P653 HW5

Due Sept 29, 2005

Problem 1. Upper Critical Dimension

By comparing the fluctuations in one coherence volume to the mean field, calculate the upper
critical dimension for a system with free energy

f=am?/2+bmb,

where m is the order parameter. As usual, we assume that a changes sign at the critical point and
b is positive. Such a free energy corresponds to a tricritical point.



Solution 1.1. First we need to calculate how big the order parameter is near T.. Minimizing f

0 a>0
m:
()" a<o

gives

the first corresponding to T' > T, the latter T' < T¢. In particular, assuming that a is linear near
T. we have m ~ |T — T,|"/*.

Second we need to calculate the correlation function. To do that we add a term ¢|Vm/|? to the
free energy, and look at linear response to a perturbation hod(r).

a(r) = 2D _ 5 (rym(0)) — (m(r) (m(0)] = BI(r).

For a > 0, the response function obeys a differential equation of the form

VG(r) - 5Glr) = S20(r),

which as we showed in class in d dimensions gives something like
G(r) ~ ¥ de /8,

where the coherence length € = \/a/2¢, and thus & ~ [T — T,|~1/2.
The fluctuations in a coherence volume are then

F = drD(r) ~ / dirr?=d ~ g2,
Q(8) Q(8)

The strength of the order in a coherence volume is
A = / ddrm? ~ &4m?.
Q(8)

For mean field theory to work, the ratio G/F must be large,

A _ _
F ngfd 2N ’T—TC’(?’ d)/2
Near the critical temperature this requires that d > 3, and the upper critical dimension is therefore

de. = 3.

Problem 2. One dimensional s-state Potts model

Calculate the transfer matrix and free energy of the one-dimensional s-state Potts model with
periodic boundary conditions. This is a generalization of the Ising model where the spin on each
site 0 can take on the values 1,2,...,s, and has a Hamiltonian

H=-K) [s05,6,, — 1].

Jj=1



Solution 2.1. The partition function is

Z = Z e PH

01,02,...
_ Z eﬁK[S‘SUlvf’z —1] e,@K[s&,Q,gS —1] .. eﬁK[S‘SUlvf’z —1]
01,02,...

= TrPV,
where P is the s x s transfer matrix with components

P, = ePKlstor—1l.

That is
ePBE(s—1)  —BK e BPK
P =
e PK e PK

The easiest way to find the eigenvalues of this matrix is to guess the eigenvectors:

1 1 1
1 -1

’Ul: 1 s ’02: 0 N ’1)3: —1 gt
1 0 0

If you don’t like guessing you can note that if you subtract off the diagonal and rescale, P is a
projection matrix. Regardless, one comes up with eigenvalues

A= PRETD 4 (5 — 1) PF
)\j;él = (651{(8_1) — e_ﬁk) .
The net result is that
F = —kpTlogZ = —kpTlog [\ + (s — 1A}

~ —NkgTlog [eﬁK(s_l) +(s— 1)6_51“} .

Problem 3. Critical Exponents
Here we explore if critical exponents can be different above and below the transition temperature.

We will concentrate the critical exponent for the coherence length, taking £ ~ (T'— T,)" (T > T¢)
and & ~ (T, — T)" ' (T < T.). As shown in class, the scaling hypothesis tells us that the singular

part of the free energy density is
5 h
__ |4|dD £
f_‘t‘ Ff (’t’”yh>7

-3




with 7 = v or ¢/ depending on if T' > T, or T' < T,.. For h # 0, f should be a smooth function of
t = (T —1T.)/T., because the only singularity is the one coming from the critical point at t = h = 0.
Show that f can be written in the form

f=tttmo (o),

|t|l7yh

and explain how the smoothness assumption mentioned above constrains the analytic form of the
functions ¢+. Hence show that v = /.

Solution 3.1. We define
¢+ (x) = 2~ VI FE (D).

As long as ¢ #= 0 or oo, this is a smooth transformation. With this definition,

£ttt (o).

|t|l7yh

If h # 0 then f must be smooth. For example, continuity requires ¢4 (00) = ¢_(o0). Looking at
the derivative with respect to t,

d 1
% = —Vyh%gbg_ (#) t>0
= P ()
d/yn+1
o = ”/yh|]z|:'jh+1¢/—<|t|f’yh> <y
= V/yhhﬁ(d_%)X— <\t\%>,

where y4(z) = z!1/7¥n ¢/ (x). Since there can be no singularity at t = 0 when h # 0, one
must have that vx, (z) +v'x(x) — 0 as x — oco. Moreover, continuity of this derivative requires

X+ =x_ and v =1




