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Cold atom experimentalists have developed “synthetic gauge fields”, which

interact with neutral atoms in the same way that electromagnetic fields interact

with electrons. These developments open up new classes of experiments in

which one hopes to observe analogs of phenomena from solid state physics.

Here I present several theoretical studies on this fast growing area, which I

divide into three parts: superfluid phases from synthetic magnetic fields, Majo-

rana fermions from synthetic spin-orbit coupling, and adiabatic charge pump-

ing in periodic potentials. In the first part, I study superfluid ground states

and vortex structures for both Bose and Fermi gases in elongated geometries,

including anisotropic harmonic traps and anisotropic optical lattices. In the sec-

ond part, I study Majorana fermions in one dimensional trapped Fermi gases in

the presence of superconducting pairing and spin-orbit coupling. In a related

work, I study magnetic field dependence of Raman coupling for different alkali

atoms. In the third part, I study a one dimensional topological quantum pump

in a superlattice.
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CHAPTER 1

INTRODUCTION

Condensed matter, such as solid and liquid, exhibits rich and complicated

phenomena. Physicists create simple theoretical models to understand them,

and test their models with well-designed experiments. Ultracold atoms pro-

vide an excellent playground – they are particularly simple, clean and control-

lable, and that quantitative comparisons between theory and experiment are

especially informative.

In the past decade, there has been tremendous success in engineering “sim-

ple” theoretical models in ultracold atom experiments, most of which aim to

understand the many-body phenomena in condensed matter. One of the most

exciting areas is the light-induced synthetic gauge fields, where artificial fields

couple to neutral atoms the same way real fields couple to charge particles and

spins. In this thesis, I will present several theoretical studies on this fast growing

area.

Chapter 2 introduces the basic theory of light-induced gauge fields in ultra-

cold atoms. I will be focusing on Abelian gauge fields with U(1) gauge symme-

try. I will introduce the Raman process, and from that derive synthetic spin-orbit

coupling, synthetic magnetic fields, and synthetic magnetic fluxes.

Chapter 3 includes a brief introduction on the basic mean-field theories in

degenerate quantum gases under the framework of Gross - Pitaevski and Bo-

goliubov - de Gennes. I will be focusing on the variational wavefunction meth-

ods for bosons and Bogoliubov-de Gennes equations for fermions. These are

the tools I use for my studies in chapters 5 – 8.
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Chapter 4 introduces the theory of topology on energy bands. I will give

mathematical descriptions on the topological invariant in periodic potentials.

This includes the Zak’s phase in one dimension and the Chern number in two

dimensions. I will give two simple examples to shed light on the Zak’s phase.

I further study an anisotropic Harper model to elucidate relation between the

Chern number and the edges states. Applications on these invariants on other

models are included in chapter 8 and chapter 10.

Chapter 5 and Chapter 6 study applications of synthetic magnetic fields

on interacting Bose and Fermi gases trapped in elongated geometries, where

ground states display various phases and superfluid order parameters exhibit

rich vortex structures. These two chapters were adapted from:

“Vortex structures of a two-component Bose-Einstein condensate for large anisotropies”

by Ran Wei and Erich J. Mueller, published in Physical Review A 84, 063611 (2011);

“Pair density waves and vortices in an elongated spin-1/2 Fermi gas” by Ran Wei

and Erich J. Mueller, published in Physical Review Letter 108, 245301 (2012).

Chapter 7 studies Bose gases trapped on a two-leg ladder in large magnetic

fields, where a new phase was predicted. This chapter was adapted from:

“Theory of bosons in two-leg ladders with large magnetic fields” by Ran Wei and

Erich J. Mueller, published in Physical Review A 89, 063617 (2014).

Chapter 8 studies application of synthetic spin-orbit coupling on one dimen-

sional trapped Fermi gases with superconducting pairing. These gases are topo-

logical, which can lead to Majorana fermions. This chapter was adapted from:

“Majorana fermions in one dimensional spin-orbit-coupled Fermi gases” by Ran
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Wei and Erich J. Mueller, published in Physical Review A 86, 063604 (2012).

Chapter 9 studies the Raman processes in the presence of real magnetic Zee-

man fields. These Zeeman fields are crucial for generating superconducting

pairing in ultracold Fermi gases, which are the key experimental considerations

for producing Majorana fermions based on the proposal in chapter 8. This chap-

ter was adapted from:

“Magnetic-field dependence of Raman coupling in alkali-metal atoms” by Ran Wei

and Erich J. Mueller, published in Physical Review A 87, 042514 (2013).

Chapter 10 studies adiabatic charge pumping on a one dimensional super-

lattice, where the integrated adiabatic current is an unbounded Chern number.

This model is also related to the anisotropic Harper model introduced in chap-

ter 4, where the Chern number is the transverse Hall conductance. This chapter

was adapted from:

“Anomalous charge pumping in a one dimensional optical superlattice” by Ran Wei

and Erich J. Mueller, published in Physical Review A 92, 013609 (2015).

1.1 Chronological publication list

1. “Light pulse in Λ-type cold atomic gases” by Ran Wei, Bo Zhao, Youjin

Deng, Shuai Chen, Zeng-Bing Chen, and Jian-Wei Pan, published in Physical

Review A 81,043403 (2010).
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2. “Deterministic spin-wave interferometer based on Rydberg blockade” by

Ran Wei, Bo Zhao, Youjin Deng, Yu-Ao Chen, and Jian-Wei Pan, published in

Physical Review A 83, 063623 (2011).

3. “Vortex structures of a two-component Bose-Einstein condensate for large

anisotropies” by Ran Wei and Erich J. Mueller, published in Physical Review A

84, 063611 (2011).

4. “Pair density waves and vortices in an elongated spin-1/2 Fermi gas” by

Ran Wei and Erich J. Mueller, published in Physical Review Letter 108, 245301

(2012).

5. “Majorana fermions in one dimensional spin-orbit-coupled Fermi gases”

by Ran Wei and Erich J. Mueller, published in Physical Review A 86, 063604

(2012).

6. “Magnetic-field dependence of Raman coupling in alkali-metal atoms” by

Ran Wei and Erich J. Mueller, published in Physical Review A 87, 042514 (2013).

7. “Theory of bosons in two-leg ladders with large magnetic fields” by Ran

Wei and Erich J. Mueller, published in Physical Review A 89, 063617 (2014).

8. “Anomalous charge pumping in a one dimensional optical superlattice”

by Ran Wei and Erich J. Mueller, published in Physical Review A 92, 013609

(2015).
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CHAPTER 2

LIGHT-INDUCED GAUGE FIELDS

In 2009, Ian Spielman et al. from National Standard Institute of Technol-

ogy (NIST) experimentally realized the first light-induced gauge fields in ultra-

cold atoms [1], drawing great interest from the cold atom community [2, 3].

These fields, known as “synthetic magnetic fields” and “synthetic spin-orbit

coupling”, are analogous to real fields arising from the gauge symmetry of La-

grangian. They are generated by two “Raman” laser light, which effectively

couple to neutral atoms in the same way real fields couple to charged particles

and spins. In this chapter, I will discuss the origin of these fields in both homo-

geneous gases and optical lattices.

2.1 Raman processes in alkali atoms

The key ingredient of light-induced gauge fields is the Raman process [4], a

two-photon process induced by atom-light interactions. This process can be

understood in the context of a single three-level atom interacting with two sets

of laser light, which couple two ground states to the same excited state. In the

following I will describe the Raman process through this example of a three

level atom, and then extend it to a more realistic example of a 2+N level atom,

where N (N > 1 for alkali atoms) is the number of excited states.

5



|g1i |g2i

|ei

�

�

⌦1
⌦2

Figure 2.1: Schematic graph of energy levels of a Λ-type atom coupled by two
laser light with Rabi frequencies Ω1 and Ω2.

2.1.1 Three level system

We start with a single Λ-type atom, coupled by two laser light with frequencies

ω1 andω2, where two ground states |g1〉 and |g2〉 (of energies Eg1 and Eg2) are cou-

pled to an excited state |e〉 (of energy Ee) respectively, as shown in Fig. 2.1. We

assume the spontaneous decay rate for the excited state is γ. The Hamiltonian

in rotating frame is written as

H = δ g†2g2 + (∆ − iγ) e†e +
1
2

(
Ω1 e†g1 + Ω2 e†g2 + H.c.

)
(2.1)

where g†i (i = 1, 2) creates the ground state |gi〉 = g†i |vac〉, and e† creates the

excited state |e〉 = e† |vac〉, where |vac〉 is the vacuum state. The single-photon

detuning is defined by ∆ =
(
Ee − Eg1

)
−ω1, corresponding to the energy of atomic

excited state (in the rotating frame), and the two-photon detuning is defined by

δ =
(
Eg1 − Eg2

)
− (ω1 − ω2), corresponding to the energy of the second atomic

ground state (in the rotating frame). The optical Rabi frequency Ωi = Ei · 〈gi| d |e〉
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characterizes the individual transition element between the ground state |gi〉 and

the excited state |e〉, where electronic dipole is d = er, and Ei is electric field of

the laser light. Throughout chapters 2–4, we set the Plank’s constant ~ = 1.

In the limit of ∆ � {γ, δ,Ω1,Ω2}, the eigenstate of the Hamiltonian is super-

positions of |g1〉 and |g2〉, and a Raman process is characterized by the effective

Hamiltonian projected on these two ground states. Using the degenerate per-

turbation theory shown in the Appendix 2.4.1, one obtains

Heff = −δ σ̂g2g2 +
1
2

(
δg1σ̂g1g1 + δg2σ̂g2g2 + Ω σ̂g1g2 + Ω∗σ̂g2g1

)
, (2.2)

where:

(1) Real diagonal elements

δg1 ≡ Re
(
|Ω1|

2

4 (∆ − iγ)

)
≈
|Ω1|

2

4∆
, δg2 ≡ Re

(
|Ω2|

2

4 (∆ − iγ)

)
≈
|Ω2|

2

4∆
(2.3)

are the “AC” Stark shifts of the two ground states.

(2) Imaginary diagonal elements

Γg1 ≡ Im
(
|Ω1|

2

4 (∆ − iγ)

)
≈
γ |Ω1|

2

4∆2 , Γg2 ≡ Im
(
|Ω2|

2

4 (∆ − iγ)

)
≈
γ |Ω2|

2

4∆2 (2.4)

are the inelastic scattering rates (decay rates) of the two ground states.

(3) The real off-diagonal element

Ω ≡
Ω∗1Ω2

2 (∆ − iγ)
≈

Ω∗1Ω2

2∆
(2.5)

is the Raman coupling rate between the two ground states. The fact that Ω

is proportional to both Ω1 and Ω2 means the Raman process is a two-photon

process.

In practice, we wish to have a large Ω and a small Γg. Since both Ω and Γg

are proportional to the second order of Ω1 or Ω2, the key figure of merit is the
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ratio of them, i.e., β ≡ Ω/Γg ∼ ∆/γ [5]. We see that β does not have an upper

bound, as one can arbitrarily increases ∆ by tuning the laser frequency. In a

realistic system however, β is bounded by the fine structure splitting of alkali

atoms. Section 2.1.2 explores this bound.

2.1.2 2+N level system

We extend Eq. (2.3)-(2.5) to the case of a 2+N level system, where N (N > 1)

is the number of excited states. Assuming all the excited states are decoupled

from each another, the effective Hamiltonian can be identified as the sum of N

three level systems, where each subsystem consists of states {|g1〉 , |g2〉 , |ei〉}, with

excited state labeled by |ei〉 (i = 1, 2, ...,N). This yields:

(1) AC Stark shifts

δg1 =

N∑
j=1

∣∣∣Ω1 j

∣∣∣2
4∆ j

, δg2 =

N∑
j=1

∣∣∣Ω2 j

∣∣∣2
4∆ j

. (2.6)

(2) Inelastic scattering rates

Γg1 =

N∑
j=1

γ j

∣∣∣Ω1 j

∣∣∣2
4∆2

j

, Γg2 =

N∑
j=1

γ j

∣∣∣Ω2 j

∣∣∣2
4∆2

j

. (2.7)

(3) Raman coupling

Ω =

N∑
j=1

Ω∗1 jΩ2 j

2∆ j
, (2.8)

where the single-photon detuning to the excited state is ∆i =
(
Eei − Eg1

)
−ω1, the

spontaneous decay rate is γi, and Ω1i and Ω2i are the Rabi couplings between |g1〉

and |ei〉, and |g2〉 and |ei〉.
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For a typical Raman experiment in cold atoms, the excited states are in the

J = 1/2 and J = 3/2 manifolds, where J is the angular momentum of an alkali

atom, labeling the fine structure states. The transition lines between the ground

states and the excited states from these two manifolds are called D1 and D2

lines. Since the fine structure splitting is much greater than the hyperfine struc-

ture splitting (the energy splitting within J manifolds), one can group Eq. (2.8)

into two terms, with one from D1 lines and the other from D2 lines,

Ω =

N1∑
j=1

Ω∗1 jΩ2 j

2∆
+

N∑
j=N1+1

Ω∗1 jΩ2 j

2
(
∆ + A f

) (2.9)

where A f is the fine structure splitting between the J = 1/2 and J = 3/2 mani-

folds, and N1 is the number of states in the J = 1/2 manifold. This expression

can be simplified by noting that the ground state quadrupole matrix element

satisfies 〈g1| dadb |g2〉 = 0 unless a = b (a, b = x, y, z). This reflects the spherical

symmetry of the electron wavefunction, and the fact that the electronic dipole

does not couple to spin. Inserting a complete set of exited states, the dipole

transitions shall satisfy the identity
∑N1

j=1 Ω∗1 jΩ2 j +
∑N

j=N1+1 Ω∗1 jΩ2 j = 0. This allows

us to write Eq. (2.9) solely in terms of D1 transitions,

Ω =
A f

2∆
(
∆ + A f

) N1∑
j=1

Ω∗1 jΩ2 j. (2.10)

For ∆ � A f , the Raman coupling scales as Ω ∼ A f /∆
2. In this case, β ≡ Ω/Γg ∼

A f /γ is bounded by the fine structure splitting. Typically, heavier alkali atoms

have larger fine structure splittings, and thus β is larger. Detailed calculations

on different alkali atoms can be found in chapter 9.
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2.1.3 Momentum transferred by Raman laser

We have shown that light from two Raman laser, can effectively couple two

atomic internal states through a virtual two-photon process. To derive an effec-

tive gauge field we have to consider the momentum carried by photons, which

is implicit in the spatial dependence of the laser fields.

To include this spatial dependence, one takes the Rabi frequencies, Ω1 →

Ω1 eik1·r, Ω2 → Ω2 eik2·r, and Ω→ Ω ei(k2−k1)·r, where k1 and k2 are the wave vectors

(momenta) of two laser light. The momentum difference δk = k2 − k1 represents

the momentum transferred to an atom in a two-photon Raman process – an

atom absorbs one photon with momentum k2 and emits one photon with mo-

mentum k1. The recoil momentum is largest when two laser light are counter-

propagating. In the following I will derive the gauge fields from the Raman

coupling Ω ei(k2−k1)·r.

2.2 Light-induced spin-orbit coupling

I first discuss one type of gauge field – spin-orbit coupling (SOC). I emphasize

that SOC is NOT the coupling between the electronic spin and angular momen-

tum which naturally exists in an atom, but instead the coupling between atomic

motion and atomic hyperfine states. It is analogous to the spin-orbit coupling

ubiquitous in condense matter systems (known as Rashba or Dresselhaus spin-

orbit coupling [7, 8]). I will focus on the SOC generated in Spielman’s exper-

iments [6], known as the one dimensional SOC with an equal combination of

Rashba and Dresselhaus types.
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Starting from Eq. (2.2), we include the kinetic energy of an atom and subtract

the unimportant constant, and the Hamiltonian is expressed as

H̄ = −
1

2m
∂2

x +
δ

2
(
σ̂↑↑ − σ̂↓↓

)
+

Ω

2
e2ikR xσ̂↑↓ +

Ω

2
e−2ikR xσ̂↓↑, (2.11)

where |↑〉 and |↓〉 represent the two atomic ground states. Here we have as-

sumed two laser light are counter-propagating in the x-direction (−k1 = k2 = kR)

and neglect the decay rate (γ = 0). In the Pauli matrices representation, the

Hamiltonian is written as

H̄ = −
1

2m
∂2

x +
δ

2
σz +

Ω

2
cos 2kRx σ̂x −

Ω

2
sin 2kRx σ̂y. (2.12)

To eliminate the spatial dependence of the off-diagonal terms, we apply a uni-

tary transformation U = ei kR x σ̂z = cos (kRx) + i sin (kRx) σ̂z, which yields

H = U−1H̄U =
1

2m

(
−∂2

x − ikR∂xσz + k2
R

)
+
δ

2
σz +

Ω

2
σx. (2.13)

Replacing −i∂x with k̂, we obtain

H =
k̂2

2m
+

kR

m
σ̂zk̂ +

Ω

2
σ̂x +

δ

2
σ̂z +

k2
R

2m
. (2.14)

To notationally comply with the Hamiltonian in condense matter system, we

perform a spin rotation σ̂z → σ̂y, σ̂y → σ̂x, σ̂x → σ̂z, yielding

H =
k̂2

2m
+

kR

m
σ̂yk̂ +

Ω

2
σ̂z +

δ

2
σ̂y +

k2
R

2m
. (2.15)

This Hamiltonian was experimentally realized in NIST [6], where the second

term is the spin-orbit coupled (SOC) interaction, with σy representing the spin

(in the y-direction), k̂ representing the orbit (in the x-direction), and kR/m charac-

terizing the coupling strength. The third term is the Zeeman term, withσz repre-

senting the spin (in the z-direction), and Ω characterizing the Zeeman coupling

strength. The SOC interaction is one dimensional, consisting of equal contribu-

tions of Rashba coupling (σxk̂y − σyk̂x) and Dresselhaus coupling (−σxk̂y − σyk̂x)
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[7, 8]. Since the interaction preserves the spin rotational symmetry in the y-

direction (U(1) symmetry), it corresponds to an Abelian gauge field [9]. I will

show in chapter 8 that this gauge field can give rise to interesting physics. Note

two groups from China have recently realized a two dimensional non-Abelian

SOC [10, 11].

2.3 Light-induced magnetic field

Here I introduce another type of gauge fields – light-induced magnetic fields. I

will discuss how these fields are produced in both homogenous gases [1] and

optical lattices [12, 13, 14, 15].

2.3.1 Homogenous case

The magnetic field in homogenous gases can be understood from Eq. (2.14).

Replacing k̂ → k, the Hamiltonian is simply represented by a 2 by 2 matrix and

can be readily diagonalized: Moving the two identity matrices to the left and

squaring both sides of Eq. (2.14), we arrive(
H −

k2 + k2
R

2m

)2

=

((
kRk
m

+
δ

2

)
σ̂z +

Ω

2
σ̂x

)2

=

(
kRk
m

+
δ

2

)2

+
Ω2

4
. (2.16)

Extracting the characteristic polynomial, we obtain the dispersions of two dressed

states

E±(k) =
k2 + k2

R

2m
±

√(
kRk
m

+
δ

2

)2

+
Ω2

4
, (2.17)

as shown in Fig. 2.2. We see the quasi-momentum of the lowest energy state
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Figure 2.2: Dispersions (solid lines) of two dressed states plotted from Eq. (2.17),
where the minima of the two bands are shifted away from zero, creating the
effective vector potentials. Here the parameters are Ω = 8ER, δ = −ER, with
ER = k2

R/2m the recoil energy. The dashed lines represent two bare states (Ω = 0).

is shifted away from zero, creating an effective vector potential for each energy

band [4]. Since the momentum shift can not be greater than the recoil momen-

tum kR, the vector potential is bounded by −kR ≤ A ≤ kR. Note the real momen-

tum is still zero.

To analytically calculate these potentials, we expand the dispersions to first

order in (2kRk/m + δ) /Ω, yielding

E±(k) =
1 ± 2k2

R/mΩ

2m

(
k2 ±

2kRδ

Ω ± 2k2
R/m

k
)
±

Ω

2
±
δ2

4Ω
+

k2
R

2m
. (2.18)

In the limit of Ω � 2k2
R/m, Eq. (2.18) can be written as

E±(k) =
1

2m
(k ± A)2

±C. (2.19)

where A = kRδ/Ω is the effective vector potential in the x-direction, and C is a k-

independent constant. This dispersion is formally the same as the Hamiltonian

of charged particles of mass m in electromagnetic vector potentials A. Here the
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two vector potentials have opposite signs but equal magnitude, corresponding

to opposite “charges” for the two energy bands.

To produce a magnetic field, we include the y-component in the Hamilto-

nian. Rewriting the dispersions in real space, one obtains

H± =
1

2m
(−i∂x ± A)2

−
1

2m
∂2

y ±C. (2.20)

When δ is y-dependent, the curl of the vector potential A yields a non-vanishing

magnetic field in the z-direction (Landau gauge), i.e., Bz = −∂yA = − (kR/Ω) δy,

where the detuning gradient δy can be generated from an inhomogeneous Zee-

man field [1].

While the vector potential is bounded, the magnetic field can be arbitrarily

large (as δy is not bounded). In such case, the field only exists in a narrow region

– the larger the field, the narrower the region [16]. Studies of interacting gases

in large magnetic fields on narrow geometries can be found in chapter 5–6.

