
P653 HW6

Due Oct 6, 2005

Problem 1. Scaling

Here we explore how the renormalization group leads to scaling for coupling constants which are not

aligned with the eigendirections of the linearized flow equations. For concreteness we will imagine

that the two coupling constants of interest are t and h, the reduced temperature and magnetic field

of a spin system. We imagine that these are linearly related to coupling constants K1 and K1,
(

K1

K2

)

=

(

a b

c d

)(

t

h

)

. (1)

The constants K1 and K2 correspond to eigendirections of the linearized flow equations, so under

rescaling by length ℓ,

K ′
1 = ℓy1K1

K ′
2 = ℓy2K2.

Under rescaling the coherence length is reduced by a factor of ℓ so

ξ(K ′
1,K

′
2) =

1

ℓ
ξ(K1,K2).

Assume both constants are relevant, so y1, y2 > 0.

1.1. Prove that ξ can be written in the form

ξ(K1,K2) = K
−1/y2

2 φ(K1K
−y1/y2

2 ). (2)

Find the asymptotic behavior of φ(x) as x→ 0 and x→ ∞.

Solution 1.1. The desired expression comes from setting ℓ = K
−1/y2

2 , and defining φ(x) = ξ(x, 1).

When K1 = 0, and K2 6= 0, the coherence length, ξ, should be well behaved and finite, which

requires φ(0) is simply a constant. Similarly, when K2 = 0 and K1 6= 0, the coherence length, ξ,

should be well behaved and finite, which requires φ(x) ∝ x−1/y1 as x→ ∞.

1.2. Setting h = 0, use equation (??) and (??) to write ξ as a function of t. Using the asymptotic

properties of φ, determine how ξ behaves as t→ 0.

Solution 1.2. Simple substitution yields

ξ(t) = c−1/y2t−1/y2φ(t1−y1/y2ac−y1/y2).

As t → 0 there are two possibilities. If y1 < y2, then the argument of φ goes to zero and

ξ(t) ∼ t−1/y2 . On the other hand, if y2 < y1 then the argument of φ goes to infinity and

ξ(t) ∼ t−1/y1 .
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1.3. How would this argument change if one of these coupling constants, say K1, was irrelevant?

Solution 1.3. If y1 < 0, the argument goes through to the point where we write

ξ(t) = c−1/y2t−1/y2φ(t1−y1/y2bc−y1/y2).

At this point we note that if y1 < 0 and y2 > 0 the the argument of φ vanishes as t → 0, and

therefore ξ(t) ∼ t−1/y2 . The irrelevant exponent is unimportant (irrelevant?).

Note that the argument about the asymptotic behavior of φ is a little subtle here. First, as

K1 → 0 at fixed K2, the result cannot depend on K1, so φ(0) must be a constant. Now, if we

take K2 → 0 zero at fixed K1 we also have x→ 0. Therefore ξ → ∞ as K2 → 0 at fixed K1. This

is exactly what you expect. All points on the critical manifold have ξ = ∞.

Your should also note that that we know nothing about the behavior of φ(x) as x→ ∞. However,

for the structure near the critical point this behavior is unimportant.

Problem 2. Method of Auxilliary Fields

Consider an Ising model of the form

H = −1

2

∑

ij

Jijσiσj −
∑

i

Hiσi,

where the spins lie on a lattice in d dimensional space, Jij = J > 0 if i and j are nearest neighbors,

but Jij = 0 otherwise. The spins take on values σ = ±1.

If we use Einsteins summation notation, where repeated indices are summed over, this becomes

H = −1

2
Jijσiσj −Hiσi,

2.1. Why is the factor of 1/2 in this Hamiltonian? Show that this is the same as

H = −J
∑

〈ij〉

σiσj −
∑

i

Hiσi,

Solution 2.1. The 1/2 is because we are counting each bond twice now.

2.2. Prove that for any N ×N symmetric matrix A, and any length N vector B, that

∫ ∞

−∞

dx1√
2π

dx2√
2π

· · · dxN√
2π
e−xiAijxj/2+xiBi =

1

(detA)1/2
eBi(A

−1)ijBj/2. (3)

Hint: make a change of variables yi = xi − (A−1)ijBj.
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Solution 2.2. Performing the suggested substitution we have

−xiAijxj/2 + xiBi = −yiAijyj/2 +Bi(A
−1)ijBj/2.

The measures change trivially, dyi = dxi, so we only need to prove that

I =

∫ ∞

−∞

dy1√
2π

dy2√
2π

· · · dyN√
2π
e−yiAijyj/2 =

1

(detA)1/2
.

