
P653 HW8

Due Nov 3, 2005

Problem 1. Feynman Diagrams Here are a series of exercises intended to practice your profi-

ciency with Feynman diagrams.

1.1. Write the integrals which correspond to the following diagrams

(a) (b) (c)

Solution 1.1.

=
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ddq1 d
dq2
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=
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u0

4
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(2π)2d
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∫

Λ

ℓ
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dq2 d

dq3
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(2π)dδ(k + q1 + q2 + q3)

×
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(r0 + q21)(r0 + q22)(r0 + q23)

=

(

u0

4

)2 ∫

|k|<Λ
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(2π)2d
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×

∫

Λ

ℓ
<|qj|<Λ

ddq1 d
dq2

(2π)2d

1

(r0 + q21)(r0 + q22)(r0 + (k − q1 − q2)2)

=

(

u0

4

)2 ∫

|kj |<Λ

ddk1 d
dk2 d

dk3 d
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(2π)4d
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φk2
φk3
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∫

Λ

ℓ
<|qj |<Λ

ddq1 d
dq2

(2π)2d

×(2π)dδ(k1 + k2 + q1 + q2)(2π)dδ(k3 + k4 − q1 − q2)
1

(r0 + q21)(r0 + q22)

=

(

u0

4

)2 ∫

|kj |<Λ

ddk1 d
dk2 d

dk3 d
dk4

(2π)4d
φk1

φk2
φk3

φk4
(2π)dδ(k1 + k2 + k3 + k4)

×

∫

Λ

ℓ
<|q|<Λ

ddq

(2π)d
1

(r0 + q2)(r0 + (k1 + k2 − q)2)

1.2. What are the multiplicities of the following diagrams?
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(a) (b) (c)

Solution 1.2. (a) 3; (b)

(

4

2

)2

2 = 72; (c)

(

4

2

)2

4 = 144

1.3. Prove that the following diagrams evaluate to zero. [The most straightforward approach is to

convert the diagrams to integrals. Make sure to keep track of the limits of integration!! By the

time you are on part (c), you should be able to give an argument that doesn’t require writing out

the integral. As an extra hint, note that there is a part of the diagram which is the same in each

case.]

(a) (b) (c)

Solution 1.3. All of these diagrams have an external line φ′k which has the same momentum as

an internal line ψk. Since the external lines must have k < Λ/ℓ, but the internal lines require

Λ/ℓ < k < Λ, the integrals are zero.

1.4. In class we explicitly showed that if you consider the terms which contain no φ′’s (but do

contain ψ’s) that 〈〈V 2〉〉 = 〈V 2〉 − 〈V 〉2 consists only of connected diagrams. Give the same

construction for terms which contain two φ′’s. i.e. construct all of the diagrams for 〈V 2〉 which

contain two φ′’s, and subtract off 〈V 〉2 to explicitly show that 〈〈V 2〉〉 only contains connected

diagrams.

Solution 1.4. This is an exercise in combinatorics. Keeping all terms,

〈V 〉2 =

[

+ 6 + 3

]2

.

On the other hand, the requested terms of the second moment are

〈V 2〉 = 36

( )

+ 144

( )

+ 144

( )

.

Problem 2. Surface Area of a d-dimensional Sphere Here we calculate the area of a d-

dimensional sphere by doing a Gaussian integral two ways. Let

F =

∫

ddq e−q2

.
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First evaluate F by converting to Cartesian coordinates. Next evaluate F by using spherical

coordinates, assuming that the surface area of a d-dimensional sphere of unit radius is Sd. Equating

these two expressions gives you a formula for Sd.

Give your result in terms of the Gamma function,

Γ(z) =

∫ ∞

0
tz−1e−tdt.

Solution 2.1.