2.3.2 Optical lattice

In this section, I will discuss how Raman processes are used to generate mag-

netic fluxes on optical lattices. In contrast to the homogenous case, the fields

created on lattices are not bounded and can be extremely strong over the entire

lattice [17]. This is particularly exciting not only because large fields can lead to

rich phenomena such as fractional quantum Hall effect, but more interestingly

they open up the possibility of exploring the fractal energy spectrum predicted

by D. R. Hofstadter [19]. This might lead to uncharted territory that is not ac-

cessible in electron systems [20].
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m
m+1

m-1

�

!1, k1 !2, k2

Figure 2.3: Raman-assist tunneling in the lowest band of a tilt lattice. The energy
offset between neighboring sites is ∆ = ω1−ω2, where ω1 and ω2 are the frequen-
cies of the two laser light. The bandwidth of the lattice is much smaller than ∆,
so the tunneling is prohibited without the Raman light. When the Raman light
is on, tunneling is restored.

Uniform fields

We first consider the following time-dependent tight-binding Hamiltonian,

H = −Jx

∑
m,n

(
b†m+1,nbm,n + H.c.

)
− Jy

∑
m,n

(
b†m,n+1bm,n + H.c.

)
(2.21)

+
∑
m,n

m∆ b†m,nbm,n +
∑
m,n

Ω sin
(
ωt − φm,n

)
b†m,nbm,n.

The first two terms describe a regular two dimensional optical lattice, where

the operator b†m,n (bm,n) creates (annihilates) a particle at lattice site {m, n}, and Jx

and Jy represent the tunnelings between neighboring sites along the x-direction

and y-direction. The third term describes a tilted potential, where the energy

offset on neighboring sites is ∆. This potential is produced by the gravity in

Refs. [13, 14]. Note the tunneling in the y-direction is not effected by ∆. The

fourth term is a Raman light-induced running potential, where Ω is the Raman

Rabi frequency, ω = ω1 − ω2 and k = k1 − k2 are the frequency and momentum

differences of the two light, and φm,n = k · Rm,n = mkxa + nkya is a periodic phase
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factor, with a the lattice constant. We consider the limit where the bandwidth in

the x-direction is much smaller than the potential tilt (Jx � ∆), so the tunneling

(in the x-direction) is forbidden without the Raman light.

While the Hamiltonian does not explicitly include a magnetic field, I will

show that the low energy effective model is a Harper Hamiltonian, which de-

scribes a two dimensional lattice in a static magnetic field [18].

Given that the Hamiltonian in Eq. (2.21) is periodic in time, one could cal-

culate the evolution operatorU(T ) = T e−i
∫ T

0 dτH(τ) in one period (T = 2π/ω), and

extract the effective Hamiltonian fromU(T ) = e−iHeffT .

We first perform a unitary transformation to eliminate the large terms in Eq.

(2.21),

U(t) = exp

−∑
m,n

i χm,n(t) b†m,nbm,n

 , (2.22)

where

χm,n(t) = m∆ t −
Ω

ω
cos

(
ωt − φm,n

)
+

mkxa
2

. (2.23)

Under the new basis, the Hamiltonian becomes

H̄ = UHU−1 − iU∂tU−1 (2.24)

= −Jx

∑
m,n

(
e−iΦm+1,n(t)b†m+1,nbm,n + H.c.

)
− Jy

∑
m,n

(
e−iΦm,n+1(t)b†m,n+1bm,n + H.c.

)
,

where we have defined

Φm+1,n(t) = χm+1,n(t) − χm,n(t) = ∆ t −
Ω

ω
ξm+1,n(t) +

kxa
2

(2.25)

Φm,n+1(t) = χm,n+1(t) − χm,n(t) = −
Ω

ω
ξm,n+1(t) (2.26)

ξm+1,n(t) = 2 sin
(
ωt +

φm+1,n + φm,n

2

)
sin

(
kxa
2

)
(2.27)

ξm,n+1(t) = 2 sin
(
ωt +

φm,n+1 + φm,n

2

)
sin

(
kya
2

)
. (2.28)
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We now expand the evolution operator to first order in J/ω, which corresponds

to writingU(T ) = e−i
∫ T

0 dτ H̄(τ) = e−iHeffT . This leads to

Heff =
1
T

∫ T

0
dτ H̄(τ). (2.29)

The only time-dependent terms are e−iΦm+1,n(t) and e−iΦm,n+1(t). At ω = ∆, the average

of these two terms have the following closed forms,

1
T

∫ T

0
dτ e−iΦm+1,n(τ) =

eiφm,n

2π

∫ 2π

0
dτ exp

(
−i

(
τ −

(
2Ω

∆
sin

kxa
2

)
sinτ

))
(2.30)

= eiφm,nJ1

(
2Ω

∆
sin

(
kxa
2

))
(2.31)

1
T

∫ T

0
dτ e−iΦm,n+1(τ) =

1
2π

∫ 2π

0
dτ exp

((
2Ω

∆
sin

kya
2

)
sinτ

)
(2.32)

= J0

(
2Ω

∆
sin

(
kya
2

))
, (2.33)

where J0(x) and J1(x) are the Bessel functions of the first kind. The effective

Hamiltonian is then expressed as

Heff = −K
∑
m,n

(
eiφm,nb†m+1,nbm,n + H.c.

)
− J

∑
m,n

(
b†m,n+1bm,n + H.c.

)
(2.34)

where

K = JxJ1

(
2Ω

∆
sin

(
kxa
2

))
(2.35)

J = JyJ0

(
2Ω

∆
sin

(
kya
2

))
. (2.36)

Note in the limit of Ω � ∆, one has

K = Jx

Ω

∆
sin

kxa
2

+ O
[
Ω

∆

]3 ≈ JxΩ

∆
sin

kxa
2

(2.37)

J = Jy

1 + O
[
Ω

∆

]2 ≈ Jy. (2.38)

The scaling of K (∼ JxΩ/∆) is reminiscent of a second-order perturbation pro-

cess, where neighboring sites are effectively coupled by Ω and Jx through a

virtual site with an energy offset ∆.
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Eq. (2.34) describes a two dimensional lattice in a magnetic field, where the

site-dependent phase (Peierls phase) φm,n = mkxa + nkya gives rise to a magnetic

flux φ f = kya per plaquette. Since φ f is only defined modulo 2π, the largest

magnetic field is at φ f = kya = π. Note the tunneling in the x-direction vanishes

when kxa = 0, so one shall keep both kxa and kya finite. In experiments, one

can easily vary φ f from zero to π either by changing ω and ∆ simultaneously, or

by tuning the angle between the pair of Raman light. These magnetic fluxes φ f

correspond to the effective magnetic fields ranging from zero to thousands of

Tesla in electrons [17].

Fields with patterns

�

!2, k2 !1, k1

(b)

�

!2, k2!1, k1 !1, k1

(a)

Figure 2.4: Raman-assist tunneling on superlattices. In (a), sublattice has a re-
flection symmetry, but the sign of recoil momenta alternates, yielding a stag-
gered magnetic field. In (b), sublattice does not have a reflection symmetry, and
lattice is broken into a bundle of decoupled “two-leg ladders”.
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By changing the lattice structure, experimentalists can even design patterns

for these large magnetic fields. For example, they have produced a field that

reverses direction from odd-number sites to even-number sites [12]. This “stag-

gered” field exists in models of spin liquids and strongly correlated electron

systems, and can thus be of great interest in condense matter community [17].

The same group also produced a bundle of decoupled “two-leg ladders” [15],

which can be served as a toy model to understand two dimensional systems.

Concretely, these patterns are realized in the optical superlattice Vlatt(x) =

V1cos (2πx/a) + V2cos (πx/a + ϕ). This potential has a period of 2a, with two dis-

tinct configurations, as shown in Fig. 2.4. When ϕ = π/2, a unit cell has reflection

symmetry (see Fig. 2.4(a)). In this case, the tunneling amplitude is the same be-

tween neighboring sites, but the sign of recoil momenta alternates, yielding a

“staggered” magnetic field. When ϕ , π/2, a unit cell has broken reflection

symmetry (see Fig. 2.4(b)). In this case, there is a large potential barrier be-

tween two neighboring cells, breaking a two dimensional lattice into a bundle

of decoupled “two-leg ladders”. In chapter 7, we will study the ground states

of interacting Bose gases on a two-leg ladder.

2.4 Appendix

2.4.1 Effective Hamiltonian for a Raman process

Here we derive a low energy effective Hamiltonian for Eq. (2.1) in the limit

∆ � {γ, δ,Ω1,Ω2}. We aim to eliminate the excited state and find an effective

Hamiltonian in the ground state basis. To make the derivations mathematically
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compact, we introduce the projection operators

P = |g1〉 〈g1| + |g2〉 〈g2| , (2.39)

Q = 1 − P = |e〉 〈e| . (2.40)

These two operators break a state |ψ〉 into two parts,

|ψ〉 = P |ψ〉 + Q |ψ〉 ≡ |ψ0〉 + |ψex〉 , (2.41)

where |ψ0〉 represents the low-energy sector, and |ψex〉 represents the high-energy

sector. The eigen-equation H |ψ〉 = E |ψ〉 is then divided into two equations

PH |ψ〉 = PE |ψ〉 = E |ψ0〉 , (2.42)

QH |ψ〉 = QE |ψ〉 = E |ψex〉 . (2.43)

Inserting the identity P2 + Q2 = P+ Q = 1 on the left hand side of Eq. (2.42)-(2.43)

and substituting |ψex〉 in terms of |ψ0〉, we obtain a closed equation for |ψ0〉,

Heff |ψ0〉 = E |ψ0〉 , (2.44)

where the effective Hamiltonian in the low-energy sector is

Heff ≡ PHP + PHQ
1

E − QHQ
QHP. (2.45)

Writing out each term explicity

PHQ =
1
2

(
Ω∗1σ̂g1e + Ω∗2σ̂g2e

)
, QHP =

1
2

(
Ω1σ̂eg1 + Ω2σ̂eg2

)
, (2.46)

PHP = δσ̂g2g2 , QHQ = (∆ − iγ) σ̂ee, (2.47)

we obtain the effective Hamiltonian

Heff = δσ̂g2g2 +
(
Ω∗1σ̂g1e + Ω∗2σ̂g2e

) 1
4 (E − (∆ − iγ) σ̂ee)

(
Ω1σ̂eg1 + Ω2σ̂eg2

)
, (2.48)

where σ̂ab ≡ |a〉 〈b|. We are interested in the low-energy limit, where |E| �

|∆ − iγ|, yielding the Hamiltonian (multiplied by a negative sign)

Heff = −δ σ̂g2g2 +
1
2

(
δg1σ̂g1g1 + δg2σ̂g2g2 + Ω σ̂g1g2 + Ω∗σ̂g2g1

)
. (2.49)
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CHAPTER 3

MEAN-FIELD THEORY FOR DEGENERATE GASES

This chapter is a short introduction to the basic mean-field theories used

to describe superfluid gases: Gross-Pitaevski and Bogoliubov-de Gennes equa-

tions. While these theories have many different representations, I will be focus-

ing on variational wavefunction and BdG equation approaches. Applications of

these approaches are discussed in chapters 5–8. For more comprehensive intro-

ductions to mean-field theories on degenerate quantum gases, one can refer to

Refs. [21, 22].

3.1 Interaction

One of the most distinct features in cold atoms is that interactions between two

particles are short-ranged compared to inter-particle spacing. This allows us to

model the effective interaction by a delta function V(r − r′) = g δ(r − r′), where

g = 4πa/m characterizes the interaction strength, and a is the s-wave scattering

length and m is the mass of an atom. Since the delta function can only capture

the low energy physics, a high energy cut-off needs to be imposed. In particular

one writes 1/g = m/ (4πa) −
∑

k εk/ (2V), where V is the system volume, εk is the

excitation spectrum, and the sum is over modes below the cutoff [21]. Note this

renormalization is unnecessary in 1D, where high energy modes are less impor-

tant. In 1D, one writes g = 4πa1D/m, with a1D the one dimensional scattering

length [23].

In cold atoms, a particle has an internal (pseudo) “spin” degree of freedom,

so collisions can also happen between different spins. In this thesis, we will
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focus on spin-1/2 gases, where the many-body interaction is written as

Hint =
1
2

∫
dr

(
g↑↑ ψ

†

↑
(r)ψ†

↑
(r)ψ↑(r)ψ↑(r) + g↓↓ ψ

†

↓
(r)ψ†

↓
(r)ψ↓(r)ψ↓(r) (3.1)

+ 2g↑↓ ψ
†

↑
(r)ψ†

↓
(r)ψ↓(r)ψ↑(r)

)
,

where ψ†σ(r) (ψσ(r)) creates (annihilates) a σ state at position r. In most Bose-

Einstein condensate (BEC) experiments, one has g↑↑ = g↓↓ = g↑↓. For degenerate

Fermi gases, the Pauli exclusion principle leads to g↑↑ = g↓↓ = 0.

It’s also useful to express the Hamiltonian in momentum space,

Hint =
1

2V

∑
k,q,q′

(
g↑↑a

†

k/2+q↑a
†

k/2−q↑ak/2−q′↑ak/2+q′↑ (3.2)

+ g↓↓a
†

k/2+q↓a
†

k/2−q↓ak/2−q′↓ak/2+q′↓ + 2g↑↓a
†

k/2+q↑a
†

k/2−q↓ak/2−q′↓ak/2+q′↑

)
,

where ak =
(
1/
√

V
) ∫

drψσ(r)e−ik·r and ψσ(r) =
(
1/
√

V
)∑

kσ akσeik·r. Here the in-

dex k denotes the center of mass momentum of the many-body system, and q

and q′ denote the relative momentum.

3.2 Variational wavefunction for Bose-Einstein Condensations

We here discuss one representation of the Gross-Pitaevski mean-field theory –

the variational wavefunction approach. The essence of this approach is to find

an educated guess of the ground state, and minimize the corresponding energy

of respect to variational parameters. A natural guess of a BEC is a coherent state

or a Fock state, which can be written as (in momentum space):

|Ψcoh〉 = exp

−N
2

+
∑
kσ

ckσa†kσ

 |vac〉 , (3.3)

or

|ΨFock〉 =
1

N↑!N↓!

∑
k

ck↑a
†

k↑

N↑ ∑
k

ck↓a
†

k↓

N↓

|vac〉 , (3.4)

22



where Nσ is the number of σ particles, and N = N↑ + N↓ is the total number of

particles. The variational parameter |ckσ|
2 describes the number of σ particles

at momentum k, which is subjected to the normalization
∑

k |ckσ|
2 = Nσ. Both

states map an annihilation operator to a c-number: akσ
∣∣∣Ψcoh/Fock

〉
= ckσ

∣∣∣Ψcoh/Fock
〉
,

which transforms a quantum field into a classical field. Under this “mean-field”

approximation, the quantum fluctuation disappears, and the many-body inter-

action becomes an energy functional,

Eint =
〈
Ψcoh/Fock

∣∣∣ Hint

∣∣∣Ψcoh/Fock
〉

(3.5)

=
1

2V

∑
k,q,q′

(
g↑↑c∗k/2+q↑c

∗
k/2−q↑ck/2−q′↑ck/2+q′↑

+ g↓↓c∗k/2+q↓c
∗
k/2−q↓ck/2−q′↓ck/2+q′↓ + 2g↑↓c∗k/2+q↑c

∗
k/2−q↓ck/2−q′↓ck/2+q′↑

)
.

The total energy is then given by Etot = Eint + Equad, where Equad includes all

other quadratic energies such as kinetic energy (dispersion) and potential en-

ergy. Minimizing Etot respect to ckσ leads to the ground state. One shall impose

extra symmetries to reduce the number of variational parameters and simplify

the calculations. For example, if the system has lattice translational invariance,

one can drop the k-sum by setting k the minimum of the dispersion. Some of

other symmetries will be discussed in chapter 5.

3.3 Elementary excitations – Bogoliubov spectrum

Here we study elementary excitations of a single-component BEC, described by

the variational wavefunction

|Ψ〉 = exp

−N
2

+
∑

k

cka†k

 |vac〉 , (3.6)
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which gives the mean-field energy

Etot =
∑

k

k2

2m
c∗kck +

g
2V

∑
k,q,q′

c∗k/2+qc∗k/2−qck/2−q′ck/2+q′ . (3.7)

Since the minimum of the dispersion is at k = 0, the lowest energy is obtained

when ck =
√

Nδk0, where δ is the Kronecker delta function. This leads to the

ground state energy E = gN2/2V and the chemical potential µ = ∂E/∂N = gN/V .

To calculate the elementary excitation, we include the quantum fluctuation

by writing ck =
√

Nδk0 + (1 − δk0) χk and subtract the chemical potential term

µ
∑

k c∗kck. The excitation Hamiltonian shall be expressed to the quadratic order

in χk,

Hex =
∑
k,0

(
k2

2m
+

gN
V

)
χ†kχk +

gN
2V

∑
k,0

(
χ†kχ

†

−k + χ−kχk

)
+ const. (3.8)

=
1
2

 ′∑
k,0

(
k2

2m
+

gN
V

) (
χ†kχk + χ−kχ

†

−k

)
+

gN
V

′∑
k,0

(
χ†kχ

†

−k + χ−kχk

) + const.(3.9)

where
∑′

k,0 indicates that the sum is only taken over one half of the momentum

space. By performing the Bogoliubov transformation χk = uρ−k − vρ†k and χ†
−k =

−vρ−k + uρ†k, the excitation Hamiltonian is readily diagonalized as

Hex =
∑

k

εk ρ
†

k ρk + const., (3.10)

where the dispersion of the Bogoliubov quasi-particle is

εk =

√(
k2

2m
+

gN
V

)2

−
g2N2

V2 =
k
√

2m

√
k2

2m
+

2gN
V

, (3.11)

and ρk is the annihilation operator of a Bogoliubov quasi-particle, and the bosonic

relation requires u2 − v2 = 1.

At low energies (k → 0), the dispersion is linear: εk = k
√

gN/mV , where the

finite slope defines a critical sound speed vc = ∂εk/∂k|k=0 =
√

gN/mV . Depending
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on the forms of dispersion and interaction, the Bogoliubov spectrum could be

non-monotonic. For instance, the spectrum might exhibit “maxon-roton” like

structure as in a 4He superfluid [24, 25]. I will show one such example in chapter

7.

3.4 Bogoliubov-de Gennes equation for degenerate Fermi gases

In this section, we study Eq. (3.1)-(3.2) for degenerate Fermi gases, where the

Pauli principle only allows the g↑↓ term. For spinless fermions, the g↑↓ term is

absent, and effective interactions only come from higher energies, such as p-

wave and d-wave. For our spin-1/2 gases, where s-wave interactions dominate,

the Hamiltonian is

H =

∫
dr

 ∑
σ=↑,↓

ψ†σ(r)
(
−
∇2

2m
+ V(r) − µσ

)
ψσ(r) + gψ†

↑
(r)ψ†

↓
(r)ψ↓(r)ψ↑(r)

 , (3.12)

where we have included an external potential V(x) and a chemical potential µ.

We assume the interaction is attractive: g < 0. Note µσ could be different for

different spin, but here we only consider µ↑ = µ↓ = µ.

Since the interaction term is quartic, Eq. (3.12) can not be solved in a closed

form in generic dimensions. We here use the mean-field approximation to de-

couple the quartic term.

There are various ways to write Eq. (3.12) into a bilinear form, and each

of these may describe a different phenomena. We here discuss the Bardeen-

Cooper-Schrieffer (BCS) mean-field theory, which describes the superconduc-

tivity [26]. The mathematical formulation of BCS theory was developed by Bo-
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goliubov [27], where the Hamiltonian is written as

H =

∫
dr

 ∑
σ=↑,↓

ψ†σ(r)
(
−
∇2

2m
+ V(r) − µ

)
ψσ(r) + HBCS

 , (3.13)

and

HBCS =

∫
dr

(
∆∗(r)ψ↓(r)ψ↑(r) + ∆(r)ψ†

↑
(r)ψ†

↓
(r) −

|∆(r)|2

g

)
. (3.14)

Here ∆(r) = g
〈
ψ↓(r)ψ↑(r)

〉
is the superconducting order parameter, where the

expectation operator is defined by 〈...〉 =
Tr(e−βH ...)
Tr(e−βH) , with β = 1/T denoting the

inverse temperature. The order parameter acts like an external field (mean-

field) that binds together an electron and a hole into a Cooper pair.

One can represent Eq. (3.13) by a 2 by 2 matrix,

H =

∫
dr

 ψ↑(r)

ψ†
↓
(r)


†  −

∇2

2m − µ + V(r) ∆(r)

∆∗(r) ∇2

2m + µ − V(r)


 ψ↑(r)

ψ†
↓
(r)

 + const.. (3.15)

This Hamiltonian is readily diagonalized by performing the Bogoliubov-de Gennes

(BdG) transformation ψ↑(r)

ψ†
↓
(r)

 =
∑

n

 un(r) −v∗n(r)

vn(r) u∗n(r)


 ξ↑nξ†
↓n

 , (3.16)

where ξσn (ξ†σn) denotes the annihilation (creation) operator of Bogoliubov quasi-

particle. The fermionic anticommutation relation requires the transformation is

unitary:
∑

n
(
u∗n(r)un(r′) + v∗n(r)vn(r′)

)
= δ(r − r′). The diagonalized Hamiltonian is

then expressed as

H =
∑
σn

εn

(
ξ†
↑n ξ↑n − ξ↓n ξ

†

↓n

)
+ const., (3.17)

where εn is the energy of the Bogoliubov excitation. Note {εn,−εn} always come

in pairs due to the particle-hole symmetry in Eq. (3.15). I will show in chapter
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8 that this symmetry is responsible for creating “Majorana fermions”, exotic

particles who are their own anti-particle. A more generalized BdG equations

which include spin-orbit coupling will be discussed in chapter 8.

