
P653 HW9

Due Nov 10, 2005

Problem 1. Susceptability of O(n) model

Consider a system of spins which sit in d-dimensional space and which can point in n dimensions,

with Landau Free energy

F =

∫

ddr(c/2)(∇µSi(r))(∇µSi(r)) + (a/2)Si(r)Si(r) + (b/4)(Si(r)Si(r))(Sj(r)Sj(r))− hi(r)Si(r),

where Einstein summation is assumed with µ running from 1 to d and i, j running from 1 to n. We

will flip between using integers and letters to denote the directions. For example if I say h = hx̂,

that is equivalent to saying hj = δj1h.

In class we considered the case where h = 0, here we will consider h 6= 0.

1.1. First consider the case where h(r) = h1x̂ is uniform and points in the x̂ direction [ie hi = hδj1].

Minimize F , and show that S = Sx̂, and S satisfied the cubic equation

aS + bS3 − h = 0.

Solution 1.1. This equation is merely δF/δS1 = 0. The derivatives with respect to other

components δF/δSj give similar expressions but without h. The only way that all of these

equations can be simultaneously satisfied is if Sj = 0 for all j 6= 1.

1.2. Fix b > 0, and find the boundary in the h− a plane between where this equation has one and

three solutions. For h 6= 0 this defines the spinodal.

Solution 1.2. At the spinodal, two of the extrema coincide. This means that ∂2F/∂S2 = 0,

which yields

a + 3bS2 = 0.

Eliminating S gives

−a =
9

4
bh2.

1.3. Let h = hx̂ + δh‖e
ik·rx̂, and let S = Sx̂ + δSei·rx̂ minimize the free energy. Calculate δS to

linear order in δh‖. Your expression may contain S.

The longitundinal susceptability is defined as

χ‖ =
δS

δh‖
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Verify that when h → 0 you recover the expression from class

χ‖

∣

∣

∣

h=0
=

1

ck2 + 2|a| .

Solution 1.3. To linear order one has

ck2δS + aδS + 3bS2δS − δh‖ = 0,

which yields

δS =
δh‖

a + 3bS2 + ck2
.

When h = 0 this simplifies because S2 = −a/b, yielding the result from class

χ‖

∣

∣

∣

h=0
=

1

ck2 + 2|a| .

1.4. What happens to the longitudinal susceptability in the metastable state at the spinodal? [ie.

at the spinodal, one of the minima disapears. Evaluate the susceptability of that metastable state.]

Solution 1.4. At the spinodal, the metastable state satisfies

a + 3bS2 = 0,

which tells us that

χ‖ =
1

ck2
,

diverges as k → 0.

1.5. Show that even in the presence of nonzero δh‖ that Sj = 0 for all j 6= 1, and hence that

χyx =
δSy

δhx
= 0,

where hx = h‖.

1.6. Now lets consider a transverse perturbation. Let h = hx̂+δh⊥eik·rŷ, and let S = Sx̂+δSye
i·rŷ

minimize the free energy. To linear order in δh⊥, calculate δSy. Show that as h → 0 one recovers

the result from class that

χ⊥|h=0 =
1

ck2
,

Solution 1.5. Linearizing the equation for the ŷ component of S yields

ck2δSy + aδS + bS2δSy − δh⊥ = 0,

which gives

δSy =
δh⊥

h + ck2
,

where we have used the equation satisfied by the equilibrium S.
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Problem 2. Continuum limit of x-y model Consider a microscopic x-y model on a square

lattice in two dimensions,

H = −J
∑

〈i〈j

Si · Sj = −JS2
∑

〈ij〉

cos(θi − θj),

where S is the length of the spins, and θ defines their directions. We will derive a continuum version

of this model, and evaluate the energy of some important quantities.

2.1. Suppose that θi varies slowly from one site to the next. Let θ(r) be a smooth function for

which θ(ri) = θi. Show that

H ≈
∫

d2r
−JS2

2
|∇θ(r)|2,

independent of the lattice spacing.

Solution 2.1. One approximates

cos(θi − θj) ≈ 1 − [θ(ri) − θ(rj)]
2/2 ≈ 1 − [(ri − rj) · nablaθ(ri)]

2 /2.

