
P653 HW7

Due Oct 20, 2005

Problem 1. Ising model near the upper critical dimension On the last homework we showed

that the Ising model in d dimensions can be mapped onto a field theory, which near the critical

point had a free energy

e−βF =

∫

Dφ e−βS (1)

S =

∫

ddr
a

2
φ2 + bφ4 +

1

2
|∇φ|2, (2)

where a and b are temperature dependant. We also showed that if you neglect b, you recover the

mean field result (which gives the correct critical behavior for sufficintly large dimension). Thus we

expect that b will be irrelevant above the upper critical dimension for the Ising model d = 4. We

will prove that this is the case by using dimensional analysis. We will then look at the behavior

near this upper critical dimension.

1.1. The argument of an exponent must be dimensionless. Deduce the dimensions of [a], [b] and

[φ] in terms of Energy [E] and Length [L]?

Solution 1.1. The dimensions of [S] is [E]. From the gradient term we then see [φ] =

[E1/2/Ld/2−1]. Looking sequentially at the other terms, we then find [a] = [L−2] and [b] =

[Ld−4/E].

1.2. One can produce an expression for βS which only involves dimensionless quantities by writing

it in terms of x = r/r0 and ψ = φ/φ0, where r0 and φ0 have the same dimensions as r and φ.

Choose the rescaling to produce an expression

βS =

∫

ddx
1

2
ψ(x)2 + γψ(x)4 +

1

2
|∇xψ(x)|2.

How is the dimensionless coupling γ related to a and b?

Solution 1.2. Under the rescaling we require ard
0φ

2
0 = kBT , rd−2

0 φ2
0 = kBT , and γ = brd

0φ
4
0kBT .

This gives r0 = 1/
√
a, φ2

0 = kBT/a
d−2, and

γ = b(kbT )3a(d−4)/2.

1.3. Near the critical point a ∝ T − Tc. To investigate critical properties we therefore let a → 0.

Show that γ → 0 if d > 4, but γ → ∞ if d < 4. Therefore one can ignore the ψ4 term in higher

dimension.
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Solution 1.3. This result is self-evident.

It turns out that for d = 4 − ǫ one can do perturbation theory in ǫ and derive a renormalization

group flow. We will do this in class soon. Upon rescaling by a factor ℓ, the constants a and b obey

ℓ
da

dℓ
= 2a+ 12Kd

b

1 + a

ℓ
db

dℓ
= ǫb− 36Kd

b2

(1 + a)2
,

where Kd is a positive constant which depends slowly upon the dimension d. These hold for

sufficiently small a and b. Note this is a notation change from class, where what we are calling ℓ

here was called b. The change is necessary since we have something else called b this time.

1.4. To lowest order in ǫ, find the fixed points and sketch the flow diagram for ǫ < 0 (corresponding

to d > 4) and ǫ > 0 (corresponding to d < 4).
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Solution 1.4. In all cases there is a fixed point at a = b = 0. Linearizing about this fixed point

one finds

ℓ∂ℓ

(

a

b

)

=

(

2 12Kd

0 ǫ

)(

a

b

)

. (3)

This has eigenvalues λ = 2 and λ = ǫ, corresponding to eigenvectors (δa, δb) = (1, 0) and

(12Kd,−2 + ǫ).

For ǫ > 0 there is a second fixed point at a = a∗ = −ǫ/6 and b = b∗ = ǫ/36Kd. Linearizing about

this point one finds

ℓ∂ℓ

(

δa

δb

)

=

(

2 − ǫ/3 12Kd

0 −ǫ

)(

δa

δb

)

. (4)

Here the eigenvalues are λ = 2 − ǫ/3 and λ = −ǫ, corresponding to eigenvectors (δa, δb) = (1, 0)

and (18Kd,−3 − ǫ).

Note that for ǫ < 0 there is also a fixed point at negative b, but this unstable fixed point is

unphysical. This model with negative b is unstable.

Using this behavior near the fixed points, we make the following sketch,

.

As with our expansion about the lower critical dimension (d = 1 – the dimension at which Tc=0)

we have one fixed point splitting into two. We know that when ǫ < 0 the one fixed point is a
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critical point, corresponding to ξ = ∞. Therefore all flows that terminate on this fixed point are

on the critical manifold with ξ = ∞. By continuity, when ǫ > 0 all flows which terminate at either

of these fixed points must still correspond to ξ = ∞. Therefore these are both critical points. [This

linearized theory is does not produce the fixed points which describe the ordered phases.]

1.5. Show that for ǫ > 0 the critical point at a = b = 0 is unstable in all directions and hence the

system can only be near this fixed point if both a and b are carefully tuned.

Solution 1.5. This is easily shown by examining the eigenvalues of (3), which are described

above. When ǫ > 0 the eigenvalues are both positive.

Because of this need for careful tuning, generically the system will flow by the other fixed point.

This second fixed point therefore determines the critical properties.

1.6. Linearize the flow equations about this second fixed point. Using that a is proportional to

T − Tc, deduce the critical exponent ν defined by ξ ∼ |T − Tc|−ν .