In terms of un(r) and vn(r), the order parameter ∆(r) is written as

∆(r) = g
〈
ψ↓(r)ψ↑(r)

〉
= g

∑
n

u∗n(r)vn(r) (1 − 2 f (εn)) , (3.18)

where f (x) = 1
1+eβx is the Fermi function. This equation is called gap equation,

which implicitly determines the solutions for ∆(r). It can be computed itera-

tively following the procedures: [1] make an initial guess on ∆(r); [2] diagonalize

the BdG Hamiltonian (3.15); [3] use computed eigenvectors (un, vn) to calculate

∆(r); [4] repeat [2] until convergence is reached. In many cases, a different initial

guess might lead to a different order parameter. This often means the system

has more than one steady states, and the energy of each state is a local mini-

mum. An alternative way to calculate ∆(r) is minimizing the free energy, as has

been discussed by Stefan Bauer in his PhD thesis [28].

Another important physical quantity is the number density

n(r) =
〈
ψ†(r)ψ(r)

〉
=

∑
n

|un(r)|2 f (εn) + |vn(r)|2 (1 − f (εn)) , (3.19)

which can be readily calculated once ∆(r) is obtained.

Imposing symmetries can simplify the calculations. For example, if the sys-

tem is translational invariant, the BdG Hamiltonian becomes a set of decoupled

2 by 2 matrix in momentum space, and one can solve the gap equation analyti-

cally [28]. Some of other symmetries are discussed in chapter 6.
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CHAPTER 4

TOPOLOGY OF ENERGY BANDS

For the past ten years, “topological” material has been showing its explo-

sive existence in condensed matter, drawing extraordinary attentions from the

physics community [29, 30]. All of these excitements largely stem from one ex-

periment in early 80s – the quantum Hall effect [31], where the transverse con-

ductance of a two dimensional material is quantized and exhibits sharp jumps

in a strong magnetic field. While these jumps indicate phase transitions, the

various insulating states have the same local symmetry, and thus can not be dis-

tinguished by Landau’s symmetry breaking theory [32]. The concept of topo-

logical phases, was introduced to classify these states [33, 34], where certain fun-

damental physical properties are robust against the smooth changes of material

parameters unless the system passes through a topological phase transition. In

this context, the topology is only useful where the physical system has an en-

ergy band gap that separates the ground states from the excited states, and the

topological phase transition occurs when the band gap closes. In this chapter,

I will introduce the mathematical description of topological invariants in a pe-

riodic potential, and discuss examples of topological phases. For more details

about this field, one can refer to the review articles by Hasan and Kane [35], and

Qi and Zhang [36].

4.1 Topological invariant

The topology of a physical system can be characterized by the Berry’s phase – a

geometric phase accumulated during the adiabatic evolution of a quantum state

along a closed path in a parameter space. The generic form of the Berry’s phase

28



can be expressed as [37],

γ =

∮
C

dR · A(R), (4.1)

where the Berry’s connection is defined as

A(R) = i 〈n(R)| ∇R |n(R)〉 . (4.2)

Here |n(R)〉 is the instantaneous eigenstate of a Hamiltonian parameterized by

a vector R, and C denotes a closed path from R(ti) to R(t f ) where R(ti) = R(t f ).

The Berry’s connection is gauge depend, as it shifts from A(R)→ A(R)−∇RΘ(R)

under a gauge transformation |n(R)〉 → eiΘ(R) |n(R)〉, where Θ(R) is an arbitrary

scaler function.

It’s also useful to rewrite Eq. (4.1) in terms of a surface integral using Stokes’

theorem,

γ =

∫
S

dS ·Ω, (4.3)

where the Berry’s curvature is defined as

Ω = ∇R × A(R) = i∇R × (〈n(R)| ∇R |n(R)〉) . (4.4)

Here S is an arbitrary surface enclosed by path C. Since ∇R × (∇RΘ(R)) = 0, the

Berry curvature is gauge independent.

4.1.1 Berry’s phase in Bloch bands

In a crystalline system, the parameter space of the Berry’s phase can be charac-

terized by the quasi-momentum on an energy band, where the Brillouin zone
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is a natural closed path. Concretely, we consider the following single particle

Hamiltonian,

H = −
∇2

2m
+ V(r), (4.5)

where V(r) = V(r + a) is a periodic potential, with a the Bravais lattice vector.

The eigenstate of this Hamiltonian is a Bloch wavefunction,

ψnq(r) = eiq·runq(r) (4.6)

where unq(r) = unq(r + a) is a periodic wavefunction in real space, n is the band

index, and q is the quasi-momentum in the first Brillouin zone. Applying a

unitary transformation, the Hamiltonian is written as

H(q) = e−iq·rHeiq·r =
(−i∇ + q)2

2m
+ V(r), (4.7)

where the eigenstate becomes the periodic function unq(r). The boundary condi-

tion unq(r) = unq(r + a) guarantees that all the eigenstates live in the same Hilbert

space [37]. A closed path is realized when q sweeps the entire Brillouin zone,

and the Berry’s phase is written as

γn =

∫
BZ

dq · 〈un(q)| i∇q |un(q)〉 . (4.8)

In the following sections, I will discuss two representations of Berry’s phase in

periodic potentials: the Zak phase and the Chern number, which are responsible

for one dimensional and two dimensional systems. I will introduce concrete

models to elucidate their physical meanings, some of which are also discussed

in chapter 8 and chapter 10.
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4.2 Zak’s phase

For one dimensional periodic system, one defines the Zak’s phase,

γzak
n =

∫ π/a

−π/a
dq 〈un(q)| i∂q |un(q)〉 , (4.9)

where a is the lattice constant, and q is the one dimensional quasi-momentum.

The Zak’s phase is related to the charge polarization of a one dimensional crystal

[38]. In practice, a closed form of Eq. (4.9) is not always accessible, and one

shall calculate the Zak’s phase numerically. However, it could be tricky to make

|un(q)〉 a smooth function of q in numerical calculations. A useful alternative is

to exponentiate the phase and rewrite the integral as a product,

exp
(
iγzak

n

)
= lim

δq→0
exp

− π/a∑
−π/a

〈un(q)| ∂q |un(q)〉 δq

 (4.10)

=

π/a∏
q=−π/a

(
lim
δq→0
〈un(q)|un(q − δq)〉

)
. (4.11)

This formula takes care of the sudden jump of |un(q)〉 where the derivative is

not well defined. A similar formula which includes spins will be discussed in

chapter 8. Note it’s useless to define the Berry’s curvature in one dimension.

In general γzak
n can choose any value from zero to 2π, but when certain sym-

metry (constrain) is imposed, it can be quantized or become “topological”. Any

perturbation that breaks the symmetry will also break the quantization con-

straint. In the following, I will discuss two simple lattice models to illustrate

this phenomena.
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4.2.1 Rice-Mele model

We first consider a one dimensional tight-binding Hamiltonian,

H =
∑

j

(
−

(
Ja†jb j + J′a†jb j+1 + h.c.

)
+ ∆

(
a†ja j − b†jb j

))
, (4.12)

where each unit cell contains two sites A and B, characterized by creation (an-

nihilation) operators a†j (a j) and b†j (b j). The intra-tunneling amplitude within a

unit cell is J, and the inter-tunneling amplitude is J′. The energy offset between

A and B sites is 2∆. This model was originally introduced by Rice-Mele to de-

scribe diatomic polymers [39]. Recently, it was realized in a one dimensional

optical lattice [40]. Note when ∆ = 0, the model reduces to the well known

Su-Schrieffer-Heeger (SSH) model [41].

In momentum space, Eq. (4.12) is expressed as

H =
∑

k

 ak

bk


†  ∆ −J − J′e−ikd

−J − J′eikd −∆


 ak

bk

 (4.13)

=
∑

k

(
a†k b†k

)
h(k) · σ

 ak

bk

 , (4.14)

where ak = 1
√

N

∑
j eikd ja j and bk = 1

√
N

∑
j eikd jb j, with N the number of superlat-

tice sites and d the periodicity, and σ represents three Pauli matrices, and h(k)

represents the Bloch vector, with hx = −J − J′cos kd, hy = −J′sin kd, and hz = ∆,

This Hamiltonian is readily diagonalized, with two eigenstates

∣∣∣u−k 〉 = e−iα/2

 −sinβ

2e−iα/2

cosβ2eiα/2

 , ∣∣∣u+
k
〉

= e−iα/2

 cosβ2e−iα/2

sinβ

2eiα/2

 , (4.15)

where tanα = hy/hx and tan β =
√

h2
x + h2

y/hz, and the phase factor e−iα/2 is im-

posed to make
∣∣∣u±k 〉 change smoothly along the closed path −π/d < k ≤ π/d. One
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can then write the Zak’s phase

γzak
± =

∫ π/d

−π/d
dk

〈
u±k

∣∣∣ i∂k

∣∣∣u±k 〉 (4.16)

=

∫ π/d

−π/d
dk

1 ± cos β
2

∂kα (4.17)

=
1
2

∫ π/d

−π/d
dk ∂kα ±

1
2

∫ π/d

−π/d
dk cos β ∂kα. (4.18)

Depending on β, the Zak’s phase γzak
± can choose any value from zero to 2π, so

the Hamiltonian is not topological. However, if we impose a sublattice sym-

metry between A and B sites by setting ∆ = 0, the second term in Eq. (4.18)

vanishes, yielding

γzak
± =

1
2

∫ π/d

−π/d
dk ∂kα =

{ π J < J′

0 J > J′.
(4.19)

We see γzak
± is now quantized – the value of γzak

± only depends on the sign of J− J′

rather than the magnitude, and the topological transition happens at J = J′.

Since the model only has two topologically distinct phases, it is a Z2 topological

material, protected by inversion (sublattice) symmetry.

4.2.2 Kitaev’s chain

We now move to another example that also has a Z2 topological index. We

consider a one dimensional spinless Fermi gas on a lattice with p-wave super-

conducting pairing,

H =
∑

j

(
−t

(
c†jc j+1 + h.c.

)
− µ c†jc j + ∆ (c jc j+1 + h.c.)

)
, (4.20)

where c†j (c j) is the creation (annihilation) operator at lattice site j, and t is the

tunneling amplitude between neighboring sites, µ is the chemical potential, and
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∆ is the superconducting order parameter. This model was introduced by Kitaev

to describe Majorana fermions in condensed matter system [42].

Similar to the previous analysis, we write Eq. (4.20) in momentum space,

H =
∑
k>0

 ck

c†
−k


†  −2t cos kd − µ −2i∆ sin kd

2i∆ sin kd 2t cos kd + µ


 ck

c†
−k

 + const. (4.21)

=
∑
k>0

(
c†k , c−k

)
h(k) · σ

 ck

c†
−k

 + const., (4.22)

where ck = 1
√

N

∑
j eikd jc j, and hx(k) = 0, hy(k) = 2∆ sin kd, and hz(k) = −2t cos kd − µ,

and d is the lattice constant. Here we see the Bloch vector h(k) only lives on the

y − z plane, and thus the Zak’s phase is always quantized. This is guaranteed

by the particle-hole symmetry. The symmetry holds even when the supercon-

ducting pairing is s-wave, where the Zak’s phase is always zero (topologically

trivial).

4.3 Chern number

In two dimensions, the Bloch eigenstates |u(k)〉 are parameterized by a two di-

mensional quasi-momentum k. Periodicity of the quasi-momentum implies that

the Brillouin zone is a torus, allowing us to define a Chern number [37],

C =
1

2π

∫
BZ

dkxdky Ωkxky . (4.23)

where kx and ky denote two quasi-momentum in the x-direction and y-direction,

and the Berry’s curvature is

Ωkxky = i
(
∂ky

〈
u(k)

∣∣∣∂kx

∣∣∣ u(k)
〉
− h.c.

)
. (4.24)
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In most cases, it is difficult to calculate Eq. (4.23) analytically. A useful trick is

to numerically calculate the Berry’s phase on a small plaquette using Eq. (4.10),

and sum up all the plaquettes. In particular,

C =
1

2π
lim
δkx→0

lim
δky→0

∑
kx,ky

γkxky , (4.25)

where

exp
(
iγkxky

)
= 〈u(k)|u(k + δkx)〉

〈
u(k + δkx)|u(k + δkx + δky)

〉
(4.26)

×
〈
u(k + δkx + δky)|u(k + δky)

〉 〈
u(k + δky)|u(k)

〉
.

The Chern number is an integer, labelled by the set of integer Z. Depending

on other physically relevant symmetries, such as time-reversal symmetry (TRS)

or particle-hole symmetry (PHS), the bands can be classified by other sets such

as Z2 (0,1) or 2Z (even number) [43]. For example, a two dimensional spin-

hall insulator (with TRS) belongs to a Z2 class, while an integer quantum hall

insulator or a (chiral) p-wave superconductor (broken TRS) belongs to a Z class

[43]. The classification of topological invariant in generic dimensions has been

comprehensively studied in Ref. [44].

While the Chern number is a property of a gapped bulk, it also specifies

the number of edge states on the material [35]. For example, a spinless p + ip

superconductor (C = 1) can only have one Majorana edge mode at a topological

boundary, while a chiral triplet superconductor (C = 2) can have two Majorana

edge modes.

In the following section, I will study a two dimensional example where the

Chern number can choose any integer. I will show explicitly the Chern number

is equal to the number of topologically protected edge states.

The following section is largely adapted from an unpublished paper “The anisotropic
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Harper-Hofstadter model: spectra, Chern number and edge states” by Ran Wei and

Erich J. Mueller.

4.4 Anisotropic Harper-Hofstadter Model

We consider a model of non-interacting particles on a two dimensional array of

N coupled wires in a magnetic field,

H =

N∑
j=1

∫
dx

(
ψ†j(x)

(
−

1
2m

∂2
x + V j(x)

)
ψ j(x) −

(
t eipxψ†j+1(x)ψ j(x) + h.c.

))
, (4.27)

where ψ†j(x) (ψ j(x)) creates (annihilates) a particle on the jth wire, and t is the

nearest neighboring tunneling amplitude between wires. The magnetic field

B = pc/de leads to a complex phase on the tunneling matrix element, where

d is the wire spacing, c is the speed of light and e is the electron charge. We

consider the case where p/q is a rational number, corresponding to a commen-

surate magnetic flux per unit cell. We take the potential along each wire to

be V j(x) = 2v cos(qx + φ j(x)), with v and φ j the intensity and the phase of the

potential. For most of this section we will take φ j(x) = φ0 to be the same on

each wire. This is the simplest case to implement experimentally. The ability to

choose other phase profiles, however, is very powerful. For example, one can

introduce dislocations through φ j(x). Strategies for creating such profiles can be

found in [45].

Imposing periodic boundary conditions along x, we write the Hamiltonian

in the kx-space,

H =

N∑
j=1

∞∑
kx=−∞

(
k2

x

2m
ψ†j,kx

ψ j,kx +
(
v eiφ0ψ†j,kx

ψ j,kx+q − tψ†j+1,kx
ψ j,kx+p + h.c.

))
, (4.28)
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where ψ j,kx = 1
√

L

∫
dx eikx xψ j(x), with L the length of the wire. The first term

describes the parabolic energy-momentum dispersion of free particles, and the

second term describes the potential-induced intra-wire scattering between the

particles of momenta kx and kx + q, as illustrated in Fig. 4.1(a). The third term

describes the tunneling induced inter-wire scattering between the particles of

momenta kx and kx + p, as illustrated in Fig. 4.1(b). Note the momentum units

in these figures are different.

Since p and q are commensurate, the Hamiltonian is periodic in the x-direction

with period set by the greatest common divisor κ ≡ gcd(p, q). In kx space, this

real-space periodicity implies that states with momentum kx are coupled only to

those of momentum kx + nκ for integer n. Assuming the system is also periodic

in the y-direction, we rewrite the Hamiltonian as (in the unit of κ2/m)

H =

2π∑
ky=0

1∑
kx=0

∞∑
n=−∞

(kx + n)2

2
ψ†nψn +

(
v eiφ0ψ†nψn+q − t e−ikyψ†nψn+p + h.c.

)
, (4.29)

where we have defined the dimensionless variables: H → H/
(
κ2/m

)
, t → t/

(
κ2/m

)
,

v → v/
(
κ2/m

)
, kx → kx/κ, ky → kyd, q → q/κ, and p → p/κ. The dimensionless

field operator in momentum space is denoted as ψn ≡
1
√

N

∑N
j=1 eiky jψ j,(kx+n)κ, where

n labels the quasi-energy band index. In the special case ky = 0, Eq. (4.29) be-

comes the same as the model in chapter 10.

4.4.1 Chern number

Following the procedure described in chapter 10, one can write an effective

model for Eq. (4.29) in the limit of t, v � 1,

Heff =

 −
1
2δkx α∆eiχ

α∆e−iχ 1
2δkx

 + const., (4.30)
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Figure 4.1: Single-particle spectra from Eq. (4.28). (a) Illustrates the case t = 0,
corresponding to an array of uncoupled wires, with a periodic potential of
wave-vector q along each of them. Dashed line corresponds to v = 0. (b) Il-
lustrates the case v = 0, corresponding to coupled uniform wires in a constant
magnetic field of strength B = pc/de, where d is the wire spacing, c is the speed
of light and e is the electron charge. The tunneling strength is t. Dashed line
corresponds to t = 0. Insets illustrate the scattering processes.

where δkx = kx−1/2, ∆ = v|rm |(−t)|sm |, χ = −smky + rmφ0, and sm, rm correspond to the

absolutely smallest solution to the Diophantine equation sp + rq = 1. The off-

diagonal term splits the energy degeneracy at kx = 1/2, and creates an energy
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gap of size 2|α∆|.

Eq. (4.30) has the eigenstate,

|−〉 =

 −sinβ

2eiχ/2

cosβ2e−iχ/2

 , (4.31)

with tanβ = −2α∆/δkx. In the first Brillouin zone the states |−〉 form an energy

band, and the topology of the band is characterized by a Chern number,

C =
1

2π

∫
BZ

Ωkxkydkxdky, (4.32)

where the Berry curvature is

Ωkxky = i
(
∂ky〈−|∂kx |−〉 − h.c.

)
=

sm

2
∂kxcosβ. (4.33)

Integrating the Berry curvature yields the Chern number C = sm, which is ex-

actly equal to the solution to the Diophantine equation. As is well established

[33], this Chern number corresponds to the transverse Hall conductance.

0.0 0.2 0.4 0.6 0.8 1.0

-20

-10

0

10

20

p�q

C

Figure 4.2: Chern number as a function of magnetic flux p/q for 1 ≤ p ≤ q ≤ 50.

Fig. 4.2 shows C as a function of magnetic flux p/q for 1 ≤ p ≤ q ≤ 50. We

see the Chern number can be any integer ranging from −q/2 to q/2.
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4.4.2 Topologically protected edge states

We here study Eq. (4.28) with an open boundary condition in the y-direction.

Following the same procedure, we can construct the effective Hamiltonian,

(1) sm > 0,

Heff =
δkx

2

 sm∑
j=1

ψ†j,Rψ j,R −

N∑
j=N−sm+1

ψ†j,Lψ j,L

 +

N∑
j=sm+1

(
ψ†j−sm,L

, ψ†j,R

)
Heff

 ψ j−sm,L

ψ j,R

 ,(4.34)

(2) sm < 0,

Heff =
δkx

2

 N∑
j=N+sm+1

ψ†j,Rψ j,R −

−sm∑
j=1

ψ†j,Lψ j,L

 +

N+sm∑
j=1

(
ψ†j−sm,L

, ψ†j,R

)
Heff

 ψ j−sm,L

ψ j,R

 ,(4.35)

(3) sm = 0,

Heff =

N∑
j=1

(
ψ†j,L, ψ

†

j,R

)
Heff

 ψ j,L

ψ j,R

 , (4.36)

where Heff was defined in Eq. (4.29). Here we have defined the left mover

ψ j,L ≡ ψ j,n=−1|kx→1/2 and the right mover ψ j,R ≡ ψ j,n=0|kx→1/2, and sm is equal to the

Chern number. The off-diagonal terms of Heff couple the left movers and the

right movers, so the bulk wires ( j = |sm| + 1, ...,N − |sm|) are completely gapped.

For sm > 0, there are sm left-moving edge modes on the wires j = N − sm + 1, ...,N

and sm right-moving edge modes on the wires j = 1, ..., sm. For sm < 0, there are

−sm left-moving edge modes on the wires j = 1, ...,−sm and −sm right-moving

edge modes on the wires j = N + sm +1, ...,N. For sm = 0, the system is completely

gapped, and there are no edge states. Including higher order terms or disorder

will mix the states on one side of the sample, but since the modes are chiral,

these coupling cannot open gaps. Exponentially small gaps can appear due to

scattering between edge states on opposite sides of the sample.
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4.4.3 Edge states induced by phase slips

x

y

… … …

j1 j2

�0 �0 + ⇡ �0

(a)

(b)

0.40 0.45 0.50 0.55 0.60
kx

E

Figure 4.3: (a) Illustration of the coupled wires in a perpendicular magnetic field
in the periodic potential V j(x) = 2v cos(qx + φ j(x)) with φ j = φ0 + π ( j1 ≤ j ≤ j2)
and φ j = φ0 ( j < j1 or j > j2). At a particular strength of the magnetic field, the
edge modes appear at the boundaries of the distinguished regions, as denoted
by the red arrows. (b) Energy band structure for p = 2 and q = 3, where the
gapless edge modes (denoted by the red lines) appear in the center of the bulk
gap.

