

For mean field theory to work, the ratio G/F must be large,

A

F
∼ m2

0ξ
d−2 ∼ |T − Tc|

(3−d)/2.

Near the critical temperature this requires that d ≥ 3, and the upper critical dimension is therefore

dc = 3.

Problem 2. One dimensional s-state Potts model

Calculate the transfer matrix and free energy of the one-dimensional s-state Potts model with

periodic boundary conditions. This is a generalization of the Ising model where the spin on each

site σj can take on the values 1, 2, . . . , s, and has a Hamiltonian

H = −K
N

∑

j=1

[sδσjσj+1
− 1].
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Solution 2.1. The partition function is

Z =
∑

σ1,σ2,...

e−βH

=
∑

σ1,σ2,...

eβK[sδσ1,σ2
−1]eβK[sδσ2,σ3

−1] · · · eβK[sδσ1,σ2
−1]

= TrPN ,

where P is the s × s transfer matrix with components

Pστ = eβK[sδσ,τ−1].

That is

P =















eβK(s−1) e−βK e−βK · · ·

e−βK eβK(s−1) e−βK

e−βK e−βK . . .
...















.

The easiest way to find the eigenvalues of this matrix is to guess the eigenvectors:

v1 =



















1

1

1

1
...



















, v2 =



















1

−1

0

0
...



















, v3 =



















1

0

−1

0
...



















, · · ·

If you don’t like guessing you can note that if you subtract off the diagonal and rescale, P is a

projection matrix. Regardless, one comes up with eigenvalues

λ1 = eβK(s−1) + (s − 1)e−βk

λj 6=1 =
(

eβK(s−1) − e−βk
)

.

The net result is that

F = −kBT log Z = −kBT log
[

λN
1 + (s − 1)λN

2

]

≈ −NkBT log
[

eβK(s−1) + (s − 1)e−βk
]

.

Problem 3. Critical Exponents

Here we explore if critical exponents can be different above and below the transition temperature.

We will concentrate the critical exponent for the coherence length, taking ξ ∼ (T − Tc)
ν (T > TC)

and ξ ∼ (Tc − T )ν
′

(T < Tc). As shown in class, the scaling hypothesis tells us that the singular

part of the free energy density is

f = |t|dν̄F±
f

(

h

|t|ν̄yh

)

,
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with ν̄ = ν or ν ′ depending on if T > Tc or T < Tc. For h 6= 0, f should be a smooth function of

t = (T −Tc)/Tc, because the only singularity is the one coming from the critical point at t = h = 0.

Show that f can be written in the form

f = hd/yhφ±

(

h

|t|ν̄yh

)

,

and explain how the smoothness assumption mentioned above constrains the analytic form of the

functions φ±. Hence show that ν = ν ′.

Solution 3.1. We define

φ±(x) = x−d/yhF±
f (x).

As long as x 6== 0 or ∞, this is a smooth transformation. With this definition,

f = hd/yhφ±

(

h

|t|ν̄yh

)

.

If h 6= 0 then f must be smooth. For example, continuity requires φ+(∞) = φ−(∞). Looking at

the derivative with respect to t,

∂f

∂t
= −νyh

hd/yh+1

tνyh+1
φ′

+

(

h

|t|νyh

)

t > 0

= −ν̄yhh
1

yh
(d− 1

ν
)
χ+

(

h

|t|νyh

)

∂f

∂t
= ν ′yh

hd/yh+1

|t|ν′yh+1
φ′
−

(

h

|t|ν′yh

)

t < 0

= ν ′yhh
1

yh
(d− 1

ν′
)
χ−

(

h

|t|ν′yh

)

,

where χ±(x) = x1+1/ν̄yhφ′
±(x). Since there can be no singularity at t = 0 when h 6= 0, one

must have that νχ+(x) + ν ′χ(x) → 0 as x → ∞. Moreover, continuity of this derivative requires

χ+ = χ− and ν = ν ′.
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