P653 HW9

Due Nov 10, 2005

Problem 1. Susceptability of O(n) model

Consider a system of spins which sit in d-dimensional space and which can point in n dimensions,
with Landau Free energy

F= /ddT(C/Q)(Vusi(f))(vusi(r))+(a/2)5z'(7")5i(7")+(b/4)(Si(r)Si(T))(Sj(T)Sj(T)) — hi(r)Si(r),

where Einstein summation is assumed with g running from 1 to d and 4, j running from 1 to n. We
will flip between using integers and letters to denote the directions. For example if I say h = hz,
that is equivalent to saying h; = d;1h.

In class we considered the case where h = 0, here we will consider h # 0.

1.1. First consider the case where h(r) = h;& is uniform and points in the Z direction [ie h; = hd;1].
Minimize F', and show that S = Sz, and .S satisfied the cubic equation

aS +bS%—h=0.

Solution 1.1. This equation is merely 0F/0S; = 0. The derivatives with respect to other
components 0F/§S; give similar expressions but without h. The only way that all of these
equations can be simultaneously satisfied is if S; = 0 for all j # 1.

1.2. Fix b > 0, and find the boundary in the A — a plane between where this equation has one and
three solutions. For h # 0 this defines the spinodal.

Solution 1.2. At the spinodal, two of the extrema coincide. This means that 9?F/9S? = 0,
which yields

a4+ 3bS? = 0.
Eliminating S gives
9
—a = —bh?.
‘T

1.3. Let h = hZ + 5h||eik"":i", and let S = S& + §Se’"# minimize the free energy. Calculate 6.5 to
linear order in /. Your expression may contain S.

The longitundinal susceptability is defined as



Verify that when h — 0 you recover the expression from class

1
Xlh=o = ck2 1 2lal’

Solution 1.3. To linear order one has
ck®5S + adS + 3b5*6S — 5hy =0,

which yields

a+3bS? + ck?
When h = 0 this simplifies because S? = —a/b, yielding the result from class

08 =

1
X”‘h:o  ck? +2[a|

1.4. What happens to the longitudinal susceptability in the metastable state at the spinodal? [ie.
at the spinodal, one of the minima disapears. Evaluate the susceptability of that metastable state.]

Solution 1.4. At the spinodal, the metastable state satisfies
a+ 3bS* =0,

which tells us that 1

X|| = @7

diverges as k — 0.

1.5. Show that even in the presence of nonzero dh that S; = 0 for all j # 1, and hence that

58,

Xym:%:()a

where h, = hH'

1.6. Now lets consider a transverse perturbation. Let h = hi+0h | e 7, and let S = S£+5Syei'ry
minimize the free energy. To linear order in dh, calculate 05,. Show that as h — 0 one recovers

the result from class that 1

XJ_|h:O = 2’

Solution 1.5. Linearizing the equation for the § component of S yields
ck?8Sy + adS + bS*5S, — dhy =0,

which gives
ohy

~ ht k2’

where we have used the equation satisfied by the equilibrium S.

58,
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Problem 2. Continuum limit of x-y model Consider a microscopic x-y model on a square
lattice in two dimensions,
H=-JY 8; Sj=-J5) cos(; — 0;),
(i(g (ij)
where S is the length of the spins, and 6 defines their directions. We will derive a continuum version
of this model, and evaluate the energy of some important quantities.

2.1. Suppose that ; varies slowly from one site to the next. Let 6(r) be a smooth function for
which 6(r;) = 0;. Show that

H~ /d%«_ S w00
~ : ,

independent of the lattice spacing.

Solution 2.1. One approximates
cos(0; — 0;) =~ 1 —[0(r;) — 9(Tj)]2/2 ~1—[(rj —1;) -nabla@(m)]2 /2.
Summing over nearest neighbors gives

Z cos(0; — 0;) = 4 — a* Inablad(r;)|?,
neighborsj

from which

H =~ const+JZa2|V9(7‘)|2/2

2
~ const+/d2r%|V9(r)|2.

Note the sign error in the posing of the question.

2.2. There can be spin configurations which are not smooth. An example is a vortex: 6(r) =
arctan(y/x) = Imlog(x + Iy). This configuration is smooth except for a region near r = 0. Let
& ~ a be a length for which 6(r) is smooth when r > £. If the size of the system is L, estimate the
contribution to the energy of a vortex configuration from all spins at » > £. This is described as

the region ”outside the vortex core”.
You should find that this energy diverges as L — oo.
Hint 1: The continuum approximation works in this region.

Hint 2: Take the sample to be circular in shape.

Solution 2.2.

L 2
E =2r / drrﬁiz = 1.J5%log(¢/L)
¢ 2 r
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2.3. Estimate the energy contributions from outside the vortex cores of a vortex-antivortex pair
separated by a distance d(>> &): 0(r) = Im [log(z — d/2 + Iy) — log(x + d/2 + Iy)].

Hint 1: Take the limit of an infinite system, this energy is finite in that limit.
Hint 2: Use Stoke’s Theorem (ie integrate by parts):

/ &2r|VO|? = / d40-0v6 — / Prov0.
Q o0 Q

Note that V20 = 0. Look out for branch cuts.