Finally we study the boundary of phase slip defects where the periodic po-

tential is shifted on some wires. We find gapless edge states for particular

strengths of the magnetic field. These edge states have no topological protec-
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tion, and can be gapped out by disorder.

To be generic, we replace φ0 → φ j in Eq. (4.28). Using the similar procedure

to derive an effective Hamiltonian on the basis of the left mover and the right

mover, we obtain

H̃eff =

N∑
j=1

(
ψ†j−sm,L

, ψ†j,R

)
H̃

j
eff

 ψ j−sm,L

ψ j,R

 , (4.37)

where we have imposed the periodic boundary condition in the y-direction and

defined ψ−sm ≡ ψN−sm , and

H̃
j

eff
=

 −
1
2δkx c j∆

c∗j∆
1
2δkx

 + const., (4.38)

where c j =
∑s=|sm |

s=0 αs eiφ j+s−1 , with αs a real numerical pre-factor. Generally, the

off-diagonal term of H̃ j
eff

is nonzero, corresponding to an energy gap near kx →

1/2. However, we find for the special case where p = 2, q = 3, the effective

Hamiltonian at kx = 1/2 is

H̃
j

eff
=

1
3

 −(v2 + t2) (eiφ j−1 + eiφ j)vt

(e−iφ j−1 + e−iφ j)vt −(v2 + t2)

 . (4.39)

At φ j−1 = π + φ j, the Hamiltonian is diagonal, and the left mover and the right

mover are not coupled, so there is a pair of gapless edge modes with the oppo-

site current at the boundary between the regions with φ j = φ0 and φ j = φ0 + π.

To solidify our analytic argument, we numerically calculate the eigenvalues

of the Hamiltonian in Eq. (4.28) for φ0 → φ j = φ0 + π ( j1 ≤ j ≤ j2) and φ0 →

φ j = φ0 ( j < j1 or j > j2), and plot the energy bands as a function of kx in Fig.

4.3(b). We see the bands cross at the center of the energy gap which correspond

to the gapless edge modes. Note there are two boundaries of distinguished
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regions, so there are two pairs of edge modes, as illustrated in Fig. 4.3(a). These

edge modes have no topological protection, and can be gapped out by the local

disorder near the boundary between distinguished regions.
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CHAPTER 5

VORTEX STRUCTURES OF A TWO-COMPONENT BEC IN NARROW

GEOMETRIES

This chapter was adapted from ”Vortex structures of a two-component Bose-Einstein

condensate for large anisotropies” by Ran Wei and Erich J. Mueller, published in Phys-

ical Review A 84, 063611 (2011).

5.1 Abstract

We calculate the vortex structures of an elongated two-component Bose-Einstein

condensate. We study how these structures depend on the intra-component and

inter-component interaction strengths. We present analytic and numeric results

respectively at weak and strong interactions; finding lattices with different in-

terlocking geometries: triangular, square, rectangular and double-core.

5.2 Introduction

One of the most exciting recent developments in cold atom experiments has

been the production of artificial gauge fields, which couple to neutral atoms in

the same way that magnetic fields couple to charged particles [1, 4]. While the

greatest excitement surrounds the possibility of producing analogs of fractional

quantum Hall states or topological insulators [46], these experiments also al-

low one to perform some extremely interesting experiments on vortices in Bose-

Einstein condensates, similar to those performed on rotating gases [47, 48, 49,

50, 51, 52]. The resulting structures are particularly rich for multi-component
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gases [53, 54, 55, 56]. As discussed below, although the current NIST experi-

ments use roughly circular clouds, the technique naturally leads one to consider

very narrow geometries. Here we theoretically investigate the vortex structures

in a two-component Bose-Einstein condensate confined to a relatively narrow

channel. We find a rich phase diagram which complements our understanding

of the isotropic 2D system [53, 54, 55, 56].

In the NIST experiment the hyperfine states of 87Rb are coupled by a series of

Raman lasers. In the dressed state picture [1, 4], taking the strong Raman field

limit, one arrives at an effective single particle Hamiltonian

H1 =
(px − Ax(y))2

2m
+

p2
y

2m
+

p2
z

2m
+ Veff(y, z). (5.1)

The effective gauge field is bounded, −~kR < Ax(y) < ~kR, where ~kR is the mo-

mentum kick from absorbing a photon from one beam and releasing it into an-

other. One can generate arbitrarily large magnetic fields B = −∂yAx, but due to

the bounded nature of Ax, these can only exist over a finite extent in the y direc-

tion. It is therefore natural to choose the effective potential Veff(y, z) to restrict the

particles to a small region of y, z, modeling it as Veff(y, z) = mω∗y
2y2/2 + mωz

2z2/2.

Veff(y, z) includes both the external potential and one induced by the Raman

lasers.

In the NIST experiment, for large Raman Rabi frequency Ω, the only nonzero

component of the vector potential is Ax = −~kRδ/Ω, where δ = µBext is the

two-photon detuning, µ is the magnetic moment of the atom, and Bext is the

external magnetic field. To generate an artificial magnetic field, one applies a

y-dependent Bext so that the gradient δ′ = dδ/dy is nonzero. This technique un-

avoidably introduces an artificial scalar potential V∗ = −~δ2/4Ω. For a constant

δ′, this yields an effective trapping frequency ω∗y =
√
ω2

y − ~δ′2/2mΩ.
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The impact of the magnetic field on a single component Bose-Einstein con-

densate in such a narrow channel has been extensively studied [57, 58, 59]. As

one increases the magnetic field from zero, the Bogoliubov spectrum starts to

develop a “roton” minimum, whose energy falls with increasing B. When the

roton energy hits zero, the system becomes unstable to undulations. At higher

magnetic fields vortices enter the channel. Here we extend these results to the

two-component gas.

The vortex structures in isotropic 2D two-component condensates are quite

rich [53, 54]. Depending on the relative strength of the inter-component and

intra-component scattering one can find interpenetrating lattices with different

geometries: triangular, square, rectangular and double-core. Of these, triangu-

lar and square have been observed in experiments [60]. We find similar results

in the anisotropic geometry.

A final motivation for thinking about the role of magnetic fields in very nar-

row geometries comes from solid state physics. In 2005, Seidel et al. [61] showed

that the quantum Hall effect in narrow tori can be connected to charge density

waves, with the fractionally charged vortices mapping onto fractionally charged

domain walls. In this chapter we will focus on the Bose condensed regime, and

will not be able to comment on this interesting physics. We do note, however,

that our system undergoes a charge density wave instability before vortices en-

ter the system. Investigating this instability in the low density “quantum” limit

may be fruitful, even though the physics is likely to be very different from that

in [61].
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5.3 Model

There are four important lengths in Eq. (5.1), dz =
√
~/mωz, dy =

√
~/mω∗y, ` =√

~/B̄, and R = ~kR/B̄, where B̄ is the peak value of B. These correspond to

the trap length in the z and y direction, the magnetic length, and the spatial

range over which the effective magnetic is nonzero. If dz is sufficiently small,

the kinetics becomes two dimensional. As we argue below, a sufficient condition

will be dz . `. If dy � R, the gases will be confined to a region where the vector

potential varies linearly and we can approximate: Ax = −B̄y. In terms of the raw

experimental parameters, B̄ = δ′~kR/Ω.

Taking Ψ1(r) and Ψ2(r) to annihilate atoms in the two (pseudo)-spin states,

the short range interactions will be

Hint =
1
2

∫
dr

(
g1Ψ

†

1Ψ
†

1Ψ1Ψ1 + g2Ψ
†

2Ψ
†

2Ψ2Ψ2 + 2g12Ψ
†

1Ψ
†

2Ψ2Ψ1

)
. (5.2)

The coupling constants are related to scattering lengths as via g = 4π~2as/m.

We will consider the case g1 = g2 = g, and g12 = gm. For most experiments

g1 ≈ g2 ≈ g12, but one gains insight by relaxing this condition.

Following Sinha and Shlyapnikov [57], we diagonalize the single particle

Hamiltonian in Eq. (5.1). The eigenstates are labeled by three quantum numbers

K, n, n′, with energies

Enn′(K) = EK2 + n~ωz + n′~ω̃c. (5.3)

where ω̃2
c = ω∗y

2 + ω2
c , ωc = B̄/m, and E = ~2ω∗y

2/4mω̃2
c
˜̀2, ˜̀ =

√
~/mω̃c, and we

have neglected the zero-point energy. The continuous variable K =
√

2 ˜̀k is a

dimensionless label of the momentum k along the x direction, while n and n′ are

discrete quantum numbers corresponding to the number of nodes in the z and
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y directions. If the interaction energy per particle 〈Hint/N〉 and the characteristic

“kinetic energy” 〈EK2〉 are small compared to ~ω̃c and ~ωz, one can truncate to

the single particle eigenstates with n = n′ = 0, which are of the form

φK(x, y, z) =
1√
π ˜̀dzL

exp
(
i

Kx
√

2 ˜̀

)
exp

(
−

(y − yK)2

2 ˜̀2

)
exp

(
−

z2

2d2
z

)
(5.4)

where yK =
√

2ωcK ˜̀/2ω̃c and L is the length of x direction.

By taking the system sufficiently dilute, it is easy to arrange 〈Hint/N〉 � ~ω̃c ∼

~ωz. The other condition, EK2 � ~ω̃c, will be valid at strong magnetic fields. For

our vortex lattices, we find the characteristic dimensionless wave-number to be

K ∼ 1, thus requiring ω∗y � ωc. Combining this with the previous constraint,

ω∗y � mω2
c/~k2

R, we see that our approximations break down unless the magnetic

length is much larger than the wavelength of the Raman lasers, ie. ωc � ~k2
R/m.

This also establishes our requirement dz . `.

Letting aK annihilate the state in Eq. (5.4), the N-body Hamiltonian is

H
E

=
∑

K

K2
(
a†K↑aK↑ + a†K↓aK↓

)
+
β

N

∑
q

F†
↑↑

(q)F↑↑(q)

+
β

N

∑
q

F†
↓↓

(q)F↓↓(q) +
2βm

N

∑
q

F†
↑↓

(q)F↑↓(q) (5.5)

where

Fστ(q) =
∑
K1K2

δq−K1−K2e
− 1

8 (K1−K2)2
aK1σaK2τ, (5.6)

and we have used ↑, ↓ in place of 1, 2. We take the continuum limit
∑

K →(√
2L/4π ˜̀

) ∫
dK, and δK →

(
2
√

2π ˜̀/L
)
δ(K). The effective 1D parameters are

β = Nmgω̃2
c
˜̀/πLdzω

∗
y

2~2, βm = βgm/g. From these definitions of the effective in-

teraction parameters β, βm, we see that increasing g, gm has the same effect as

increasing the magnetic field B, increasing the confinement ωz, or reducing the

confinement ω∗y.
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We consider a variational wavefunction corresponding to a Bose-Einstein

condensate which is periodic in the x direction, with dimensionless wavelength

2π/K0, corresponding to a physical wavelength λ = 2
√

2π ˜̀/K0,

|ψ〉 = exp

−N
2

+
∑
σ

√
Nσ

∑
n

Cnσa†nK0 σ

 |vac〉. (5.7)

Here σ =↑, ↓. Nσ is the number of particles in state σ, and N = N↑ + N↓. The

coefficients Cnσ are normalized to
∑

n |Cnσ|
2 = 1. In place of such a coherent state

ansatz, some authors prefer to work with a “Fock” state

|ψ〉F =
1√

N↑!N↓!

∑
n

Cn↑a
†

nK0 ↑

N↑ ∑
n

Cn↓a
†

nK0 ↓

N↓

|vac〉. (5.8)

For the quantities we are interested in, |ψ〉 and |ψ〉F are equivalent, and the vari-

ational parameters Cnσ have the same meaning in each case: |Cnσ|
2 is the fraction

of spin σ particles with momentum nK0.

We take N↑ = N↓, and further restrict ourselves to considering symmetric

or antisymmetric wavefunctions: Cn,σ = ±C−n,σ. We classify our state by the

value of K0, and the number of non-zero Cn’s which are needed to minimize the

energy, ξ. For example, as illustrated in Fig. 5.1, for (β, βm) ∼ (3, 1), we need

only one n for each component: n = 0. We refer to this state as (ξ↑, ξ↓) = (1, 1).

This should be contrasted with the case at (β, βm) ∼ (5, 2.5), where the energy

is minimized by taking n = −1, 0, 1 in both components, a state we label as

(ξ↑, ξ↓) = (3, 3). Analytic expressions for the energies with small numbers of

components are given in Appendix 5.7.1.
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(a) (b)

Figure 5.1: Top panel: phase diagram at small dimensionless intra-species and
inter-species interactions β, βm. Larger β, βm corresponds to larger g, gm, larger
magnetic field, larger confinement ωz, or weaker confinement ω∗y. Hatched pat-
terns represent states described by different number of Fourier components in
each spin state: (ξ↑, ξ↓). Bottom panel: the density profiles of the two-component
wavefunction in the corresponding regimes. A color key for the density patterns
is shown in Fig. 5.1.

5.4 Results at small β, βm

The number of expansion parameters, (ξ↑, ξ↓), grow with the magnitude of β, βm.

For small β and βm, we only need a small number of terms in our wavefunctions,

and we may use the analytic expressions in Eq. (5.9)-(5.23) to find the lowest

energy state. We obtain a series of phase, as demonstrated in Fig. 5.1(a).

At βm = 0, the ↑ and ↓ atoms decouple, and the physics is identical to the

single component case, ξ↑ = ξ↓ = ξ. When β < 9.8, the ground state wavefunction

has only one term (ξ = 1), which displays a Gaussian shape along y direction.

As β increases past β = 9.8, the ξ = 1 wavefunction becomes unstable, and it

undergoes a second-order phase transition to a density wave with ξ = 3. As β

increases to β = 10.8, a first-order phase transition occurs to a state with ξ = 2,
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(a)

Low density High density

(b)

(c)

(d)

Figure 5.2: The density profiles of two-component BEC at large β, βm, where
x, y are in the unit of

√
2 ˜̀. For (a)-(d), the parameters are βm/β = 0.1, 0.5, 1, 1.5

respectively, with β = 1000. A color key is shown at the top.

characterized by a single row of vortices. These results have been extensively

studied in Ref. [59].

In the regime of repulsive inter-component interaction (βm > 0), the ↑ and ↓

particles try to avoid each-other. For strong repulsive interaction (βm > β), the

two components undergoes a microscale phase separate [62], which needs large

(presumably infinite) ξ to describe. For weak repulsive interaction (βm < β) rich

structures, illustrated in Fig. 5.1 develop. For some β, βm, we find ξ↑ , ξ↓. For

example, at (β, βm) = (8, 2), ξ↑ = 1 and ξ↓ = 2, and the ↓ atoms have a row of

vortices, while the ↑ atoms show no structure. Under these circumstances there

is a degenerate state with the ↑ and ↓ wavefunctions reversed. For other β, βm,

there is a symmetry between the two components with ξ↑ = ξ↓. The vortices or

density corrugations are displaced by half a period so that the density maxima
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of the ↑ atoms line up with the density minima of the others. For example,

when (β, βm) = (10, 3), each component displays a single row vortices, and the

wavefunctions are related by a translation.

In the regime of attractive inter-component interaction (βm < 0), one wants to

maximize the overlap of the ↑ and ↓wavefunctions. Generically, this means that

the wavefunction of each component is identical, and the problem reduces to

the single component case, but with a renormalized interaction β→ β + βm. The

phase diagram for βm < 0 can be calculated from the phase diagram at βm = 0

by mapping each point: (β, βm) → (β − βm, 0). For strong attractive interaction

(−βm > β), the BEC is unstable and expected to collapse, similar to the case of a

single component BEC with attractive interaction [63].

5.5 Results at large β, βm

For large β and βm, the analytic expressions for the energy become unwieldy. We

numerically minimize the expectation 〈H〉, varying {Cnσ,K0} in Eq. (5.7). The

energy landscape has many local minima, and we use a range of starting pa-

rameters to try to find the absolute minimum. We cannot rule out the existence

of even lower energy states. Moreover, for some parameters we found that the

energy differences between competing minima became extremely small. In an

experiment it is doubtful that one would find the true minimum energy state.

Rather than systematically exploring the large β physics, we simply show a few

examples.

Our results, illustrated in Fig. 5.2, are richer than those seen in the single

component gas [59], showing structures similar to those in isotropic 2D studies
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[53, 54]. When βm � β one finds two interlocking triangular lattices, as in Fig.

5.2(a) where βm/β = 0.1. As one increases βm the lattice structure changes: inter-

locking square lattices are shown in Fig. 5.2(b) where βm/β = 0.5. When βm > β

the non-rotating system would be expected to phase separate. Here, one finds

more intricate vortex structures at βm ∼ β. At βm/β = 1, we find double-core

vortices (cf. [54]), as in Fig. 5.2(c). At βm/β = 1.5 we find stripes, which are a

microscopic version of phase separation. Close inspection of the image in Fig.

5.2(d), shows vortex cores in the low density regions. While these stripes are

reminiscent of similar structures seen in the nonequilibrium dynamics of single

component condensates [64], the physics is largely unconnected.

5.6 Summary and Conclusions

We have investigated the vortex structures in a two-component BEC with an

artificial magnetic field, in an elongated geometry. Compared to the single com-

ponent gas, the two-component vortex structures are more intricate.

To experimentally investigate these structures, one needs to find a system

where the interspecies interactions can be tuned relative to the intraspecies. One

promising approach is to use different atomic species for the two (pseudo)-spin

states, and take advantage of an interspecies Feshbach resonance [65]. Some of

the other newly condensed atomic systems may also be favorable [66, 67, 68, 69].

If one cannot separately tune β and βm, one can still change the magnitude of

them, fixing βm/β. As seen in Fig. 5.1, such a cut through the phase diagram can

still be quite rich, especially if βm/β ∼ 0.25.

There are several ways to extend the Raman scheme in [1] to produce an ar-
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tificial magnetic field for a two-component gas. The conceptually simplest is to

use two independent Raman lasers. Our results also apply to rotating clouds in

anisotropic traps. As pointed out by Sinha and Shlyapnikov [57], when the ro-

tation rate approaches the weakest trapping frequency the cloud becomes quite

elongated.

5.7 Appendix

5.7.1 Analytic results for small number of components.

Here we give analytic results for the dimensionless energies of the states de-

fined in Eq. (5.7), truncating the n-sums for each σ, and assuming symme-

try/antisymmetry about the origin for each component.

State (ξ↑, ξ↓) = (1, 1) is unique, and has energy

E1,1 =
1
2

(β + βm) (5.9)

State (ξ↑, ξ↓) = (1, 2), with

ψ↑ = φ0↑ (5.10)

ψ↓ =

√
2

2
(
φK0↓ + φ−K0↓

)
(5.11)

is unique up to translation, and has energy

E1,2 =
1
2

K2
0 +

1
4
β

(
e−K2

0 +
3
2

)
+

1
2
βme−

1
4 K2

0 (5.12)

State (ξ↑, ξ↓) = (1, 3), with

ψ↑ = φ0↑ (5.13)
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ψ↓ =
√

1 − 2|ε|2φ0↓ − ε(φK0↓ + φ−K0↓) (5.14)

has energy

E1,3 =
1
2

(β + βm) +
(
K2

0 + β
(
2e−

1
4 K2

0 − e−
1
2 K2

0 − 1
)

+ βm

(
e−

1
4 K2

0 − 1
))
ε2

+ β

(
e−K2

0 + 2e−
1
2 K2

0 − 4e−
1
4 K2

0 +
3
2

)
ε4 (5.15)

For state
(
ξ↑, ξ↓

)
= (2, 2), there are two distinct extremal states. Both com-

ponents could be symmetric about the origin
(
C1↑ = C−1↑ = C1↓ = C−1↓ = 1/

√
2
)
,

or one of them could be antisymmetric
(
C1↑ = C−1↑ = C1↓ = −C−1↓ = 1/

√
2
)
. This

gives energies

E s
2,2 = K2

0 +
1
4

(β + βm) +
1
2

(β + βm) e−K2
0 (5.16)

Ea
2,2 = E s

2,2 −
1
2
βme−K2

0 (5.17)

For state (ξ↑, ξ↓) = (2, 3), the ↑ component can be symmetric or antisymmetric,

resulting in energies

E s
2,3 =

1
2

K2
0 +

1
4
β

(
e−K2

0 +
3
2

)
+

1
2
βme−

1
4 K2

0 +
(
K2

0 + β
(
2e−

1
4 K2

0 − e−
1
2 K2

0 − 1
))
ε2

+
1
2
βm

(
1 − 2e−

1
4 K2

0 + 2e−K2
0

)
ε2 + β

(
3
2
− 4e−

1
4 K2

0 + 2e−
1
2 K2

0 + e−K2
0

)
ε4 (5.18)

Ea
2,3 = E s

2,3 − βme−K2
0 ε2 (5.19)

For state (ξ↑, ξ↓) = (3, 3), the optimal wavefunction is

ψ↑ =
√

1 − 2|ε |2φ0↑ + iε
(
φK0↑ + φ−K0↑

)
(5.20)

ψ↓ =
√

1 − 2|ε |2φ0↓ ± iε
(
φK0↓ + φ−K0↓

)
(5.21)

with ε real.
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If β > βm > 0, the negative sign has lower energy,

E−3,3 =
1
2

(β + βm) +
(
2K2

0 + β
(
−2e−

1
2 K2

0 + 4e−
1
4 K2

0 − 2
))
ε2 + βm

(
2e−

1
2 K2

0 − 2
)
ε2

+ β
(
2e−K2

0 + 4e−
1
2 K2

0 − 8e−
1
4 K2

0 + 3
)
ε4 + βm

(
2e−K2

0 − 4e−
1
2 K2

0 + 3
)
ε4 (5.22)

If β > 0, βm < 0, the positive sign has lower energy,

E+
3,3 = E−3,3 + 4βm

(
e−K2

0/4 − e−K2
0/2

) (
ε2 + 2ε4

)
(5.23)
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CHAPTER 6

PAIR DENSITY WAVES AND VORTICES IN AN ELONGATED

TWO-COMPONENT FERMI GAS

This chapter was adapted from ”Pair density waves and vortices in an elongated

spin-1/2 Fermi gas” by Ran Wei and Erich J. Mueller, published in Physical Review

Letter 108, 245301 (2012).