For this step, we use that a symmetric matrix A can be diagonalized with a orthonormal matrix

Λ. This lets us transform the y’s into a new set of coordinates zi in which A is diagonal. The

Jacobian for the transformation is 1. We then have a product of N independent gaussian integrals

yielding

I =
∏

α

1

α1/2
,

where α runs over the eigenvalues of A. One readily sees that this is the determinant.

2.3. We want to calculate the partition function

Z =
∑

σ1,σ2,...,σN

e−βH .

By using equation (??) with (A−1)ij = βJij and Bi = σi, show that

Z =

∫ ∞

−∞
dψ1 dψ2 · · · dψNe

−βS , (4)

where S, is given by

e−βS =
∑

σ1,σ2,...,σN

√

det((βJ)−1)

(2π)N
exp

[

−1

2
(ψi − βHi)[(βJ)−1]ij(ψj − βHj) + ψiσi

]

.

Solution 2.3. Direct substitution gives

e−βS =
∑

σ1,σ2,...,σN

√

det((βJ)−1)

(2π)N
exp

[

−1

2
xi[(βJ)−1]ijxj + (xi + βHi)σi

]

.

Changing variables ψi = xi + βHi gives the desired expression.

2.4. Do the sum over the σ’s.

Solution 2.4. The sum is now easy, and we find

e−βS =

√

det((βJ)−1)

(2π)N
exp

[

−1

2
(ψi − βHi)[(βJ)−1]ij(ψj − βHj)

]

∏

i

2 coshψi.

The partition function for this discrete spin model is thus mapped onto the partition function of a

theory where a continuous variable ψi lives on each site. This is known as a lattice field theory.
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If we take the continuum limit we would have a field ψ(r), and the multiple integral in equation

(??) would be a functional integral (an integral over the space of functions). We would then have

a continuum field theory (usually just called a field theory).

2.5. Saddle point approximation

Assuming that S is a strongly peaked function of ψ, one can approximate Z ≈ e−βS0 , where S0 is

the value of S at the minimum [ie. where ∂S/∂ψj = 0].

Let ψ̄i be the value of ψi at the minimum. Find the equation satisfied by ψ̄i and show that

mi = 〈σi〉 = − ∂F

∂Hi
≈ −∂S0/∂Hi

is given by mi = tanh ψ̄i. Hence find Hi as a function of {mi}.

Solution 2.5. The stationarity condition ∂S/∂ψi = 0 yields

−[(βJ)−1]ij(ψj − βHj) + tanhψi = 0.

The definition of mi gives

mi = −∂S0/∂Hi = [(βJ)−1]ij(ψj − βHj).

Comparing terms we have

mi = tanh ψ̄i

.

2.6. Assuming that the F ≈ S0, and substituting Hi with mi, show that

F ≈ F0 +
1

2
Jijmimj − kBT

∑

i

log





2
√

1 −m2
i



 ,

where F0 is a constant independent of mi.
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Solution 2.6. Several of you noticed that there is something fundamentally wrong about this free

energy – see the end of this problem for the explanation. The wrong argument goes as follows:

We make two substitutions. First, using

tanhψi = mi,

we write

coshψi =
1

√

1 −m2
i

.

Second, using

ψi − βHi = βJijmj,

we write

(ψi − βHi)[(βJ)−1]ij(ψj − βHj) = βmiJijmj.

This then gives the desired expression.

2.7. The equilibrium value of mi is found by minimizing this Free energy. Assuming that mi = m

is uniform, and that each spin has q nearest neighbors, find the temperature at which the system

undergoes a phase transition.

Solution 2.7. Again, this argument is not quite right:

The transition temperature is found by expanding F to quadratic order and finding where the

quadratic coefficient vanishes. Taking m to be uniform this yields

qJN

2
− NkBT

2
= 0.

Which gives Tc = qJ/kB .

Note, this saddle point approximation is equivalent to the mean field approximation that we had

made in class.

2.8. What went wrong?
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Solution 2.8. So what went wrong? The problem is that when we substituted tanhψi = mi, we

needed to add a constraint. The fact that something is wrong should be clear from the fact that

we somehow lost a thermodynamic variable (H). Also, the free energy went from concave to convex.

There are several ways to fix the problem. The most physical one is to notice that what we

wanted to do was a Legendre transformation. I’ll leave it as an exercise to work out how that goes.