Solution 1.6. We have already shown the linearization, and the relevant (in both the technical

and colloquial sense) eigenvalue is λ = 2 − ǫ/3. Now, since t ∼ ℓλ and ξ ∼ ℓ−1, we should have

ξ ∼ t−1/λ, which gives ν = 1/λ = 1/(2 − ǫ/3).

Problem 2. Using the Migdal-Kadanoff recursion relations, calculate the specific heat of the Ising

model in dimension d = 1 + ǫ. Using notation from class, the recursion relations are

b
dK

db
= (d− 1)k +

1

2
sinh(2K) log(tanhK). (5)

Hint: Under renormalization by scale b, the free energy remains fixed, but the volume of space is

reduced. Therefore the singular part of the free energy scales as

F ′
s = b−dFs(t

′) = Fs(t). (6)

(cf. Plischke and Bergersen section 6.2). Use the recursion relationship to relate t′ to t, and choose

b intelligently.
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Solution 2.1. Linearizing the recursion relations about the critical point yields

b
∂t

∂b
= ǫt, (7)

which is integrated to find

t′ = bǫt. (8)

Using the hint, we then have

Fs(t) = b−dFs(b
ℓt).

This is true for all b. In particular, we can take b = e−1/ǫ to see that

Fs(t) ∝ td/ǫ

The specific heat is the second derivative of the free energy with respect to temperature, so

C ∝ td/ǫ−2 = t1/ǫ−1 = t−α.

The specific heat exponent is therefore α = 1 − 1/ǫ.

This should be compared to the exact value α = 0 in two dimensions, and the numerical result

α = 0.11 in three dimensions.

Problem 3. Wick’s Theorem

3.1. Let A be a real symmetric matrix. Define

〈xqxr〉 =

∫∞
−∞ dnxxqxre

−
∑

ij
Aijxixj

∫∞
−∞ dnxe

−
∑

ij
Aijxixj

.

Prove that 〈xqxr〉 is a matrix element of the inverse matrix A−1, namely, 〈xqxr〉 = (1/2)A−1
qr . (Note

this is different than (Aqr)
−1..

Solution 3.1. The really slick solution is to note that

〈xqxr〉 =
∂2

∂ηrηs

∫∞
−∞ dnxe

−
∑

ij
Aijxixj+

∑

j
ηjxj

∫∞
−∞ dnxe

−
∑

ij
Aijxixj

,

evaluated at η = 0. Completing the square, this gives

〈xqxr〉 =
∂2

∂ηrηs
e(1/2)(A−1)ijηiηj ,

which trivially gives the desired result.

3.2. Using the obvious generalization of this notation, prove that

〈xaxbxcxd〉 = 〈xaxb〉〈xcxd〉 + 〈xaxc〉〈xbxd〉 + 〈xaxd〉〈xbxc〉
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This result is a special case of the linked-cluster theorem, known as ”Wick’s theorem”. We will use

it for developing a perturbation theory.

Solution 3.2. Using the slick approach to the last problems

〈xaxbxcxd〉 =

(

∂4

∂ηa∂ηb∂ηc∂ηd
e〈xixj〉ηiηj

)

η=0

.

Expanding the exponential, one sees that the only nonzero terms are the ones shown.

Problem 4. Kosterlitz-Thouless flows

We will talk at length about the two-dimensional x-y model soon. Here you will play with the

renormalization group flow equations that we will derive.

For the two dimensional x-y model, it turns out there are two important coupling constants. The

obvious one is the spin stiffness K = J/kbT , which in a discrete model could be defined by

H = −J
∑

〈ij〉

Si · Sj

while in a continuum model would be

H = Jcont

∫

d2r |∇φ(r)|2,

There is some numerical factor (which we don’t care about) which connects J to Jcont. In each

of these cases S is the direction of the spin (of magnitude 1) and φ is the angle which defines the

direction of the spin.

It turns out that a second coupling constant is important; namely the energy Ec to create a vortex

[if you are unsure about what exactly this means – don’t worry about it, we will talk about the

physics in class]. We parameterize this energy by the fugacity y = eβEc .

A nontrivial argument (which we will do in class) yields flow equations

ℓ
d
(

K−1
)

dℓ
= 2π3y2

ℓ
dy

dℓ
= (2 − πK)y,

where ℓ is the length by which the system is scaled. These equations only hold for sufficiently small

y and K−1.

These have a structure which is very different from the flow equations that we have seen so far.

4.1. Show that there exists a fixed line at y = 0.
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Solution 4.1. Setting y = 0 shows that this is true.

4.2. Show that for K−1 = kBT/J < π/2 this fixed line is stable, while for K−1 = kBT/J > π/2 it

is unstable. This means that at sufficiently low temperature, vortices are irrelevant (in the technical

sense) and that they play no role in the physics, while at high temperature vortices drive the system

to a high temperature fixed point which is not described by this linearized theory.

Solution 4.2. dy/dℓ > 0 if K−1 > π/2 and dy/dℓ < 0 if K−1 < π/2.

4.3. Draw a flow diagram which shows typical renormalization group trajectories in the K-y plane.

Solution 4.3.
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