6.1 Abstract

We study the vortex structures of a spin-1/2 Fermi gas experiencing a uni-

form effective magnetic field in an anisotropic trap that interpolates between

quasi-one dimensional (1D) and quasi-two dimensional (2D). At a fixed chemi-

cal potential, reducing the anisotropy (or equivalently increasing the attractive

interactions or increasing the magnetic field) leads to instabilities towards pair

density waves, and vortex lattices. Reducing the chemical potential stabilizes

the system. We calculate the phase diagram, and explore the density and pair

density. The structures are similar to those predicted for superfluid Bose gases.

We further calculate the paired fraction, showing how it depends on chemical

potential and anisotropy.

6.2 Introduction

Quantized vortices play an essential role in understanding the behavior of type-

II superconductors and superfluids such as 3He. In cold gases, these vortices

were the smoking gun for superfluidity [70]. Here we study how confinement
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influences the vortex structures in a trapped gas of ultracold fermions. We use

the microscopic Bogoliubov-de-Gennes (BdG) equations, and consider anisotropic

traps that interpolate between quasi-one dimensional (1D) and quasi-two di-

mensional (2D).

The behavior of topological defects in confined geometries can be quite rich.

A good example is rotating bosons in anisotropic traps [57], where one sees mul-

tiple transitions in the structure of vortex lattices as the parameters are changed.

Most intriguing, in the quasi-1D limit one sees a “roton” spectrum which softens

as the rotation rate increases, signaling an instability to form a snake-like density

wave. With recent experimental developments [1], we expect these structures

can soon be explored in Bose gases, and related studies will be undertaken in

Fermi gases. In the Fermi gas, we find parallels to all of the predicted boson

physics. The single particle instability which drives density waves in the Bose

case becomes a collective instability for the fermions, and instead drives pair

density waves [71]. For a range of parameters we even find that the order pa-

rameter has the form predicted by Larkin and Ovchinnikov [72] for a polarized

gas.

In very different contexts, studies of vortices in confined geometries lead to

a number of interesting and important results such as “non-Hermitian” quan-

tum mechanical analogies [73, 74, 75], and the destruction of superconductivity

via phase slips [76]. Generically, reducing the dimensionality enhances fluctua-

tions, leading to novel effects.

Driven partially by increased computer power and partially by interest in

the BCS-BEC crossover, a number of research groups have recently produced

Bogoliubov-de-Gennes (BdG) or density functional calculations of single vor-
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tices [82, 83, 84, 85, 86, 87, 88, 89, 90], and vortex lattices [91, 92, 93]. These

have largely been 2D or three dimensional (3D) calculations, with translational

symmetry along the magnetic field. The numerical challenges of these calcula-

tions come from the large basis set needed to describe the single particle states.

By truncating to the lowest Landau level, one can greatly simplify the problem

[94, 95, 96]. As we explain below this limit is experimentally relevant [97, 98, 12].

6.3 Model

We start from the Hamiltonian of a spin-1/2 Fermi gas, with equal number of

particles on the spin-up and spin down states. The total number of particles is

N =
∫

dr
(
Ψ
†

↑
(r)Ψ↑(r) + Ψ

†

↓
(r)Ψ↓(r)

)
and chemical potential is µ̃,

K =

∫
dr

 ∑
σ=↑,↓

Ψ†σ(r)H0Ψσ(r) + Hint

 − µ̃N, (6.1)

where the single particle Hamiltonian H0 = (px − By)2 /2m+ p2
y/2m+ p2

z/2m+V(r),

describes a neutral atom of mass m and momentum p experiencing a uniform

effective magnetic field B in the z direction (Landau gauge), where the har-

monic trap is V(r) = m
(
ω2

yy2 + ω2
z z2

)
/2, and the inter-component interaction

Hint = gΨ
†

↑
(r)Ψ†

↓
(r)Ψ↓(r)Ψ↑(r), is attractive. Here the coupling constant is g =

4π~2as/m < 0 [79], with as < 0 the s-wave scattering length. We do not treat the

case where g > 0, in which the physics is more involved [80]. The single particle

Hamiltonian is readily engineered in cold atoms either by using two counter-

propagating Raman beams with spatially dependent detuning [1] or rotating

the gas in anisotropic traps where the rotation rate approaches the weakest trap-

ping frequency [81]. When ωz is large, this model can be tuned from quasi-1D

to quasi-2D by changing ωy.

59



6.3.1 Lowest Landau level

Following Sinha et al. [57], the single particle Hamiltonian is readily diagonal-

ized, with eigenstates labeled by three quantum numbers K, n, n′, and energies

given by

Enn′(K) = EK2 + n~ωz + n′~ω̃c, (6.2)

where the effective cyclotron frequency is ω̃c =
√
ω2

y + ω2
c , the cyclotron fre-

quency is ωc = B/m, the characteristic energy of motion in the x direction is

E = ~ω2
y/4ω̃c, and we have neglected the zero-point energy. The dimensionless

wave-number K =
√

2 ˜̀k labels the momentum k along the x direction, where the

effective magnetic length is ˜̀ =
√
~/mω̃c. The discrete quantum numbers n and

n′ corresponds to the number of nodes in the z and y directions. In the absence

of confinement in the y direction, E → 0, and we recover degenerate Landau

levels. Hence, we refer to n as the Landau level index. If the interaction energy

per particle 〈Hint/N〉 and the characteristic “kinetic energy”
〈
EK2

〉
are small com-

pared to ~ω̃c and ~ωz, one can truncate to the lowest eigenstates with n = n′ = 0,

which are of the form

φK(r) =
1√
π ˜̀dzL

exp
(
i

Kx
√

2 ˜̀

)
exp

(
−

(y − yK)2

2 ˜̀2

)
exp

(
−

z2

2d2
z

)
, (6.3)

where yK =
√

2ωcK ˜̀/2ω̃c, dz =
√
~/mωz and L is the length in the x direction.

The conditions allowing us to truncate to the lowest Landau level constrain

the 3D density n3D and magnetic field strength B. For example, the condition

〈Hint/N〉 � ~ω̃c ∼ ~ωz requires n3D � ~ω̃c/|g| ∼ ~ωz/|g|. The other condition,

EK2 � ~ω̃c, requires B � mωy. While such fields are challenging to produce

in cold atoms, they are not completely unreasonable. In a very recent experi-

ment performed by I. Bloch’s group [12], the density is n3D ∼ 1013cm−3, and the
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cyclotron frequency is ωc ∼ 100kHz. Since this experiment involves coupled

“wires”, it is natural to use them for quasi-1D studies. Note, the magnetic field

is “staggered” in that experiment, while we consider the uniform case.

Letting aK annihilate the state in Eq. (5.1), one has an effective 1D model,

H
E

=
∑
K,σ

(
K2 − µ

)
a†KσaKσ + β

∑
q

f †(q) f (q), (6.4)

where f (q) ≡
∑

K e−1/8(2K−q)2
aq−K↓aK↑, the dimensionless chemical potential is µ =

µ̃/E and the effective interaction parameter is β =
2mg
π~2L

(
ωz
ω̃c

)1/2 (
ω̃c
ωy

)2
. From the

definition of β, one sees that increasing the interaction strength g has the same

effect as increasing the magnetic field B, increasing the z-confinement ωz, or

reducing the y-confinement ωy. In the following, we will investigate the prop-

erties of the confined Fermi gas by studying Eq. (6.4). One can show that the

interaction in Eq. (6.4) is equivalent to β
∑

q f †(q) f (q) = β
∫

drF†(r)F(r), where

F(r) =
∑

q f (q)φq(r).

6.3.2 Bogoliubov de Gennes approach

We introduce the pair field ∆q = β 〈 f (q)〉, and its transform ∆(r) = β〈F(r)〉. We

neglect the fluctuation
(

f †(q) − ∆∗q/β
) (

f (q) − ∆q/β
)

to reduce Eq. (6.4) to a bilinear

form,

H
E

=
∑
K,σ

(
K2 − µ

)
a†KσaKσ +

∑
q

(
∆∗q f (q) + ∆q f †(q) −

|∆q|
2

β

)
. (6.5)

Given ∆q, one can diagonalize H, and then impose self-consistency. For arbi-

trary ∆q, this process is unwieldy [91, 92, 93]. We here introduce two approxi-

mations which make the numerical calculations more efficient. First, we assume

∆q is non-vanishing only when the central momentum of the paired fermions is
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q = nK0, where n = 0,±1,±2, .... The characteristic wave-number K0 is taken to

be a variational parameter. This is equivalent to assuming ∆(r) is periodic in

the x direction and treating the wavelength variationally. Second, we restrict

ourselves to consider the symmetric pair field: ∆q = ∆−q. This implies a spa-

tially symmetric field ∆(r) = ∆(−r). Under these assumptions, the Hamiltonian

is reduced to

H
E

=
∑
K,σ

(
K2 − µ

)
a†KσaKσ −

∑
n |∆|n|K0 |

2

β
+

∑
n

(
∆∗|n|K0

f (nK0) + ∆|n|K0 f †(nK0)
)
. (6.6)

Since Eq. (6.6) will be calculated by taking the continuum limit
∑

K →
√

2L/4π ˜̀
∫

dK

(see Appendix 6.9.1), it is useful to introduce a positive parameter α = −
√

2Lβ/4π ˜̀

to characterize the effective attractive interaction. For small α, we find ∆|n|K0 , 0

for only a few values of n. We define ξ to be the number of nonzero ∆|n|K0 . The

various phases can be distinguished by looking at the pair density
∣∣∣〈Ψ↑Ψ↓〉∣∣∣2

and/or the particle density
〈
Ψ
†

↑
Ψ↑

〉
(see Fig. 6.1(b)). The features are clearest in

the pair density. If more than one ∆nK0 is nonzero, we have either a pair density

wave or vortices. For example, the case ξ = 3 (∆0 , 0,∆±K0 , 0), as illustrated in

Fig. 6.1(b), corresponds to a pair density wave where
∣∣∣〈Ψ↑Ψ↓〉∣∣∣2 has corrugations.

The case ξ = 2 (∆0 = 0,∆±K0 , 0), consists of a single row of vortices. Larger ξ, for

example in Fig. 6.3, corresponds to a vortex lattice. The case ξ = 2 gives an order

parameter which can formally be identified with the Larkin-Ovchinnikov (LO)

state [72] (see also [77]). Here, ∆K is nonzero except when K = ±K0. Defining an

effective 1D order parameter ∆1D(x) =
∑

K eiKx∆K , we have ∆1D(x) = 2∆K0 cos K0x.

Note that unlike the LO state, the physical order parameter ∆(r) =
∑

K ∆KφK(r),

is not a simple cosine. Also note that unlike LO’s model, here we assume both

spin states have equal chemical potentials. Instead of being driven by the polar-

ization, our instability towards a paired density wave is driven by the form of

the effective 1D interaction.
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When ξ = 1 (∆0 , 0), Eq. (6.6) can be analyzed analytically (see Appendix

6.9.1). One readily obtains the gap equation,

1
α

=

∫
dK

e−K2

2εK
, (6.7)

and the number equation,

N =

√
2L

4π ˜̀

∫
dK

(
1 −

ε0

εK

)
. (6.8)

where εK =

√
ε2

0 + |∆0|
2e−K2 and ε0 = K2 − µ.

Unlike the traditional case, the integrand in the RHS of Eq. (6.7) has a factor

e−K2 in the numerator, which dominates the behavior of the integrand for K � 1.

If µ � 1 (meaning in physics units µ̃ � E), and ∆0 is sufficiently small, the

integrand in Eq. (6.7) is bimodal. There is a gentle peak of height 1/2µ and

width 1 centered at K = 0, and a sharp peak of height e−µ/2/2|∆0| and width

|∆0|e−µ/2/
√
µ centered at K =

√
µ. The power-law tails of this sharp peak give a

contribution to the integral which scales as A
(
log |∆0|

)
e−µ/
√
µ as ∆0 → 0, where

A is a constant. Solving Eq. (6.7) in this regime yields an extremely small order

parameter. In this weak pairing limit, our numerics are unstable and the vortex

lattices are better treated by expanding the energies in power of ∆0 [78].

Another instructive limit is µ < 0 and N/L → 0, where the behavior is domi-

nated by two-body physics. Eq. (6.7) then becomes the Schrödinger equation of

a two-body problem in momentum space [99], i.e.,

α =
2∫

dK e−K2

K2−µ

(6.9)

where the two-body binding energy ε is identified with twice the chemical po-

tential, ε = 2µ(α).
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Figure 6.1: (a): The structure of phase diagram as a function of α and µ. The
value of ξ (the number of nonzero ∆|n|K0) is denoted in each region. The two black
solid curves are the boundaries of two continuous transitions: ξ = 0 ↔ ξ = 1
and ξ = 1 ↔ ξ = 3. They show a fairly good agreement with numerics. (b):
The structures of pair density

∣∣∣〈Ψ↑Ψ↓〉∣∣∣2 and density
〈
Ψ
†

↑
Ψ↑

〉
in the corresponding

regions. The color key is shown in Fig. 6.3.

6.4 Phase diagram

We numerically minimize the energy by studying Eq. (6.6) (see Appendix 6.9.2).

We find discrete jumps in ξ as a function of the dimensionless attractive interac-

tion α and the dimensionless chemical potential µ. The resulting phase diagram

is shown in Fig. 6.1(a). The darkest red region (ξ = 0) is the vacuum with no

particles. Increasing α and/or µ brings one to a quasi-1D superfluid state. This

state, characterized by ξ = 1, has no vortices and is translational invariant in the

x direction. The ξ = 0 to ξ = 1 transition is continuous with ∆0 → 0 and N/L→ 0

at the boundary. Further increasing α and/or µ leads to an instability towards a
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ξ = 3 state (the narrow yellow region). This state breaks translational symmetry.

The transition is continuous, and the boundary can be found via a linear stabil-

ity analysis of the ξ = 1 state (see Appendix 6.9.3). At larger α and/or µ, there

is a discontinuous transition to a state with ξ = 2. This sequence of instabilities

closely mirrors what is found in calculations for Bose gases [57].

6.5 Pair fraction

It is useful to put these results in the context of the BCS-BEC crossover. In 3D

Fermi gases one thinks of the superfluid with µ < 0 as being formed from tightly

bound bosonic pairs, analogous to 4He. The superfluid with µ > 0 is instead

thought of within a BCS picture where diffuse pairs are formed by atoms at the

Fermi surface. One can continuously tune between these two idealized limits by

taking µ through zero: the size of the pairs varies continuously. Our approach

to gaining insight into analogies with the 3D BCS-BEC crossover is to study the

pair fraction P = 2Npair/N [100], as in Fig. 6.2. While some of the qualitative fea-

tures of the 3D crossover persist in our effective 1D model, many of the details

differ.

To understand this figure, one must note that in a quasi-1D system the ratio

of the interaction to the kinetic energy is inverse proportional to the density, thus

the strongly interacting regime can be reached by making the density small, or

by making α large. The density increases monotonically with µ, but varies in a

more complicated fashion with α. For small α and µ > 0 we find ∂N/∂α < 0,

while for large α and/or µ < 0 we find ∂N/∂α > 0. At fixed α, the pair fraction

decreases with µ (consistent with ∂N/∂µ > 0).
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Figure 6.2: The pair fraction P = 2Npair/N versus α with µ = −1, 0, 1. The expo-
nential small P for µ = 1 at α → 0 is reminiscent of the BCS limit, and the large
value of P for µ = −1 at α ≈ 1.5 is analogous to the BEC limit. The kink on each
curve corresponds to the ξ = 3↔ ξ = 2 phase transition.

The top curve in Fig. 6.2, representing µ = −1, starts at P = 1, roughly when

α = 1.5. Such a large value of P is reminiscent of the BEC limit. The density

vanishes here, then grows as α increases. For µ = −1, the pair fraction decreases

with α, except for a small kink, corresponding to the first order ξ = 3 ↔ ξ = 2

phase transition.

On the contrary, for µ = 1, P grows with α. As α → 0, P becomes exponen-

tially small, as is predicted by the BCS theory. After a sharp rise, driven both by

increasing α and decreasing N, the pair fraction levels out.

Each curve displays a kink, corresponding to the ξ = 3 ↔ ξ = 2 phase

transition. As α increases to the region ξ = 2, one row of vortices enters the

elongated superfluid. This transition is accompanied by density modulations.
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To summarize we find that for µ > 0 and small α the system behaves anal-

ogously to the BCS limit, while for µ < 0 and α ∼ |µ| the system behaves more

like the BEC limit. The density vanishes if µ < 0 and α . |µ|. For most of our

parameter range, we observe physics analogous to the crossover regime.
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Figure 6.3: The profile of density (left panel) and pair density (right panel) at
α = 65, µ = 2, where the dimensionless coordinates are X = x/

√
2 ˜̀,Y = y/

√
2 ˜̀.

The color key is shown on the top.

6.6 Vortex lattice

With increasing α, the number of Fourier components ξ increases, and the width

in the y direction grows. We illustrate the large α limit in Fig. 6.3 by calculating

the density and the pair density of the state with µ = 2, α = 65 and ξ = 7.

Only “faint” vortices are seen in the density (left panel). Unpaired fermions fill

the vortex cores leading to very poor contrast. On the contrary, one sees a clear
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stretched triangular lattice in the pair density (right panel). The lattice spacing is

∼ 2π
√

2 ˜̀/K0 and the size of the vortex core is ∼ ˜̀. Note the dimensionless wave-

number K0 varies slightly with α but is of order 2. The vortex lattice is slightly

deformed from a regular triangular lattice, but we expect this deformation to

disappear in the quasi-2D limit (α→ ∞).

6.7 Observation

Since the density depletion in the vortex core is highly suppressed, directly

imaging the vortices through phase contrast or absorption imaging would be

challenging. Coherent Bragg scattering of light may be a promising route for

increasing the sensitivity of such optical probes [101]. One can also study the

structures of pair density through photoassociation [102, 103], where the paired

state is transformed to a bound molecular state after illuminated with light.

6.8 Summary

We have studied the spin-1/2 Fermi gases in elongated geometries. Truncating

the BdG equations to the lowest Landau level, we investigate the vortex struc-

tures that emerge as the trap evolves from quasi-1D and quasi-2D. We calculate

the phase diagram and find instabilities towards pair density waves and vortex

lattices. We explore the structures of density and pair density, and calculate the

pair fraction. We hope our results can soon be explored in experiment.
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6.9 Appendix

6.9.1 Derivation of gap equation and number equation

Here we analyze the special case where ξ = 1, corresponding to a 1D model

with translational invariance: ∆q = 0 unless q = 0. Under these circumstances,

Eq. (6.6) simplifies to

H0 ≡
H
E

=
∑
K,σ

(K2 − µ)a†KσaKσ + ∆∗0 f (0) + ∆0 f †(0) −
|∆0|

2

β
, (6.10)

where f (0) =
∑

K e−
1
2 K2

a−K↓aK↑.

H0 can be diagonalized in terms of non-interacting Bogoliubov quasi-particle

operators ξK , χK by the transformation aK↑

a†
−K↓

 =

 uK −v∗K

vK u∗K


 ξK

χ†K

 (6.11)

yielding the diagonalized Hamiltonian,

H0 =
∑

K

(
εK(ξ†KξK + χ†KχK) + ε0 − εK

)
−
|∆0|

2

β
(6.12)

where

uK =

√
εK + ε0

2εK
, vK =

√
εK − ε0

2εK
(6.13)

εK =

√
ε2

0 + |∆0|
2e−K2 , ε0 = K2 − µ (6.14)

We introduce the dimensionless energy F ≡
(
2
√

2π ˜̀/LE
)
〈GS |H|GS 〉, where the

ground state |GS 〉 is annihilated by quasi-particle operators ξK , χK ,

F =

∫
dK (ε0 − εK) +

|∆0|
2

α
, (6.15)
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where we have taken the continuum limit
∑

K →
(√

2L/4π ˜̀
) ∫

dK.

Making (1/|∆0|) ∂F /∂|∆0| = 0 yields the gap equation (6.7). Letting N =

−
(√

2L/4π ˜̀
)
∂F /∂µ yields the number equation (6.8). These equations are fur-

ther explored in the main text.