F = πd/2 (1)

= Sd

∫ ∞

0
dq qd−1e−q2

. (2)

We then change variables: x = q2 to arrive at

F = SdΓ(d/2)/2,

which gives

Sd = 2πd/2/Γ(d/2)

Problem 3. n-vector model We can easily generalize our discussion of the Ising model to higher

dimensional spins: for example, the x-y model uses 2-dimensional spins, and the Heisenberg model

uses 3-dimensional spins. We will work with n dimensional spins, in which case the Landau free

energy will be of the form

−H =

∫

ddr
n
∑

α=1







[

1

2
∇φα(r) · ∇φα(r) +

r0
2
φα(r)2

]

+
n
∑

α,β=1

u0

4
φα(r)φα(r)φβ(r)φβ(r)







where α, β represent the component of the spin.

As before, we can produce the true free energy from a functional integral

e−F =

∫

∏

α

DφαeH .

Following the procedure we carried out in class, calculate the flow equations for r0 and u0 to first

order in V . If you set n = 1 these should reduce to the equations we found in class.
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Solution 3.1. As in class we divide momenta between k < Λ′ = Λ/ℓ and Λ′ < k < Λ, and

let φk → ϕk or φk → ψk depending upon which of these regions we are in. We then write

H = H0 +H1+V , with −H0 =
∑

k<Λ′

∑

α |ϕα
k |

2(r0 +k2)/2, −H1 =
∑

Λ′<k<Λ

∑

α |ψα
k |

2, and −V =
∑

k1,k2,k3,k4<Λ(u0/4)δk1+k2+k3+k4

∑

α,β φ
α
k1
φα

k2
φβ

k3
φβ

k4
, where we have used the compact notation

∑

k → (2π)−d
∫

ddk and δk → 2πdδ(k). We denote 〈X〉 =
∫

DψXeH1 , in which case e−F =
∫

DφeH =
∫

DϕeH
′

≈
∫

DϕeH0+〈V 〉. Our first task is then the calculate 〈V 〉. We will use

that H1 is Gaussian so that we can use Wick’s theorem. A straightforward Gaussian integral

gives 〈ψα
q ψ

β
k 〉 = (2π)dδ(q + k)δαβ/(r0 + k2). As before there are three sorts of terms in 〈V 〉:

those with all ψ’s, those with two ϕ’s and those with four ϕ’s. These terms respectively supply

a constant, a renormalization of r0 and the bare u0 term. The only calculation we need to

do is the second term. It should be clear there is only one integral we need to consider; ie

=(2π)−d
∫

ddk
∑

α |ϕα
k |

2(u0/4)I1, where I1 = (2π)−d
∫

Λ′<q<Λ d
dq/(q2 + r0) is the same integral

we encountered in the Ising case. The only difference here is the multiplicity of this term. Before

we found that there were six of these terms in the expansion of 〈V 〉. Now however we have

to consider the spin multiplicity. Of these six contractions, two of them [those of the form

〈ψα
k1
ψα

k2
〉ϕβ

k3
ϕβ

k4
and 〈ψβ

k3
ψβ

k4
〉ϕα

k1
ϕα

k2
] each contribute n terms because of the sum over the spins

of the ψ’s. On the other hand, the other four contractions just contribute 1 term each because

once you specify the spin of the ϕ’s it fixes the spins of the ψ’s. Thus the multiplicity here

is 2n + 4, and to this level of approximation H ′ =
∑

k<Λ′

∑

α |ϕα
k |

2(k2 + r0 + (n + 2)u0I1)/2 +
∑

k1,k2,k3,k4<Λ′(u0/4)δk1+k2+k3+k4

∑

α,β ϕ
α
k1
ϕα

k2
ϕβ

k3
ϕβ

k4
. As before we must rescale k and ϕ so that

we are integrating over the domain k < Λ and that the k2 term has coefficient 1/2. One then

finds

r′0 = ℓ2[r0 + (n+ 2)I1]

u′0 = ℓ(4 − d)u0.

If we set n = 1 we clearly recover the results from class.

Problem 4. Quantum-Classical Correspondence

Solution 4.0. I told everyone that they did not need to do this problem – there was a logical

flaw in it. I’ve included the solutions to show how if you ignore part of my advice you can get the

right answer. Apologies!