Solution 2.3. Looks like a typo in the hint — sorry. The correct statement is

/ &2r|V0|? = / d0A-OV0 — / &2rov>0,
Q [2)9] Q

where 7 is the outward normal. As stated in the hint, the second term on the right vanishes. In

order to avoid branch-cuts we need to use a contour like the one shown below:

I o

1II

o

One can always choose the path so that V6 is oriented purely aximuthal, there is no flow through
the parts I and III of the contour, and one only gets a contribution from II. Along II, the flow is
completely perpendicular to the contour so n- V@ = |VO| = 1/(d/2 —x) + 1/(d/2 + z). On the
two sides of the contour 6 differs by 2x, so

P J522 dj2=¢ 1 1
T2 Tr/—d/2+§ dj2 — + dj2+x
= 21J5%log (%)

Q

2 J 5% log (g) .

Problem 3. Correlation functions in harmonic crystal

As a simple model of a crystal, consider a system of particles that want to for a square lattice in d
dimensions, with lattice constant a. If we only consider the interaction between neighboring atoms



one can approximate the Hamiltonian as

2

Z b;

H = V(I’Z — I'j) + %,
(i) i

where 7; is the position of the i’th particle and p; is the momentum of that particle. We now assume
(0) (0)

that each particle stays near its equilibrium position, r;’, in which case r; = r; ’ + ;. Presumably

V' has a minimum at this point, so we can expand and get to an Einstein model,
H=Y "0 524y BL
— 2 ' —~ 2m’
(i) g
3.1. Find the normal modes and their frequencies. What is the energy cost of exciting each of
these modes with some given amplitude.

This is a system with a spontaneously broken continuous symmetry. How is Goldstone’s theorem
manifested in these modes?



Solution 3.1. Hamilton’s equations give

9 _ pi
ot m
Opi 2 '
= T 2(57« - 6])7
ot 7
where the prime denotes only summing over neighbors of i. By symmetry, normal modes must
be plane waves, so we substitute §; = Ae’* =91 which gives p; = —iwmAe!F =t and

/
w2 = w(2] Z(l _ eik-(rj—ri))
J

d
= 4uwd Z sin?(ksa/2),
s=1

where ks is the s’th component of k. To get the energy of this excitation we need to plug this
back into the Hamiltonian. Of course we need & to be real, so we take § = (6+ +67)/v/2, with
555 = Aeti(FTi=w) which gives

H = Hy+H,+H._

Hy = A*)°

7

2 /
mw, - m _
TOZ@;F _5;_)(51' —4; )+ Esz’ D; ]
J

2
Hy = A2} [%@j_apz_gqu)?

)

H. = H,

where H. has time dependance e?!. We know that the energy should be a constant of motion,

so both of these terms must vanish. Although it is perfectly reasonable to assume this result, one
can verify it by using the definition of w to write

!/ !/

2
H_|_ — A262’iwt mwO E E (e’ik‘ﬂ”i _ e’ik"?”j)2 —9 E (eik)ﬂ“i _ e’ik"?”j) e’ik‘ﬂ”i
8 <
1

L J J

!/ !/

2

— A2piwt mwp Z Z oikri _ piker; 2 Z oikri _ piker; 20 0

N 8 < -
1

L J J

where we used that ¢ was a dummy variable to symmetrize the last term.
Similar manipulation of Hy gives
H = NA*muw?.

3.2. The equipartition theorem says that at finite temperature each degree of freedom should have
an energy kT/2. Use the equipartition theorem and the normal modes to estimate (|5;]|?) as the
system size becomes large.

What happens for d = 1,27



Hint 1: This result is independant of i, so you might as well take r¥ = 0.

Hint 2: Turn the sum into an integral. The integral is dominated by the modes of lowest energy.
Approximate cos(z) ~ 1 — z%/2.

Solution 3.2. Associated with each k there are 2d independant modes — A has d components,

each of which can be either cos or sin. Equipartition then says that

dkgT

A2 —
(i) = wak

and

dkpT
(o> = Z b

wa,%
_ dk’BT V 1
© 4Nmw? d_ sin®(ksa/2
m/a
~ dkBTC; Sd / dkkd 1 7
dmws  (2m)% Ja/L k2a?

where we have used that V/N = a?, and introduced Sy, the surface area of a unit sphere in
d-dimensions. The resulting integral has an infrared cutoff at k = /L and an ultraviolet cutoff
at k ~ m/a. For d > 2 one can ignore the ultraviolet cutoff. For d = 2,

(1d0/* oc log(L/a)

and ford =1
(|60]* o L.

In each case, the fluctuations diverge.

3.3. Use the same method to write down an integral for g;; = (6;0;) as a function of the distance
O _ .0 ) _ .0

r; . How does this integral behave in the infinite system as r; -1 — 0.

How is this related to the Mermin-Wagner theorem?



Solution 3.3. Here we have

dkpT
> anw,g [cos(k - ;) cos(k - ;) + sin(k - r;) sin(k - 7;)]
k

- dkpT Gike(ri=rj)
- wa,%

dkpTa’ 1 /w/a g, €F i)

(16:0;°

dmwd  (2m)4 J/r k2a% 7

We have done this integral before — its the Greens function for the Laplacian in d-dimensions.
One carries out the asymptotics by scaling k, so that
7r/a eik'ib

I= d%k
w/L k2

mlz|/a etk=
— ’l"d_2 / ddk 7
wlel/n K2

where we have taken the Z axis to be aligned with x. For d > 2 the integrand is well-behaved
for small k£ and one can take the limit L — oo. There is no divergence at large k [due to the
exponential] so one finds I oc |2|?72.

For d = 2, the infrared part of the integral contributes a log(L/|z|), and I  log(L/x). For
d = 1, the infrared part of the integral contributes L/z, and one finds I oc L. In both cases the
fluctuations diverge as one takes the locations to be far apart.

These divergent fluctuations means that there is no long-range crystaline order [a result given by

the Mermin-Wagner theorem].