6.9.2 Numerical approach

We here describe our numerical approach to solving the BdG equations in the

general case where ξ > 1. Formally, Eq. (6.6) can be expressed in terms of non-

interacting Bogoliubov quasi-particles by a canonical transformation aKn↑

a†
−Kn↓

 =
∑

n′

 un′n −v∗n′n

vn′n u∗n′n


 ξKn′

χ†Kn′

 , (6.16)

where we have defined Kn ≡ K −nK0, and un′n ≡ un′(Kn), vn′n ≡ vn′(Kn). The matrix

elements un′n, vn′n are governed by the following BdG equations,

εKn

 unn

vnn

 =
∑

n′

 εn′δnn′ ∆n
n′(

∆n
n′

)∗
−εn′δnn′


 un,n−n′

vn,n−n′

 (6.17)

where εKn is the dimensionless excitation energy of Bogoliubov quasi-particles,

and εn = K2
n − µ, ∆n

n′ = ∆|n′ |K0e
− 1

8 (2Kn+n′K0)2
, and δnn′ is the δ-function. In terms of the

Bogoliubov operators the Hamiltonian is diagonal,

H
E

=
∑

n

 K0/2∑
K=−K0/2

(
εn − εKn

)
−
|∆|n|K0 |

2

β
+

K0/2∑
K=−K0/2

εKn

(
ξ†Kn
ξKn + χ†Kn

χKn

) . (6.18)

The dimensionless ground state energy F =
(
2
√

2π ˜̀/LE
)
〈GS |H|GS 〉 can be writ-

ten as

F =
∑

n

(∫ K0/2

−K0/2
dK

(
εn − εKn

)
+
|∆|n|K0 |

2

α

)
. (6.19)
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For a given
{
µ,K0,∆|n|K0

}
, we truncate Eq. (6.17), and use standard linear algebra

packages to extract εKn . This effectively gives usF as a function of
{
µ, α,K0,∆|n|K0

}
.

This F is a variational upperbound on the true ground state energy. We fix {µ, α}

and numerically minimize F , varying
{
K0,∆|n|K0

}
, using a quasi-Newton algo-

rithm. We restrict the sum over n in Eq. (6.19) to −ζ ≤ n ≤ ζ. We find for the

parameters studied, our results are independent of ζ if ζ ≥ 6.

6.9.3 Linear stability analysis

Here we find the ξ = 1 to ξ = 3 phase boundary through a linear stability anal-

ysis. We take ∆0 > 0, and assume ∆K0 = ∆−K0 = iδ is small. We have chosen

this factor of i, as the unstable direction will then yield real δ. We will calculate

D = ∂2F /∂δ2|δ=0. For small α the curvature D is positive and the state with δ = 0

is stable. We find the instability by seeking the point with when D = 0.

Within our ansatz for ∆|n|K0 , the mean field Hamiltonian is

H
E

= H0 + iδΛ −
2δ2

β
, (6.20)

where

Λ = f †(K0) + f †(−K0) − f (K0) − f (−K0). (6.21)

Making use of the Hellmann-Feynman theorem, the second derivative of F

can be expressed as

∂2F

∂δ2 =
2
√

2π ˜̀

L
∂2

∂δ2

〈
GS

∣∣∣∣∣∣iΛδ − 2δ2

β

∣∣∣∣∣∣GS
〉

(6.22)

=
2
√

2π ˜̀

L
∂

∂δ

〈
GS

∣∣∣∣∣iΛ − 4δ
β

∣∣∣∣∣GS
〉

(6.23)

= −i
4
α

∂

∂δ

〈
GS

∣∣∣β f †(K0)
∣∣∣GS

〉
+

4
α
. (6.24)
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Setting D = ∂2F /∂δ2|δ=0 = 0, one finds that the points of instability is given by

−i = β
∂

∂δ

〈
GS

∣∣∣ f †(K0)
∣∣∣GS

〉
. (6.25)

Since the formal manipulations of perturbation theory are more transparent of

finite temperature, it is convenient to rewrite Eq. (6.25) as

−i = lim
T→0

β
∂

∂δ

Tr
(
e−H/T f †(K0)

)
Tr

(
e−H/T

)
= −iβ lim

T→0

∫ 1/T

0
dτTr

(
e−τH0Λe(−1/T+τ)H0 f †(K0)

)
Tr

(
e−H0/T

) (6.26)

where T is a formal parameter.

Substituting the results of Eq. (6.12)-(6.13) to Eq. (6.26), we obtain

α

∫
dK

(
uKuK−K0 + vKvK−K0

)2 e−
1
4 (K0−2K)2

εK−K0 + εK
= 1. (6.27)

This integral must be performed numerically, giving the second (right) black

solid curve in Fig. 6.1(a).
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CHAPTER 7

THEORY OF BOSONS IN TWO-LEG LADDERS WITH LARGE

MAGNETIC FIELDS

This chapter was adapted from ”Theory of bosons in two-leg ladders with large mag-

netic fields” by Ran Wei and Erich J. Mueller, published in Physical Review A 89,

063617 (2014).

7.1 Abstract

We calculate the ground state of a Bose gas trapped on a two-leg ladder where

Raman-induced hopping mimics the effect of a large magnetic field. In the

mean-field limit, where there are large numbers of particles per site, this maps

onto a uniformly frustrated two-leg ladder classical spin model. The net particle

current always vanishes in the ground state, but generically there is a finite “chi-

ral current”, corresponding to equal and opposite flow on the two legs. We vary

the strength of the hopping across the rungs of the ladder and the interaction be-

tween the bosons. We find three phases: (1) A “saturated chiral current phase”

(SCCP), where the density is uniform and the chiral current is simply related to

the strength of the magnetic field. In this state the only broken symmetry is the

U(1) condensate phase. (2) A “biased ladder phase” (BLP), where the density is

higher on one leg than the other. The fluid velocity is higher on the lower den-

sity leg, so the net current is zero. In addition to the U(1) condensate phase, this

has a broken Z2 reflection symmetry. (3) A “modulated density phase” (MDP),

where the atomic density is modulated along the ladder. In addition to the U(1)

condensate phase, this has a second broken U(1) symmetry corresponding to

translations of the density wave. We further study the fluctuations of the con-

73



densate in the BLP, finding a roton-maxon like excitation spectrum. Decreasing

the hopping along the rungs softens the spectrum. As the energy of the “roton”

reaches to zero, the BLP becomes unstable. We describe the experimental signa-

tures of these phases, including the response to changing the frequency of the

Raman transition.

7.2 Introduction

The study of condensed bosons under rotation is an important and rich prob-

lem: rotation probes superfluidity [104] just like magnetic fields probe super-

conductivity [78]. Such systems can be mapped onto a frustrated XY spin model

[105], and for large frustration and sufficiently large on-site interactions one

finds the bosonic versions of the fractional quantum Hall effect [106, 107, 108,

109]. In the weakly interacting limit there are a rich variety of vortex phases

[110]. Here we study a Bose gas trapped on a two-leg ladder where Raman-

induced hopping mimics the effect of a large magnetic field.

The bosonic two-leg ladder is appealing, as it is the simplest model for study-

ing the response of bosons to a magnetic field. Thus the experimental observa-

tions are particularly easy to interpret. Further, the ladder geometry is straight-

forward to model, admitting approaches ranging from the density matrix renor-

malization group [111] through bosonization [112]. In the strongly interacting

limit, there is an interesting interplay between Mott physics and the single par-

ticle band structure [113, 114, 115, 116, 117, 118]. Here we use a mean-field

analysis, which is appropriate for describing experiments on arrays of weakly

coupled ladders when the number of particles per site is large.
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Experimentalists in Munich have recently engineered this model [15]. Their

technique builds upon work performed at NIST, where Raman lasers created

artificial magnetic fields in the absence of a lattice [4]. Bloch’s group generalized

this idea and produced a staggered magnetic flux on an optical lattice [12]. Later,

both the Munich and MIT groups extended this to uniform fields [13, 14]. Other

approaches to producing artificial gauge fields are reviewed by Dalibard et al.

[2].

In this chapter, we use a variational approach to analytically calculate the

ground state of a bosonic ladder with an analog of a magnetic field. We vary

the strength of the hopping aross the rungs of the ladder, and the interaction be-

tween the bosons. We find three phases shown in Fig. 7.1: (1) A “saturated chi-

ral current phase” (SCCP), where the density is uniform and opposite currents

flow on each leg. The magnitude of the chiral current is set by strength of the

magnetic field and is independent of the interactions or the inter-leg hopping

strength. In this regime the only spontaneous broken symmetry is the U(1) con-

densate phase. (2) A “biased ladder phase” (BLP), where the density is higher

on one leg than the other. The fluid velocity is higher on the lower density leg,

so the net current is zero. In addition to the U(1) condensate phase, this has a

spontaneous broken Z2 reflection symmetry. (3) A “modulated density phase”

(MDP), where the atomic density is modulated along the ladder. In addition

to the U(1) condensate phase, this has a second spontaneous broken U(1) sym-

metry corresponding to translations of the density wave. We further study the

fluctuations of the condensate in the BLP, finding a roton-maxon like excitation

spectrum. Decreasing the hopping along the rungs softens the spectrum. As the

energy of the “roton” reaches to zero, the BLP becomes unstable. We describe

the experimental signatures of these phases, including the response to changing
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Figure 7.1: Phase diagram of a two-leg bosonic ladder as a function of the
tunneling strength K between the legs and interaction strength gn̄ for a fixed flux
per plaquette φ = π/2. These energies are measured in terms of the strength of
tunneling along the legs, J. There are three phases: the “saturated chiral current
phase” (SSCP), the “biased ladder phase” (BLP) and the “modulated density
phase” (MDP). The transition at the solid line is first-order, and the transition at
the dashed line is second-order. The color represents the magnitude of the chiral
current described by Eq. (7.12). Darker colors correspond to larger currents. The
current is constant in the SSCP but varies in the BLP and MDP.

the frequency of the Raman transition.

The SCCP and MDP were first introduced by Orignac and Giamarchi [119],
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and the experimentalists interpreted their results in terms of these phases [15].

The BLP has not previously been discussed, but as we explain, the experimental

data shows hints of it.

7.3 Model

We consider the Hamiltonian of an interacting Bose gas trapped on a two-leg

ladder in a uniform magnetic field,

H0 = −J
∑
`

(
a†`+1a` + b†`+1b` + H.c.

)
− K

∑
`

(
a†`b`e

i`φ + H.c.
)
, (7.1)

H1 =
g
2

∑
`

(
a†`a

†

`a`a` + b†`b
†

`b`b`
)
, (7.2)

where ` corresponds to the positions along the ladder and the bosonic operator

a` (b`) annihilates a boson on site ` of the left (right) leg. The tunneling strength

along the legs is J, the tunneling strength across the rungs is K, and the magnetic

flux per unit cell is φ. The model was proposed by Atala et al. to describe their

experiment on trapped Rubidium atoms [15]. The intra-leg hopping J is set

by the intensity of the lasers which create their lattice potential. The inter-leg

hopping K is set by the intensity of a second set of lasers which drive a Raman

transition that allows hopping between the legs. The interaction strength g is

controlled by modifying the transverse confinement [120]. In the experiment,

there is only a weak trap in the z-direction, and g is very small [15]. One could

also use a Feshbach resonance to tune g [65].

The single-body Hamiltonian H0 is characterized by a 2 by 2 matrix in the

momentum space,

H0 =
∑

k

c†kH(k)ck, (7.3)
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H(k) = −2Jcosk cos
φ

2
+ 2Jsink sin

φ

2
σz − Kσx, (7.4)

where c†k =
(
a†k , b

†

k

)
with ak = 1

√
L

∑
` e−i

(
k+

φ
2

)
`a`, bk = 1

√
L

∑
` e−i

(
k− φ2

)
`b`, and σx, σz

are the Pauli matrices, and L is the length of the ladder. Note k, φ and L are

dimensionless. This Hamiltonian is readily diagonalized by ak

bk

 =

 cos θk
2 −sin θk

2

sin θk
2 cos θk

2


 αk

βk

 (7.5)

with tanθk = −K/J
2sink sin φ

2
, yielding H0 =

∑
k

(
E+(k)α†kαk + E−(k)β†kβk

)
, where the two

bands are described by E±(k) = −2J cosk cosφ2 ±
√

4J2sin2k sin2 φ
2 + K2. For K ≥

2J tanφ

2 sinφ

2 , the lower band E−(k) has a single minimum at k = 0. For K <

2J tanφ

2 sinφ

2 , it has two minima at k = ±k0, where ∂E−
∂k |k=±k0 = 0. We consider the

N-body variational wavefunction

|Gk0〉 =
1
√

N!

(
cosγβ†k0

+ sinγβ†
−k0

)N
|vac〉, (7.6)

where |vac〉 is the vacuum state and 0 < γ < π/2 for k0 > 0 and γ = 0 for k0 = 0.

In the absence of interactions, this is the ground state for any choice of γ. Even

infinitesimal interactions, however, can split this degeneracy.

7.4 Current and density

In this section we explore the properties of Eq. (7.6). In particular we calculate

densities and currents, which are experimental observables [15].

To satisfy the continuity equation, we define the net current and the chiral

current,

Jn ≡
1
N

〈
Gk0

∣∣∣∣∣∣∣∑k

c†k
∂H(k)
∂k

ck

∣∣∣∣∣∣∣Gk0

〉
= cos2γ

(
Ja

k0
+ Jb

k0

)
+ sin2γ

(
Ja
−k0

+ Jb
−k0

)
, (7.7)
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Jc ≡
1
N

〈
Gk0

∣∣∣∣∣∣∣∑k

c†kσz
∂H(k)
∂k

ck

∣∣∣∣∣∣∣Gk0

〉
= cos2γ

(
Ja

k0
− Jb

k0

)
+ sin2γ

(
Ja
−k0
− Jb

−k0

)
, (7.8)

where the currents on each leg are

Ja
k0

= 2J sin
(
k0 +

φ

2

)
sin2 θk0

2
, (7.9)

Jb
k0

= 2J sin
(
k0 −

φ

2

)
cos2 θk0

2
. (7.10)

Using the equation ∂E−(k)
∂k |k=±k0 = 0 and the relation sin2 θk0

2 = cos2 θ−k0
2 , one can read

off Ja
k0

= Ja
−k0

= −Jb
k0

= −Jb
−k0

. This implies the net current always vanishes at

equilibrium and the chiral current is independent of γ:

Jn = 0, (7.11)

Jc = 4J sin
(
k0 +

φ

2

)
sin2 θk0

2
. (7.12)

We also define the local density on each leg,

na(`) ≡
〈
Gk0

∣∣∣a†`a`∣∣∣Gk0

〉
= n̄a + δna

` (7.13)

nb(`) ≡
〈
Gk0

∣∣∣b†`b`∣∣∣Gk0

〉
= n̄b + δnb

` , (7.14)

where the average density on each is n̄a/n̄ = cos2γ sin2 θk0
2 +sin2γ cos2 θk0

2 and n̄b/n̄ =

cos2γ cos2 θk0
2 + sin2γ sin2 θk0

2 , where n̄ = N/L is the average density. The density

modulations are the same on each leg: δna
`/n̄a = δnb

`/n̄b = 1
2 sin2γ sinθk0cos2k0`.

Note the modulation is largest at γ = π/4 and vanishes at γ = 0.

7.5 Phase diagram

We now consider the interaction term H1. Treating Eq. (7.6) variationally and

allowing k0 to be a free parameter, we study the energy

E(γ, k) ≡
1
N
〈Gk|H0 + H1|Gk〉 = E−(k) + Eint(k), (7.15)
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Figure 7.2: Chiral current and atomic density. (a) Chiral current as a function of
tunneling strength K/J. The current is discontinuous at the boundary between
the MDP and BLP, indicating a first-order transition, whereas the current is con-
tinuous across the BLP to SCCP boundary. The slope is discontinuous indicating
a second-order transition. (b) Atomic density as a function of lattice site `. In
the MDP, the density of each leg is equal but modulated along the ladder. In
the BLP, the density is higher on one leg than the other. In the SCCP, the den-
sity of each leg is equal and uniform. For these plots the interaction strength is
gn̄/J = 0.2 and the magnetic flux is φ = π/2.

where

Eint(k) =
gn̄
2

((
3
4

sin2θk −
1
2

)
sin22γ −

1
2

sin2θk + 1
)
.
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(7.16)

This ansatz describes the three phases in Fig. 7.1. We minimize E(γ, k) with

respect to γ and k. The only γ-dependence is in Eq. (7.16). For 3
4sin2θk −

1
2 ≥ 0,

the energy minimum is at γ = 0. For 3
4sin2θk −

1
2 < 0, the energy minimum is at

γ = π/4. As can be inferred from the expressions following Eq. (7.5), sin2θk =

K2

K2+4J2sin2k sin2φ/2
.

For γ = 0, the density is uniform along the ladder, and the chiral current

is given by Eq. (7.12), with ∂E(γ=0,k)
∂k |k=±k0 = 0. When k0 = 0, the density of the

each leg is equal, with na = nb = n0/2, and the chiral current is saturated, with

Jc = 2Jsinφ

2 . We call this phase the “saturated chiral current phase” (SCCP), as

shown in Fig. 7.2. In the SCCP, the only broken symmetry is the U(1) condensate

phase. For k0 > 0, the density is higher on one leg than the other, which breaks

the Z2 reflection symmetry. We call this phase the “biased ladder phase” (BLP).

The transition between the BLP and SCCP is second-order, and as illustrated in

Fig. 7.2(a), the chiral current is continuous across transition. Note the BLP has a

two-fold degeneracy since the choice of the leg with a higher (lower) density is

arbitrary. In our ansatz, this two-fold degeneracy is associated with symmetry

k0 → −k0.

For γ = π/4, the density is modulated along the ladder, which supplements

the broken U(1) condensate phase, with a second broken U(1) symmetry: the

energy is unchanged if one adds an arbitrary phase to β†k0
or β†

−k0
in Eq. (7.6).

This second U(1) phase is related to translations of the density modulation. We

call this regime the “modulated density phase” (MDP). The transition between

MDP and the former two phases is first-order, as γ changes discontinuously.

Furthermore, we see the chiral current has a discontinuous jump between the
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MDP and BLP in Fig. 7.2(a). The size of the current jump is determined by the

interaction strength g, and disappears when g is zero.

Note for γ = π/4, Eq. (7.6) is a special case of a more generic ansatz |Tk0〉 =

1
√

N!

(∑
n cnβ

†

nk0

)N
|vac〉 where

∑
n |cn|

2 = 1 [16]. Although we do not plot the re-

sults, we have studied this more general ansatz. We find very few changes:

the boundary between the phases is only shifted to a slightly larger tunneling

strength K/J. The symmetry of each phase is unchanged. The shift vanishes as

g→ 0.

7.6 Stability and Roton

We now study the stability of Eq. (7.6) when γ = 0. We find the excitation

spectrum of the BLP has a maxon-roton like structure.

To calculate the excitation spectrum, we truncate the Hamiltonian to the low-

est band

H =
∑

k

E−(k) β†kβk +
1

2L

∑
kpq

Γkpq β
†

k+qβ
†
p−qβpβk (7.17)

where

Γkpq = g
(
sin

θk+q

2
sin

θp−q

2
sin

θp

2
sin

θk

2
+ cos

θk+q

2
cos

θp−q

2
cos

θp

2
cos

θk

2

)
. (7.18)

The ansatz in Eq. (7.6) with γ = 0 is equivalent to setting βk =
√

Nδkk0 . We

add fluctuations, writing βk =
√

Nδkk0 +
(
1 − δkk0

)
χk−k0 . To quadratic order in the

operators χk,

H̄ = −
gNn̄

2

(
sin4 θk0

2
+ cos4 θk0

2

)
−

∑
k>0

ζ(−k)
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+
∑
k>0

(
χ†k , χ−k

)  ζ(k) η(k)

η(k) ζ(−k)


 χk

χ†
−k

 (7.19)

where

ζ(k) = E−(k + k0) + 2gn̄
(
sin2 θk0

2
sin2 θk0+k

2
+ cos2 θk0

2
cos2 θk0+k

2

)
− µ, (7.20)

η(k) = gn̄
(
sin2 θk0

2
sin

θk0+k

2
sin

θk0−k

2
+ cos2 θk0

2
cos

θk0+k

2
cos

θk0−k

2

)
, (7.21)

where we have subtracted the chemical potential µ = E−(k0)+gn̄
(
sin4 θk0

2 + cos4 θk0
2

)
and defined H̄ = H−µN. We perform the Bogoliubov transformation χk = uρ−k−

vρ†k and χ†
−k = −vρ−k + uρ†k , where ρk is the bosonic quasiparticle and u2 − v2 = 1.

The Hamiltonian is then diagonalized as

H̄/N =
∑
k>0

εkρ
†

kρk + ε−kρ
†

−kρ−k + const. (7.22)

where the Bogoliubov excitation spectrum is

εk =

√
(ζ(k) + ζ(−k))2

4
− η2(k) +

ζ(−k) − ζ(k)
2

. (7.23)

In the BLP, this spectrum has a maxon-roton like structure, as shown in Fig.

7.3. Decreasing the tunneling strength K/J softens the spectrum. As the energy

of the roton reaches to zero, the BLP becomes unstable. This corresponds to a

spinodal, and the first-order transition between the BLP and MDP generically

preempts it.

7.7 Experimental signatures

In this section we describe experimental signatures of these phases. A local den-

sity measurement can distinguish the three phases, as can a measure of local
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Figure 7.3: Bogoliubov excitation spectrum εk/J for gn̄/J = 0.2. The “maxon-
roton” like structure develops as one decreases the tunneling strength K/J.
When the energy of the “roton” hits zero, the BLP is unstable. This corresponds
to a spinodal, and the first-order thermodynamic BLP-MDP phase transition
generically preempts it.

currents. Some of the phases can be distinguished via time-of-flight measure-

ments. Finally, we argue that a susceptibility measurement can readily identify

the BLP.