The most straightforward approach, however is to simply not use the constraint, in which case

one instead makes the substitution

coshψi = cosh (βJijmj + βHi) ,

which gives

F ≈ F0 +
1

2
Jijmimj − kBT

∑

i

log (cosh (βJijmj + βHi)) ,

which we recognize as our mean-field free energy. taking all mi’s to be equal, and setting Hi = 0

gives

F ≈ F0 +
qN

2
Jm2 −NkBT log cosh(qβJm)

= F0 +
qNJ

2
(1 − qβJ)m2 + · · ·

which has the correct curvature and which recovers the mean-field transition temperature.

Problem 3. Free Energy of a Continuum model

To prep ourselves for discussions in class, it will be useful to calculate the exact free energy of a

simple continuum model: the Gaussian model. We consider at each place in space there is a real

valued field φ(r), and the free energy is given by a sum over all configurations of the field. Formally

we can write

Z = e−βF =

∫

Dφ e−βS[φ].

Where S[φ] is a functional.

The simplest way to define such a functional integral is to work in a finite volume so that we may

write φ(r) as a Fourier sum,

φ(r) =
1

V

∑

k

eik·rφk.

We then define
∫

Dφ =

∫

∏

k

dφk.

We will use a simple model where

S[φ] =

∫

dr
γ

2
|∇φ(r)|2 +

at

2
|φ(r)|2,
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where t = (T − Tc)/Tc is linear in temperature, and a, γ > 0.

[Note, one could derive this free energy by taking the continuum limit of problem 2, and expanding

to quadratic order.]

Once t < 0 this theory is ill-defined, but we can still consider what happens as we approach the

critical temperature t = 0 from the disordered phase.

We will be thinking of φ as a coarse-grained variable, so it only makes sense to talk about it on

sufficiently long length-scales. Thus we will also have a momentum scale Λ, and set φk = 0 for all

|k| > Λ.

3.1. Write S in terms of the φk, and perform the integrals over r to arrive at

e−βF =

∫

∏

k

dφk exp−
[

β

2V

∑

k

(at+ γk2)φkφ−k)

]

Solution 3.1. Performing the substitution,

S =

∫

dr
1

V 2

∑

k k′

(

−γ
2
kk′ +

at

2

)

φkφk′ei(k−k′)·r

=
1

2V

∑

k

(

γk2 + at
)

φkφ−k,

which is of the required form.

3.2. By noting that φ(r) is real, show that φ−k = φ∗k.

Solution 3.2. Using the Fourier expansion of φ(r) = φ∗(r),

∑

k

eik·rφk =
∑

k

e−ik·rφ∗k.

Equating coefficients of eik·r gives φk = φ∗−k.

3.3. Let w be a complex number. Calculate the Gaussian integral

I =

∫

dw dw∗ e−a|w|2 = 2i

∫

dx dy e−a(x2+y2),

where w = x+ iy. You can take this to be the definition of the measure dw dw∗.

Solution 3.3. This is a standard integral

I =
2πi

a
.
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3.4. Use this result to calculate the partition function. Do not worry about multiplicative constants

(such as 2π’s) which will play no role in any thermodynamic derivatives.

Solution 3.4. Neglecting multiplicative constants,

Z =
∏

k

(

kBTV

γk2 + at

)

.

3.5. With what power of t does the specific heat diverge as t→ 0+? How does this compare with

mean-field theory results.

Solution 3.5. The free energy is

F = −kBT logZ = −kBT
∑

k

log

(

kBTV

γk2 + at

)

.

The heat capacity is

c = −T ∂
2F

∂T 2
.

There are three T ’s that we need to differentiate with respect to. Since we are only interested in

the most singular behavior, however, we can save ourselves some work. We note that every time

we differentiate with respect to the t we bring a k2 into the denominator, making the expression

more singular. Differentiating with respect to the other T ’s has no such effect. Thus the most

singular part of c is

cs = − T

T 2
c

∂2F

∂t2
=

T

T 2
c

∑

k

a2

(at+ γk2)2
.

Converting the sum to an integral

cs =
TV

T 2
c

∫

ddk

(2π)d
a2

(at+ γk2)2
.

There are several ways to estimate this integral. The easiest one is to break it into two parts:

large k and small k. For large k the integrand becomes independent of t, and because of the cutoff

Λ, just integrates to a constant. For small k, we need to worry about t. If we set t = 0 we have

a problem. We are then trying to integrate ddk/k4. The small k part of the integral diverges if

d ≤ 4. Finite t effectively cuts off the integral at k =
√

at/γ, resulting in

cs ∼
∫

√
at/γ

ddk

k4
∼ t(d−4)/2,

for d < 4 and

cs ∼ constant

for d > 4.

Thus in d > 4 we recover the mean field result α = 0 and in lower dimensions we find α = 2−d/2,
where

c ∼ t−α.

-8