Summing over nearest neighbors gives

∑

neighborsj

cos(θi − θj) ≈ 4 − a2 |nablaθ(ri)|2 ,

from which

H ≈ const + J
∑

i

a2|∇θ(r)|2/2

≈ const +

∫

d2r
JS2

2
|∇θ(r)|2.

Note the sign error in the posing of the question.

2.2. There can be spin configurations which are not smooth. An example is a vortex: θ(r) =

arctan(y/x) = Im log(x + Iy). This configuration is smooth except for a region near r = 0. Let

ξ ∼ a be a length for which θ(r) is smooth when r > ξ. If the size of the system is L, estimate the

contribution to the energy of a vortex configuration from all spins at r > ξ. This is described as

the region ”outside the vortex core”.

You should find that this energy diverges as L → ∞.

Hint 1: The continuum approximation works in this region.

Hint 2: Take the sample to be circular in shape.

Solution 2.2.

E = 2π

∫ L

ξ
dr r

JS2

2

1

r2
= πJS2 log(ξ/L)
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2.3. Estimate the energy contributions from outside the vortex cores of a vortex-antivortex pair

separated by a distance d(≫ ξ): θ(r) = Im [log(x − d/2 + Iy) − log(x + d/2 + Iy)].

Hint 1: Take the limit of an infinite system, this energy is finite in that limit.

Hint 2: Use Stoke’s Theorem (ie integrate by parts):

∫

Ω
d2r|∇θ|2 =

∫

∂Ω
dℓ·θ∇θ −

∫

Ω
d2rθ∇2θ.

Note that ∇2θ = 0. Look out for branch cuts.

Solution 2.3. Looks like a typo in the hint – sorry. The correct statement is

∫

Ω
d2r|∇θ|2 =

∫

∂Ω
dℓn̂·θ∇θ −

∫

Ω
d2rθ∇2θ,

where n̂ is the outward normal. As stated in the hint, the second term on the right vanishes. In

order to avoid branch-cuts we need to use a contour like the one shown below:

III

II

I

One can always choose the path so that ∇θ is oriented purely aximuthal, there is no flow through

the parts I and III of the contour, and one only gets a contribution from II. Along II, the flow is

completely perpendicular to the contour so n̂ · ∇θ = |∇θ| = 1/(d/2 − x) + 1/(d/2 + x). On the

two sides of the contour θ differs by 2π, so

E =
JS2

2
2π

∫ d/2−ξ

−d/2+ξ

1

d/2 − x
+

1

d/2 + x

= 2πJS2 log

(

d − ξ

ξ

)

≈ 2πJS2 log

(

d

ξ

)

.

Problem 3. Correlation functions in harmonic crystal

As a simple model of a crystal, consider a system of particles that want to for a square lattice in d

dimensions, with lattice constant a. If we only consider the interaction between neighboring atoms
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one can approximate the Hamiltonian as

H =
∑

〈ij〉

V (ri − rj) +
∑

i

p2
i

2m
,

where ri is the position of the i’th particle and pi is the momentum of that particle. We now assume

that each particle stays near its equilibrium position, r
(0)
i , in which case ri = r

(0)
i + δi. Presumably

V has a minimum at this point, so we can expand and get to an Einstein model,

H =
∑

〈ij〉

mω2
0

2
(δi − δj)

2 +
∑

i

p2
i

2m
.

3.1. Find the normal modes and their frequencies. What is the energy cost of exciting each of

these modes with some given amplitude.

This is a system with a spontaneously broken continuous symmetry. How is Goldstone’s theorem

manifested in these modes?
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Solution 3.1. Hamilton’s equations give

∂δi

∂t
=

pi

m

∂pi

∂t
= −mω2

0

′
∑

j

(δi − δj),

where the prime denotes only summing over neighbors of i. By symmetry, normal modes must

be plane waves, so we substitute δi = Aei(k·ri−ωt), which gives pi = −iωmAei(k·ri−ωt), and

ω2 = ω2
0

′
∑

j

(1 − eik·(rj−ri))

= 4ω2
0

d
∑

s=1

sin2(ksa/2),

where ks is the s’th component of k. To get the energy of this excitation we need to plug this

back into the Hamiltonian. Of course we need δ to be real, so we take δ = (δ+ + δ−)/
√