While local density and current measurements can be difficult, the experi-

mentalists in Ref. [15] devised an ingenious surrogate. They isolate each leg

of their ladder and further break each leg into a set of dimers. By looking at

the time evolution of this ensemble of isolated dimers, they extract averages of

various local correlation functions. In particular they find that the chiral cur-

rent saturates for K/J >
√

2. Given their weak interactions, this is consistent

with the SCCP in Fig. 7.1. They also find signatures of spatial inhomogeneities

along each leg for K/J < 1 (see Fig. 4(b) of Ref. [15]). This is consistent with

a transition to the MDP. For 1 < K/J <
√

2, they appear to have a state which

is translationally invariant along the ladder, and has a non-saturated chiral cur-
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Figure 7.4: Averaged density asymmetry
〈(

na − nb
)
/n̄

〉
as a function of the de-

tuning ∆/J. The density is calculated by averaging over 30 sites along the ladder,
where we set gn̄/J = 0.2, and K/J = 0.2 for the MDP and K/J = 1.1 for the BLP.

rent. This is consistent with the BLP. The experimentalists interpreted their data

in terms of the SCCP and MDP, which they referred to as the “Meisner phase”

and “vortex phase”. They were unaware of the possibility of the BLP, as it has

not been previously discussed. The experimentalists make a plot of Jc vs K/J,

similar to Fig. 7.2(a). While the phase transitions should all be visible in this

graph, the discontinuity between the BLP and MDP vanishes as the interaction

parameter g→ 0.

Another direct probe of these states is the left-right asymmetry δ = na − nb.

In the BLP, δ , 0. Unfortunately, the experiment is performed on an array of
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ladders, and one would expect each ladder to randomly have δ > 0 or δ < 0.

The ensemble average will be zero in all phases. To avoid this issue, we propose

a susceptibility measurement. We envision detuning the Raman lasers from

resonance, which adds to Eq. (7.1) a term H∆ =
∑
` ∆

(
a†`a` − b†`b`

)
. Such a term

can also be engineered by adjusting the geometry of their lattice beams. In the

BLP, any bias ∆, no matter how small, will yield a finite left-right asymmetry. In

the MDP or SCCP, the asymmetry will instead be linear in ∆.

Figure 7.4 shows the averaged density asymmetry
〈(

na − nb
)
/n̄

〉
as a function

of the detuning ∆/J over 30 sites along one ladder. The discontinuity seen for

the BLP can be interpreted as a divergent susceptibility. In an experiment one

would likely see hysteresis in the chiral current for the BLP. By contrast the MDP

has a finite susceptibility.

Finally we consider time-of-flight expansion. In principle one can use this

technique to directly measure the momenta of all the particles. In the SCCP, the

atoms on the left legs all have momentum k0 = φ/2 along the ladder, and the

atoms on the right legs all have momentum −k0. In the BLP the characteristic

momentum is reduced to k0 < φ/2, but there is still only one momentum peak

for each leg. In the MDP the distribution is bimodal: on each leg there are two

different momenta.

To fully interpret time-of-flight images from arrays of ladders, one must take

into account inter-ladder coherences. Thus we consider a more general two

dimensional model with

H0 = −J
∑
` j

(
a( j)†
`+1a( j)

` + b( j)†
`+1b( j)

` + H.c.
)
− K

∑
` j

(
a( j)†
` b( j)

` ei(`+ j)φ + H.c.
)

− Λ
∑
` j

(
e−iλa( j+1)†

` b( j)
` ei(`+ j+1)φ + H.c.

)
, (7.24)
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where the superscript labels the ladder, and the tunneling strength between

adjacent ladders is Λ. The phase factors ei(`+ j)φ and ei(`+ j+1)φ are related to the

experimental geometry of the Raman beams, and e−iλ involves details of the

excited state in the Raman transition. Diagonalizing this Hamiltonian in mo-

mentum space, one finds the lower energy band E−(kx, ky) = −2J cosky cos (φ/2)−√
4J2 sin2ky sin2 (φ/2) + K2 + Λ2 + 2KΛ cos(kx + λ − φ), where ky is the canonical mo-

mentum in the y-direction (along the leg of the ladder), and kx is the canonical

momentum in the x-direction (perpendicular to the leg of the ladder). Time-

of-flight measures the real momentum, p, where ap = ak−q and bp = bk+q with

q = (φ/2) (x̂ + ŷ). For completely decoupled ladders, Λ = 0, the energy is inde-

pendent of kx. For any finite coupling, Λ > 0, the energy minimum is given by

kx = φ−λ. We then see that the atoms on the left legs have px = kx−φ/2 = φ/2−λ,

and the atoms on the right legs have px = kx + φ/2 = 3φ/2 − λ. Thus atoms

from the two legs become spatially separated during time-of-flight. This spatial

structure is seen in Ref. [15].

7.8 Conclusions

We have studied the ground state of a bosonic two-leg ladder in a magnetic field.

We found three phases, corresponding to different types of broken symmetries.

We further studied the fluctuation of the condensate and found a roton-maxon

like excitation spectrum. Finally, we described the experimental evidence of

these phases, and proposed a susceptibility measurement to further characterize

them.
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CHAPTER 8

MAJORANA FERMIONS IN ONE DIMENSIONAL SPIN-ORBIT

COUPLED FERMI GASES

This chapter was adapted from ”Majorana fermions in one dimensional spin-orbit-

coupled Fermi gases” by Ran Wei and Erich J. Mueller, published in Physical Review A

86, 063604 (2012).

8.1 Abstract

We theoretically study trapped one dimensional Fermi gases in the presence of

spin-orbit coupling induced by Raman lasers. The gas changes from a conven-

tional (non-topological) superfluid to a topological superfluid as one increases

the intensity of the Raman lasers above a critical chemical-potential dependent

value. Solving the Bogoliubov-de Gennes equations self-consistently, we calcu-

late the density of states in real and momentum space at finite temperatures.

We study Majorana fermions (MFs) which appear at the boundaries between

topologically trivial and topologically non-trivial regions. We linearize the trap

near the location of a MF, finding an analytic expression for the localized MF

wavefunction and the gap between the MF state and other edge states.

8.2 Introduction

Majorana fermions (MFs), exotic excitations which are their own antiparticles,

have attracted a great deal of attention recently [121, 122]. Condensed matter

systems with MFs possess degeneracies that are intrinsically nonlocal, and can
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be manipulated geometrically. They can, in principle, be used to make a robust

quantum computer [123]. Condensed matter theorists have proposed various

ways to explore MFs during the past several years [124, 125, 126, 127, 128, 129,

130, 131, 132, 133]. Four experimental groups have recently reported evidence of

MFs in semiconducting wires on superconducting substrates [134, 135, 136, 137].

In those experiments, spin-orbit (SO) coupling was important. Here we study

MFs in a related cold atom system.

Two groups [138, 139] have successfully generated SO coupled Fermi gases

based on a Raman technique pioneered by Spielman’s group at NIST [6]. Several

theoretical groups have proposals for creating and probing MFs in these SO

coupled Fermi gases [140, 141, 142, 143, 144, 145, 146]. We build upon the studies

of Jiang et al. [144] and Liu et al. [145], which find MFs in a 1D geometry.

We study a 1D (pseudo) spin-1/2 Fermi gas with point interactions. In the

presence of Raman lasers, the energy spectrum has two helical bands. We study

this two-band model in a harmonic trap. Solving the Bogoliubov-de Gennes

(BdG) equations self-consistently, we calculate the density of states (DOS) in

real and momentum space at finite temperatures. We linearize the trap near the

location of a MF, finding an analytic expression for the localized MF wavefunc-

tion and the gap between the MF state and other edge states.

Our numerical calculations extend the similar studies of Ref. [145]. We ex-

plore a larger range of temperatures, and delve deeper into the physics near the

MFs. We also investigate a truncated one-band model.

One concern with mean-field calculations such as ours, is that they are un-

able to capture the large phase fluctuations found in 1D. As shown by Ref. [147,
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148, 149], the MF physics is robust against these fluctuations. Moreover, an ac-

tual experiment would be performed on a bundle of weakly coupled tubes [150].

This latter setting also avoids issues of number conservation [147, 148, 149]. Our

1D model faithfully describes the properties of a single tube within such a bun-

dle when the tunneling is weak.

This chapter is organized as follows. In Sec. II, we discuss the homogeneous

gas: We start with the two-band model, and in Sec. II(A) show how it relates

to a one-band model with p-wave interactions. In Sec. II(B), we describe the

band structure and topology of the two-band model. In Sec. III, we calculate

the properties of trapped gases: In Sec. III(A), we write the BdG equations and

self-consistently calculate the order parameter and density. In Sec. III(B), we

visualize the MFs by calculating the DOS in real space and momentum space.

In Sec. III(C), we introduce MF operators and construct the localized MF states.

In Sec. III(D), we linearize the trap near the location of a MF, finding an analytic

expression for the localized MF wavefunction and the gap between the MF state

and other edge states. Finally we conclude in Sec. IV.

8.3 Homogeneous gas

We start from the Hamiltonian of the 1D (pseudo) spin-1/2 Fermi gases with

chemical potential µ,

H =

∫
dx Ψ†(x) (H0(x) − µ) Ψ(x) + HI , (8.1)

where Ψ(x) =
(
ψ↑(x), ψ↓(x)

)ᵀ annihilates the spin-up and spin-down states. In an

experiment, ψ↑ and ψ↓ correspond to two different hyperfine states of a fermionic

atom such as 40K. The single-particle Hamiltonian H0(x) = − ~2

2m∂
2
x + i~2kL

m ∂xσz +
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~Ω
2 σx + Er can be engineered by Raman lasers [6], whose intensity is charac-

terized by the Rabi frequency Ω. The recoil momentum of the Raman lasers

is ~kL, Er = ~2k2
L/2m is the recoil energy, and σ = (σx, σy, σz) is the vector of

Pauli matrices. For ultra-cold fermions, the interaction may be modeled by

HI = g1D

∫
dxψ†

↑
(x)ψ†

↓
(x)ψ↓(x)ψ↑(x), with coupling constant g1D. This coefficient

can be related to the three-dimensional scattering length and the geometry of

the confinement [23]. In a typical experiment, |g1D| ∼ 70 a0Er [150], where a0 is

the Bohr radius. We restrict ourselves to attractive interactions, g1D < 0. We

note that if we rotate our spin basis (σx → σz, σz → σy) and identify Z = ~Ω/2

as a Zeeman field, and α = ~2kL/2m as the SO coupling strength, we recover

the Hamiltonian of a semiconducting wire. Note HI is very different for a wire

[125, 126, 127, 128, 129, 130]. In the following sections we explore the physics of

Eq. (8.1).

8.3.1 One-band model

To get insight into Eq. (8.1), we first consider an approximation where we trun-

cate to a single band. We emphasize however that in all other sections, we work

with the full two-band Hamiltonian.

The physics of the single particle Hamiltonian is most transparent in mo-

mentum space, H =
∑

k Ψ
†

k

(
~2k2

2m + Er −
~2kkL

m σz + ~Ω
2 σx

)
Ψk, where Ψk =

(
ψk↑, ψk↓

)ᵀ.

This Hamiltonian is readily diagonalized by dk

ck

 =

 cos θk
2 sin θk

2

−sin θk
2 cos θk

2


 ψk↑

ψk↓

 (8.2)

with tan θk = −mΩ/2k~kL, yielding H =
∑

k

(
E−c

†

kck + E+d†k dk

)
. The energy spec-
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trum has two helical bands, illustrated in Fig. 8.1. If the effective chemical

!3 !2 !1 1 2 3
k!kL

!0.5

0.5

1.0

1.5

2.0

2.5

3.0
E"!Er
E#

E!

Figure 8.1: Band structure of a 1D (pseudo) spin-1/2 gas. The red (dashed)
curves are the bare bands in the absence of SO coupling. The blue (thick) curves
are the upper band E+ and lower band E− in the presence of SO coupling, with
the coupling strength ~Ω/Er = 1.

potential µ̃ = µ − Er � ~Ω/2, only the lower band E− is filled with fermions.

Projecting the interactions into this band, we find

H1B
I = g̃1D

∑
kqq′

(
Vkqc†k

2 +q
c†k

2−q

) (
Vkq′c k

2−q′c k
2 +q′

)
, (8.3)

where g̃1D = g1D/L1D, with L1D the length of the gas. The fermionic anticommu-

tation relation, c†k/2+qc†k/2−q = −c†k/2−qc†k/2+q, implies that the interaction coefficient

Vkq is odd with respective to q, Vkq = 1
2sin θk/2+q−θk/2−q

2 . At zero center of mass mo-

mentum, Vq ≡ Vk=0,q =
q

2
√

q2+~2k2
LΩ2/16E2

r
. In Fig. 8.2, we plot Vkq as a function of q.

The dependence on k is weak for k . kL.

The interaction in Eq. (8.3) is separable. Given that g̃1D < 0, this inter-

action can lead to pairing with zero center of mass and an order parameter

∆q = g̃1DVq
∑

q′
〈
Vq′c−q′cq′

〉
, where 〈...〉 ≡ Tr(e−H/kbT ...)

Tr(e−H/kbT ) is the thermal average, kb is
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the Boltzman constant and T is the temperature. The mean-field interaction

becomes H1B
I =

∑
q

(
∆qc†qc†−q + ∆∗qc−qcq

)
− g̃1D

∣∣∣∣∑q Vq

〈
c−qcq

〉∣∣∣∣2. By virtue of the sym-

metry of Vq, the order parameter has a p-wave symmetry ∆−q = −∆q. As is well

established, such a p-wave superfluid may possess Majorana edge modes [42].

We will discuss these Majorana modes at length in the two-band model.

!3 !2 !1 1 2 3
q!kL

!0.5

0.5
Vkq

k!kL

k!0.5kL

k!0

Figure 8.2: Interaction coefficient Vkq versus dimensionless momentum q/kL for
~Ω/Er = 2. The blue (thick), green (dashed) and red (dotted) curves correspond
to k = 0, 0.5kL and kL respectively.

8.3.2 Two-band model

While the one-band model connects the SO coupled gases and p-wave super-

conductors, we will focus on the richer two-band model in the remainder of the

chapter. Within the mean-field approach, the interaction term is bilinear

HI = g1D

∫
dxψ†

↑
(x)ψ†

↓
(x)ψ↓(x)ψ↑(x) (8.4)
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≈

∫
dx

(
∆(x)

(
ψ†
↑
(x)ψ†

↓
(x) + ψ↓(x)ψ↑(x)

)
−

∆(x)2

g1D

)
, (8.5)

where the order parameter ∆(x) = g1D
〈
ψ↓(x)ψ↑(x)

〉
is assumed to be real. Defin-

ing the operator Ψ̃†(x) =
(
ψ†
↑
(x), ψ†

↓
(x), ψ↓(x), ψ↑(x)

)
, the Hamiltonian can be writ-

ten as,

H =

∫ (
1
2

Ψ̃†(x)HΨ̃(x) −
∆(x)2

g1D

)
dx +

1
2

(T− + T+) , (8.6)

where

H =

(
−
~2

2m
∂2

x − µ̃

)
τz +

i~2kL

m
∂xτzσz +

~Ω

2
τzσx + ∆(x)τxσz, (8.7)

T± = Tr
(
−
~2

2m
∂2

x − µ̃ ±
i~2kL

m
∂x

)
. (8.8)

The Pauli matrices σ, τ operate in the spin subspace and particle-hole subspace

respectively,

σx =



1

1

1

1


, τx =



1

1

1

1


(8.9)

σz =



1

−1

1

−1


, τz =



1

1

−1

−1


. (8.10)

The elementary excitations can be found by solving the BdG equationsHW =

EW. When ∆(x) = ∆ is spatially homogeneous, one can write the BdG equations

in momentum space as HkW(k) = E(k)W(k), where Hk is the 4 × 4 matrix pro-

duced by replacing −i∂x → k in Eq. (8.7). The excitation spectrum E(k) is most
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simply calculated by squaring Hk twice, and extracting the characteristic poly-

nomial [132]. This procedure yields

E2
±(k) = ε2

0 +
2Er~2k2

m
+

1
4~2Ω2 + ∆2 ± ~

√
8Erε

2
0k2

m
+ Ω2ε2

0 + Ω2∆2, (8.11)

where ε0 = ~2k2

2m − µ̃. The four bands E+(k), E−(k),−E−(k),−E+(k), as shown in

Fig. 8.4, correspond to the four eigenvectors W p+(k), W p−(k), Wh−(k), Wh+(k). The

HamiltonianH has the intrinsic symmetry,
{
H , τy

}
= 1. Given two eigenvectors

W p± with eigenvalues E±, one can always construct the other two Wh± = iτyW p±

with eigenvalues −E±. We therefore denote,

W p+(k) =
(
u+

k↑, u
+
k↓,−v+

k↓,−v+
k↑

)ᵀ
(8.12)

W p−(k) =
(
u−k↑, u

−
k↓,−v−k↓,−v−k↑

)ᵀ
(8.13)

Wh−(k) =
(
v−k↓, v

−
k↑, u

−
k↑, u

−
k↓

)ᵀ
(8.14)

Wh+(k) =
(
v+

k↓, v
+
k↑, u

+
k↑, u

+
k↓

)ᵀ
. (8.15)

The unitary condition on the 4 by 4 matrix
(
W p+(k),W p−(k),Wh−(k),Wh+(k)

)
also

leads to the equalities u±k↓ =
(
u±
−k↑

)∗
and v±k↓ = −

(
v±
−k↑

)∗
.

In Fig. 8.4, the spectrum is shown for a range of parameters. One important

feature is the k = 0 gap E0 ≡ 2E−(k = 0) ≡ 2|G|, where G ≡
√
µ̃2 + ∆2 − ~Ω/2.

When Ω = 0, the two positive energy bands touch at k = 0, and E0 > 0. The

gas is in the same universality class as a conventional s-wave superconductor.

Increasing the Raman laser strength such that 0 < ~Ω < 2
√

∆2 + µ̃2 separates

the two bands and reduce E0. At ~Ω = 2
√

∆2 + µ̃2, E0 is zero, and there is a

topological transition. Once ~Ω > 2
√

∆2 + µ̃2, E0 is again positive, but the gas

is no longer a conventional superfluid, instead it has a non-trivial topological

invariant.

The relevant topological invariant is a Berry phase. Eqs. (8.12-8.15) can be
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Figure 8.3: Band structure of homogeneous gas. From the top to the bottom,
the four bands are E+, E−,−E−,−E+ respectively. The parameters are µ = Er,∆ =

0.5Er, and (a) Ω = 0, (b) Ω = 0.5Er, (c) Ω = Er, (d) Ω = 1.5Er.

thought of as maps from the real line (−∞ ≤ k ≤ ∞) to the space of unit vectors

in SU(4). One can generate a closed path by taking

C : W p+(−∞)→ W p+(∞) = W p−(−∞)→ W p−(+∞) = W p+(−∞). (8.16)

The equalities follow from noting that up to phases

W p+(−∞) = W p−(∞) = (0, 1, 0, 0)ᵀ (8.17)

W p−(−∞) = W p+(∞) = (1, 0, 0, 0)ᵀ . (8.18)

Given this closed path, one can define the Berry phase

γ = i
∮
C

dk W∗ · ∂kW

= i
∫ ∞

−∞

dk
(
W p+(k)

)∗
· ∂kW p+(k) + i

∫ ∞

−∞

dk
(
W p−(k)

)∗
· ∂kW p−(k). (8.19)

In the case of a gauge which is not smooth, one would instead use

eiγ = lim
δk→0

 ∞∏
k=−∞

(
W p+(k)

)∗
·W p+(k − δk) ×

∞∏
k=−∞

(
W p−(k)

)∗
·W p−(k − δk)


×

(
W p+(−∞)

)∗
·W p−(∞)

(
W p−(−∞)

)∗
·W p+(∞). (8.20)
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Since H has real valued matrix elements, eiγ = ±1. The Berry phase γ is only well

defined if the spectrum has no degeneracies. We restrict 0 ≤ γ < 2π. For G > 0,

we find γ = π. For G < 0, γ = 0. Somewhat counter-intuitively the γ = 0 sector

corresponds to the “topologically non-trivial” state analogous to a 1D spinless

p-wave superconductor.

8.4 Traps

In this section we will solve the BdG equations for a trapped gas. The qual-

itative features of our results can be anticipated by treating the system as lo-

cally homogeneous: the properties at position x will be reminiscent of those

corresponding to a homogeneous gas with chemical potential µ̃(x) = µ̃ − V(x).

Within this local density approximation (LDA), one can define a function G(x) =√
µ̃(x) + ∆(x)2 − ~Ω/2, where G(x) = 0 corresponds to the boundaries between

topologically distinct regions. One expects there will be Majorana excitations at

the boundaries. We will use numerical solution of the BdG equation to explore

this physics beyond the LDA. Further, in Sec. III(D) we will linearize the BdG

equations about the points G(x) = 0, and analytically investigate these Majorana

modes, without making a LDA.

8.4.1 Order parameter and density

In the presence of a trap, we write the BdG equations in real space,

HtrapWn(x) = EnWn(x), (8.21)
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where

Htrap =

(
−
~2

2m
∂2

x − µ̃ + V(x)
)
τz +

i~2kL

m
∂xτzσz +

~Ω

2
τzσx + ∆(x)τxσz. (8.22)

The eigenvectors Wn(x) come in pairs, W p
n (x) and Wh

n (x), which correspond to

eigenvalues En ≥ 0 and −En,

W p
n (x) =

(
un↑(x), un↓(x), vn↓(x), vn↑(x)

)ᵀ (8.23)

Wh
n (x) =

(
v∗n↑(x), v∗n↓(x), u∗n↓(x), u∗n↑(x)

)ᵀ
. (8.24)

To make contact with our previous discussion, we note that in the spatially ho-

mogeneous case, n can be represented by a momentum kn and a sign εn = ±, so

that W p
n (x) = eikn x

(
uεn

kn↑
, uεn

kn↓
, vεn

kn↓
, vεn

kn↑

)ᵀ
and Wh

n (x) = eikn x
(
(vεn

kn↑
)∗, (vεn

kn↓
)∗, (uεn

kn↓
)∗, (uεn

kn↑
)∗
)ᵀ

.