Here we will demonstrate that the quantum mechanical statistical mechanics of a single spin-1/2

is equivalent to the classical statistical mechanics of a 1-D Ising chain. This is a special case of the

general result that the statistical mechanics of a d-dimensional quantum model is equivalent to the

statistical mechanics of a d+1 dimensional classical model.

We will discuss the general argument later in class, but this example illustrates the basic idea.
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Throughout we will consider a single spin with Hamiltonian

Ĥ = E0 −
∆

2
σ̂x − hσ̂z.

where σ̂x and σ̂z are the standard Pauli matrices.

4.1. Diagonalize H, to find the energy eigenvalues Eα. Use the definition of the partition function,

Z =
∑

α

e−βEα

to show that

F = E0 − T log

(

2 cosh β
√

(∆/2)2 + h

)

.

Solution 4.1. The eigenvalues are E± = E0+±
√

(∆/2)2 + h2, which gives the desired expression.

4.2. We will now do the same calculation in a different basis. In an arbitrary basis the partition

function is

Z =
∑

i

〈i|e−βĤ |i〉.

We will work in the standard basis aligned with the ẑ direction.

In this language we need to calculate the matrix

e−βĤ = e−β(E0−
∆

2
σ̂x−hσ̂z).

We will use a simple trick to calculate this exponential of a matrix. We are going to write

e−βĤ = TN ,

where T = e−βĤ/N . Show that in the limit of large N ,

T ≈

(

e−β(E0−h)/N β∆/2N

β∆/2N e−β(E0+h)/N

)

Solution 4.2.

T ≈ 1 − βĤ/N =

(

1 − β
N (E0 − h) β

2N ∆
β

2N ∆ 1 − β
N (E0 + h)

)

≈

(

e−β(E0−h)/N β∆/2N

β∆/2N e−β(E0+h)/N

)

4.3. We now note that if we let E0 = (N/β) log(β∆/2N), then T has the same form as the transfer

matrix for the 1-D classical Ising model. Using this correspondence write down a classical model

which is equivalent to the quantum problem of a single spin.

Verify that this classical system has the same free energy as the single quantum spin.
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Solution 4.3. It seems my advice of setting E0 = (N/β) log(β∆/2N) causes all sorts of probems.

To get things to work out, one instead needs to add a constant term to our Ising model.

With this extra term, the equivalent Ising model is

H =
∑

i

(A− Jσiσi+1) − h̃
∑

i

σi,

with transfer matrix

T = e−β(A−J)

(

eβh̃ e−2βJ

e−2βJ e−βh̃

)

Equating terms gives e−2βJ = eβE0/Nβ∆/2N , h̃ = h/N , and (A−J) = E0/N . Note that N(A−J)

is the energy of the ground state, so this last identification makes sense.

The eigenvalues of the transfer matrix are

λ± = e−β(A−J)
[

cosh(βh̃) ±
√

sinh2(βh̃) + e−4βJ

]

,

giving a free energy

F = −
1

β
log(λN

+ + λn
−)

= N(A− J) −
1

β
log

[

(

cosh(βh̃) +
√

sinh2(βh̃) + e−4βJ

)N

+

(

cosh(βh̃) −
√

sinh2(βh̃) + e−4βJ

)N
]

We now make the appropriate substitutions, keeping only the leading corrections in 1/N ,

F = E0 −
1

β
log





(

1 +

√

β2h2 + (β∆/2)2

N

)N

+

(

1 +

√

h2 + (∆/2)2

N

)N




≈ E0 −
1

β
log(2 cosh β

√

h2 + (∆/2)2),

where we have used that (1 + x/N)N → ex.

This quantum-classical correspondence lets us either use our knowledge of classical thermodynamics

to solve problems in quantum thermodynamics, or it allows us to solve thermodynamics problems by

studying quantum systems. For example, Onsager’s famous solution of the 2-D Ising model simply

involves mapping the 2-D Ising model onto a 1-D quantum mechanics problem. The quantum

problem turns out to just involve non-interacting fermions, and is trivially solved.
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