2, with

δ±i = Ae±i(k·ri−ωt), which gives

H = H0 + H+ + H−

H0 = A2
∑

i





mω2
0

4

′
∑

j

(δ+
i − δ+

j )(δ−i − δ−j ) +
m

ω2
2p+

i p−i





H+ = A2
∑

i

[

mω2
0

8
(δ+

i − δ+
j )2 − m

ω2
4(p+

i )2
]

H− = H∗
+,

where H± has time dependance e2iωt. We know that the energy should be a constant of motion,

so both of these terms must vanish. Although it is perfectly reasonable to assume this result, one

can verify it by using the definition of ω to write

H+ = A2e2iωt mω2
0

8

∑

i





′
∑

j

(

eik·ri − eik·rj

)2
− 2

′
∑

j

(

eik·ri − eik·rj

)

eik·ri





= A2e2iωt mω2
0

8

∑

i





′
∑

j

(

eik·ri − eik·rj

)2
−

′
∑

j

(

eik·ri − eik·rj

)2



 = 0,

where we used that i was a dummy variable to symmetrize the last term.

Similar manipulation of H0 gives

H = NA2mω2.

3.2. The equipartition theorem says that at finite temperature each degree of freedom should have

an energy kT/2. Use the equipartition theorem and the normal modes to estimate 〈|δi|2〉 as the

system size becomes large.

What happens for d = 1, 2?
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Hint 1: This result is independant of i, so you might as well take r0
i = 0.

Hint 2: Turn the sum into an integral. The integral is dominated by the modes of lowest energy.

Approximate cos(x) ≈ 1 − x2/2.

Solution 3.2. Associated with each k there are 2d independant modes – A has d components,

each of which can be either cos or sin. Equipartition then says that

〈A2
k〉 =

dkBT

Nmω2
k

,

and

〈|δ0|2 =
∑

k

dkBT

Nmω2
k

=
dkBT

4Nmω2
0

V

(2π)d

∫

ddk
1

∑d
s=1 sin2(ksa/2

≈ dkBTad

4mω2
0

Sd

(2π)d

∫ π/a

π/L
dkkd 1

k2a2
,

where we have used that V/N = ad, and introduced Sd, the surface area of a unit sphere in

d-dimensions. The resulting integral has an infrared cutoff at k = π/L and an ultraviolet cutoff

at k ∼ π/a. For d > 2 one can ignore the ultraviolet cutoff. For d = 2,

〈|δ0|2 ∝ log(L/a)

and for d = 1

〈|δ0|2 ∝ L.

In each case, the fluctuations diverge.

3.3. Use the same method to write down an integral for gij = 〈δiδj〉 as a function of the distance

r
(0)
i − r

(0)
j . How does this integral behave in the infinite system as r

(0)
i − r

(0)
j → ∞.

How is this related to the Mermin-Wagner theorem?
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Solution 3.3. Here we have

〈|δiδj |2 =
∑

k

dkBT

Nmω2
k

[cos(k · ri) cos(k · rj) + sin(k · ri) sin(k · rj)]

=
∑

k

dkBT

Nmω2
k

eik·(ri−rj)

≈ dkBTad

4mω2
0

1

(2π)d

∫ π/a

π/L
ddk

eik·(ri−rj)

k2a2
,

We have done this integral before – its the Greens function for the Laplacian in d-dimensions.

One carries out the asymptotics by scaling k, so that

I =

∫ π/a

π/L
ddk

eik·x

k2

= |x|d−2
∫ π|x|/a

π|x|/L
ddk

eikz

k2
,

where we have taken the ẑ axis to be aligned with x. For d > 2 the integrand is well-behaved

for small k and one can take the limit L → ∞. There is no divergence at large k [due to the

exponential] so one finds I ∝ |x|d−2.

For d = 2, the infrared part of the integral contributes a log(L/|x|), and I ∝ log(L/x). For

d = 1, the infrared part of the integral contributes L/x, and one finds I ∝ L. In both cases the

fluctuations diverge as one takes the locations to be far apart.

These divergent fluctuations means that there is no long-range crystaline order [a result given by

the Mermin-Wagner theorem].
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