One then recovers Eqs. (8.12)-(8.15).

Fixing {µ̃,Ω, g1D}, we solve Eqs. (8.21) iteratively. We discretize space into ngrid

equally spaced points, and use a finite difference method with a pseudo-spectral

scheme to represent Htrap as a 4ngrid by 4ngrid matrix. In the jth iteration, we

numerically diagonalize the matrix H ( j)
trap with the order parameter ∆( j)(x). We

start with a constant ∆(0)(x) = ∆0. We extract the eigenvectors W ( j)
n (x) and calcu-

late the order parameter ∆( j+1)(x) = g1D
∑

n

(
u( j)

n↓v
∗( j)
n↑

〈
ξnξ
†
n

〉
+ v∗( j)

n↓ u( j)
n↑

〈
ξ†nξn

〉)
, where

ξn is the annihilation operator of the Bogoliubov particle. At temperature T ,〈
ξ†nξn

〉
= 1/

(
eEn/kbT + 1

)
. Then we diagonalize H ( j+1)

trap and repeat the procedure.

We stop iterating when
∣∣∣∆( j+1)(x) − ∆( j)(x)

∣∣∣ falls below a threshold. The final con-

vergent order parameter ∆(N)(x) is largely independent of ngrid and ∆(0)(x) when

ngrid ≥ 1200. In Appendix 8.6.1 we explore the convergence with the real space

grid size ngrid.

The order parameters and density profiles for a gas in a harmonic trap V(x) =

λ (x/L)2 Er are shown in Fig. 8.4, where the dimensionless parameter λ = 4 char-

acterizes the stiffness of the trap, and 2L is the simulation length with kLL = 100.
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Figure 8.4: Order parameter ∆(x) = g1D
∑

n

(
un↓(x)v∗n↑(x)

〈
ξnξ
†
n

〉
+ v∗n↓(x)un↑(x)

〈
ξ†nξn

〉)
(dashed) and density n(x) =

∑
nσ

(
|vnσ(x)|2

〈
ξnξ
†
n

〉
+ |unσ(x)|2

〈
ξ†nξn

〉)
(solid) at tem-

peratures T = 0, 0.1Er, 0.2Er, 0.3Er. Other parameters are g1D = −0.03ErL, ~Ω =

2Er, λ = 4, kLL = 100, and (a) µ = Er and (b) µ = 2.5Er.

We choose the Rabi frequency to be ~Ω = 2Er, and take g1D = −0.03ErL, corre-

sponding to the dimensionless interaction strength β = m|g1D|/~2n0 ∼ 2, where

n0 is the central density at zero temperature. For comparisons, experiments on

1D Fermi gases at Rice have β ∼ 3 [150]. If Er/~ = 50kHz (a typical experimental

value), then these parameters correspond to a trap with small oscillation fre-

quency ω = 2kHz. The order parameter has qualitatively different behavior if

the center of the trap has one or two bands occupied. For relatively small chem-

ical potential Er −
√

(~Ω/2)2 − ∆(x)2 . µ . Er +
√

(~Ω/2)2 − ∆(x)2, the center of

the trap will be topologically non-trivial while the wings will be trivial. This
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regime is illustrated in Fig. 8.4(a). The order parameter grows near the edge

of the cloud. This is a feature of 1D where, due to the divergence of the low

energy density of state, the interactions are stronger for lower density [151]. For

µ & Er +

√
(~Ω/2)2

− ∆(x)2, the center will be topologically trivial, but there will

be a band of the non-trivial state further out. Here the order parameter profile

is quite rich, with a central plateau, surrounded by two valleys and two peaks.

The central plateau roughly corresponds to where both bands are occupied. The

order parameter is sensitive to temperature. The bulk ∆ is significantly sup-

pressed and vanishes for T & 0.2Er. The density has no notable structure and is

nearly independent of temperature for T . 0.3Er.

8.4.2 Density of states (DOS)

Figure 8.5: Density of states (DOS) in real space (left panel) and momentum
space (right panel) at T = 0, 0.1Er, 0.2Er, 0.3Er from the top to the bottom, with
order parameters identical to those in Fig. 8.4(a). The grey (dashed) in the left
panels is plotted with G(x) =

√
µ̃(x)2 + ∆(x)2 − ~Ω/2, where the zero points of

G(x) pinpoint the position of MFs. The brighter color corresponds to the higher
spectral weight.

The elementary excitations are encoded in the single particle Green func-
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tion Gσσ′(x, t, x′, t′) = −i
〈
T̂ψσ(x, t)ψ†σ′(x′, t′)

〉
and the associated spectral density

Aσσ′(x, x′, E) = −2 Im
∫

dt eiEtGσσ′(x, t, x′, 0), where T̂ is the time-ordering oper-

ator. A local tunneling experiment can measure the density of states (DOS)

ρ(E, x) = A↑↑(x, x, E) + A↓↓(x, x, E). This quantity gives the number of single parti-

cle states with energy E at position x. It can be understood as an application of

Fermi’s Golden rule to the response to a tunneling probe. Within our mean-field

theory

ρ(E, x) =
∑
σ=↑,↓

(
ρh
σ(−E, x) + ρp

σ(E, x)
)
, (8.25)

where

ρh
σ(E, x) =

∑
n

|vnσ(x)|2 δ(En − E) (8.26)

ρp
σ(E, x) =

∑
n

|unσ(x)|2 δ(En − E). (8.27)

We can similarly introduce a momentum resolved DOS ρ(E, k) =
∫

dx dx′eik(x−x′)(
A↑↑(x, x′, E) + A↓↓(x, x′, E)

)
, which can be measured with momentum resolved

radio-frequency spectroscopy [139]. In the present case

ρ(E, k) =
∑
σ=↑,↓

(
ρh
σ(−E, k) + ρp

σ(E, k)
)
, (8.28)

where

ρh
σ(E, k) =

∑
n

∣∣∣∣∣∫ dx vnσ(x) eikx
∣∣∣∣∣2 δ(En − E) (8.29)

ρp
σ(E, x) =

∑
n

∣∣∣∣∣∫ dx unσ(x) eikx
∣∣∣∣∣2 δ(En − E). (8.30)

In Figs. 8.5 and 8.6 we plot the DOS for the trapped gas with the order pa-

rameters calculated in Sec. 8.4.1. We also show a dashed curve corresponding to

G(x) =
√
µ̃(x)2 + ∆(x)2−~Ω/2. The point where G(x) = 0 represents the boundary

between topologically distinct regions defined in Sec. 8.3.2. For the parameters
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Figure 8.6: Density of states (DOS) in real space (left panel) and momentum
space (right panel) at T = 0 and 0.3Er, with parameters identical to those in Fig.
8.4(b). The brighter color corresponds to the higher spectral weight.

in Fig. 8.5, G(x) = 0 at two locations, and we find that the BdG equations have

two zero-energy modes, localized near these points. As will be discussed later,

these modes may be interpreted as MFs. They are clearly spectrally separated

from all other states. Fig. 8.6 shows the case where G(x) = 0 at four locations,

representing four MFs. The right panels of Figs. 8.5 and 8.6 show the momen-

tum space DOS. The MF modes sit in a large gap at k = 0.

As we have shown in Sec. 8.4.1, the order parameter decreases with tem-

perature. In real space, the bulk ∆ becomes very small at T = 0.2Er, while ∆ at

the edges remains large: the MFs at the edges are very clear for T . 0.2Er. At

T = 0.3Er, the order parameter is nearly zero and the gas becomes normal.
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The evolution of the momentum space DOS parallels the real space DOS. As

temperature is increased from T = 0, the gaps at large k shrink. The gap at k = 0

remains robust until T = 0.3Er.

Finally for comparison, we plot the DOS within a LDA. As illustrated in Fig.

8.7, the LDA prediction for the DOS is qualitatively similar to the BdG result.

The main difference is that the LDA misses physics related to quantization. In

particular, the zero energy modes are not spectrally isolated in the LDA. They

are, however, still located at roughly the same place in space.

Figure 8.7: Density of states (DOS) at zero temperature under the local density
approximation (LDA). The parameters are identical to those in Fig. 8.4, except
∆(x) is calculated within the LDA. The brighter color corresponds to the higher
spectral weight.
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8.4.3 Majorana fermions (MFs)

Here we explore the structure of the zero-energy states seen in Fig. 8.5. From

our numerical solutions to the BdG equations, we have two wavefunctions

W p
0 (x) = eiϕ′1

(
u0↑(x), u0↓(x), v0↓(x), v0↑(x)

)ᵀ (8.31)

Wh
0 (x) = eiϕ′2

(
v∗0↑(x), v∗0↓(x), u∗0↓(x), u∗0↑(x)

)ᵀ
, (8.32)

which define operators

ξ0 =

∫
dx

(
W p

0 (x)
)†
· Ψ̃(x) (8.33)

ξ†0 = ei(ϕ′2−ϕ′1)
∫

dx
(
Wh

0 (x)
)†
· Ψ̃(x), (8.34)

and obey HtrapW p
0 (x) ≈ HtrapWh

0 (x) ≈ 0. The phases ϕ′1 and ϕ′2 are not unique,

and the factor in Eq. (8.31) must be introduced to make ξ†0 conjugate to ξ0. By

construction these are fermionic operators
{
ξ0, ξ

†

0

}
= 1.

As zero-energy solutions to the BdG equations, both ξ0 and ξ†0 commute with

H. Hence the ground state is degenerate: ξ0 |GS 1〉 = 0 and |GS 2〉 = ξ†0 |GS 1〉.

These two degenerate states can be used as a qubit for quantum information

processing [123].

The operator ξ†0 which couples |GS 1〉 to |GS 2〉 is intrinsically nonlocal, with

weight at two spatially separated points. One can however introduce operators

χ0 =
1
√

2
eiϕ

(
ξ0 + e−2iϕξ†0

)
=

∫
dx f †0 (x) · Ψ̃(x) (8.35)

χ̄0 = ±
1
√

2i
eiϕ

(
ξ0 − e−2iϕξ†0

)
=

∫
dx f̄ †0 (x) · Ψ̃(x) (8.36)

where

f0(x) =
1
√

2
eiϕ1

(
W p

0 (x) + e−iϕ2Wh
0 (x)

)
(8.37)

f̄0(x) = ±
1
√

2i
eiϕ1

(
W p

0 (x) − e−iϕ2Wh
0 (x)

)
, (8.38)
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with arbitrary phases ϕ1 = ϕ − ϕ′1 and ϕ2 = 2ϕ − ϕ′1 + ϕ′2. By choosing the appro-

priate ϕ2, these operators can be made local. In particular if G(x) = 0 at x = x1, x2,

then f0(x) can be chosen to be nonzero only near x1, and f̄0(x) only near x2.

The operators χ0 and χ̄0 obey the Majorana algebra: χ†0 = χ0, χ̄†0 = χ̄0, {χ0, χ̄0} =

0, {χ0, χ0} = {χ̄0, χ̄0} = 1. They commute with the Hamiltonian.

Note, as we will use in the next subsection, f0(x) ≡ eiϕ f
(
u f↑(x), u f↓(x), v f↓(x), v f↑(x)

)
obeys the BdG equations, but the resulting Bogoliubov transformation is not

unitary as it changes the commutation relations. Since χ0 = χ†0, we have u fσ(x) =

e−2iϕ f v∗fσ(x). For smaller systems, coupling between these modes push them

away from E0 = 0.

8.4.4 Eigen-energies of excited states near a MF

As seen in Figs. 8.5-8.6, the MFs are localized in real space and momentum

space. Thus we can calculate their properties by linearizing the trap around

their locations in position space, and linearizing momentum around k = 0.

As previously discussed, the locations of the MFs can be found via the LDA.

There are generally four MFs, localized at xm = ±L
√

R±m/λEr, where R±m ≡

µ̃ ±
√
~2Ω2/4 − ∆2

m, with ∆m ≡ ∆(x = xm). We restrict ourselves to the location

of one MF, xm = L
√

R+m/λEr. We write the linearized BdG Hamiltonian as the

sum of two termsHlin = H0 +Hi,

H0 =
~Ω

2
τzσx + ∆mτx +

√
~2Ω2/4 − ∆2

mτxσz (8.39)

Hi = λ̃(x − xm)τz − κτzσz, (8.40)
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where λ̃ = 2λxmEr/L2 and κ = ~2kLk/m. The “interaction” termHi can be treated

as a perturbation, and it vanishes as x → xm, k → 0. In the absence of perturba-

tions,Hlin = H0 has two degenerate zero-energy states

D1 =

√
2

2
(sinφ,−cosφ,−cosφ, sinφ) (8.41)

D2 =

√
2

2
(−cosφ, sinφ,−sinφ, cosφ) , (8.42)

where sinφ =
√

(~Ω/2 + ∆m)/~Ω. Following the standard approach to first-order

degenerate perturbation theory, we diagonalize the Hamiltonian projected into

the subspace {D1,D2},

�Hlin =

 D1

D2

 Hlin(D1,D2) = Kσ̄z + Xσ̄x, (8.43)

where K = −2~∆mkLk/mΩ and X = −4λEr xm(x − xm)R+m/~ΩL2. The Pauli ma-

trices σ̄ operate in the subspace {D1,D2}. Noting that [X,K] = iC with C =

16
√
λE3/2

r R3/2
+m∆m/~2Ω2kLL, one can define the operators a = K−iX

√
2C
, a† = K+iX

√
2C

that

satisfy
[
a, a†

]
= 1. The eigen-equations of �Hlin then become

√
2C
2

 −
(
a† + a

)
i
(
a† − a

)
i
(
a† − a

)
a† + a


 ūn

v̄n

 = Ēn

 ūn

v̄n

 (8.44)

where ūn = D1 ·Wn, v̄n = D2 ·Wn. Combining ūn, v̄n gives the equations

−
√

2C

 0 a†

a 0


 ūn + iv̄n

ūn − iv̄n

 = Ēn

 ūn + iv̄n

ūn − iv̄n

 . (8.45)

Squaring Eq. (8.45) yields harmonic oscillator Hamiltonian, and allows one to

read off

Ēn = ±
√

2C
√

n (n = 0, 1, 2, ...). (8.46)

Not only is there a zero-energy mode Ē0 = 0 (the Majorana mode), but there

is a ladder of localized fermionic modes, whose energy spacing is proportional
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to λ1/4, and whose wavefunction components are excited harmonic oscillator

states. For a homogeneous gas where λ = 0, the energy spacing becomes zero.

0.5 1.0 1.5 Λ
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Figure 8.8: The gap between the MF state and excited states as a function of trap
stiffness λ1/4: the trapping potential is V(x) = λ(x/L)2Er. The black (thick) curve
is plotted based on the analytic Eq. (8.46). The red (dot-dashed), green (dashed),
blue (dotted) curves are the energy levels E1/Er, E2/

√
2Er, E3/

√
3Er respectively.

They are numerically calculated from Eq. (8.21) with the parameters identical
to the thick curve.

In Fig. 8.8, we plot Ēn/
√

nEr as a function of λ1/4 (black thick curve) based

on Eq. (8.46), and compare to the numerical results calculated from Eq. (8.21).

The dot-dashed (red), dashed (green), and dotted (blue) curves show the energy

levels of the first three excited states. We see the analytic results agree well with

the numerics for small λ. For larger λ, the corrections to Eq. (8.21) are impor-

tant, and the discrepancy between the analytic and numerical results becomes

notable, especially for larger n.

At n = 0 (Ē0 = 0), the zero-energy mode has wavefunction

ū(x) =
1

2σ
√
π

e−(x−xm)2/2σ2
(8.47)

v̄(x) =
1

2iσ
√
π

e−(x−xm)2/2σ2
, (8.48)
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where the width σ =

√
∆mLE1/2

r /R3/2
+mkLλ1/2 is proportional to λ−1/4.

8.5 Summary

We have investigated a (pseudo) spin-1/2 spin-orbit (SO) coupled Fermi gas in

a one dimensional geometry. We first relate this system to a one-band model

with p-wave interactions. We then described the band structure and calculated

the Berry phase γ of the full two-band model. We found γ distinguishes two

topologically distinct sectors, with γ = π corresponding to a conventional su-

perconductor. By self-consistently solving the Bogoliubov-de Gennes equations

and calculating both the position resolved and momentum resolved density of

states, we visualized the Majorana fermion (MF) states in real and momentum

space at finite temperatures. These spectra can be probed using the position

resolved or momentum resolved radio-frequency spectroscopy [139, 152]. We

introduced MF operators and constructed the localized MF states. We further

linearized the trap near the location of a MF, finding an analytic expression for

the localized MF wavefunction and the gap between the MF state and other

edge states.

This physics can be experimentally studied in a bundle of weakly coupled

tubes containing fermionic atoms [150]. By applying appropriate Raman lasers

to these quasi-1D tubes [138, 139], one can produce an array of quasi-1D SO

coupled Fermi clouds. Our calculations show that the MFs can be observed in

such settings.

There are, however, significant experimental challenges. Most notably, the
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Raman induced SO coupling relies on the ability of optical photons to flip the

atomic hyperfine spin. As Spielman argues [4], if the Raman lasers are detuned

by a frequency ∆ from an excited state multiplet (and ~∆ is large compared to

the fine structure splitting A f ), then the coupling strength Ω scales as 1/∆2. (This

is contrasted with typical AC stark shifts, which instead scale as 1/∆. The ex-

tra suppression is due to quantum interference between the amplitudes arising

from different intermediate states.) The rate of inelastic light scattering Γi also

scales as 1/∆2. The ratio υ = Γi/Ω is therefore roughly independent of detuning.

In terms of microscopic parameters, υ ∝ ~/A fτ, where τ is the lifetime of the

excited states. For 6Li, ~/A fτ ∼ 5.8 × 10−4, for 40K, ~/A fτ ∼ 3.5 × 10−6 and for

87Rb, ~/A fτ ∼ 8.3 × 10−7. One sees 40K has a much longer lifetime than 6Li in a

SO coupled Fermi experiment. The situation is even less favorable at the typical

magnetic field ∼ 830G [153] where one encounters Feshbach resonances in 6Li.

The large magnetic field decouples the electron spin and the nuclear spin, and

the relevant hyperfine states effectively only differ by their nuclear spin. As a

result, the Raman laser couplings vanish between these states. However for 40K,

the typical resonance field ∼ 200G [154] is much smaller, and the relevant hyper-

fine states have larger Raman couplings. We therefore expect 40K is a promising

candidate for producing an interacting SO coupled Fermi gas.
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8.6 Appendix

8.6.1 Convergence with grid spacing

In this Appendix, we explore the convergence of our self-consistent calculations

with the grid spacing δx = 2L/ngrid. We show how the energy and the order

parameter for a zero-temperature homogeneous gas in a box of size 2L with

periodic boundary conditions depends on ngrid.

Within our mean-field theory, the energy of this homogeneous gas is

Eg =
∑

k

(
ε0(k) −

1
2

(E+(k) + E−(k))
)
−
|∆|2

g̃1D
, (8.49)

where g̃1D = g1D/2L, ε0(k) = ~2k2

2m − µ̃, and E±(k) is the excitation spectrum given

in Eq. (8.11). The summation index k is discretized as k = −
ngrid

2L π,−
( ngrid−2

2L

)
π, ...,( ngrid−4

2L

)
π,

(ngrid−2
2L

)
π, and Eq. (8.49) can be calculated numerically.
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Figure 8.9: Ground state energy Eg/Er versus order parameter ∆/Er. The curves
in blue (dashed), black (thick), red (dotted), and green (dot-dashed) corre-
spond to ngrid = 400, 600, 800, and 1000 respectively. Other parameters are
g̃1D = −0.02Er, ~Ω = 2Er, λ = 0, kLL = 100, µ = Er.
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Fig. 8.9 shows Eg as a function of ∆ for ngrid = 400, 600, 800, 1000. We find

non-trivial behavior at intermediate ngrid. In particular, for these parameters

and ngrid = 600, the energy has two local minima, and the gap equations has

four solutions, corresponding ∆ = 0 and other three stationary points. Such

behavior is an artifact of the discretization, as it goes away for ngrid & 800. It

does, however, indicate that in the presence of an appropriate tuned optical

lattice, there will be metastable superfluid states.

In Fig. 8.10, we show how the order parameter ∆ depends on ngrid. We calcu-

late ∆ by minimizing Eg,

∂Eg

∂|∆|

∣∣∣∣∣
|∆|>0

= 0. (8.50)

We see ∆ converges to a finite value as ngrid → ∞. For the simulation size ngrid =

1200 used in the main text, the finite grid error is |∆(ngrid=∞)−∆(ngrid=1200)|
∆(ngrid=∞) ≤ 12%.

!
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Figure 8.10: Order parameter ∆/Er versus 103/ngrid. The red dots are calculated
from Eq. (8.50). The blue (thick) curve is an extrapolation. The parameters here
are identical to those in Fig. 8.4(a) except for λ = 0.
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CHAPTER 9

MAGNETIC FIELD DEPENDENCE OF RAMAN COUPLING IN ALKALI

ATOMS

This chapter was adapted from ”Magnetic-field dependence of Raman coupling in

alkali-metal atoms” by Ran Wei and Erich J. Mueller, published in Physical Review A

87, 042514 (2013).

9.1 Abstract

We calculate the magnetic field dependence of Rabi rates for two-photon opti-

cal Raman processes in alkali atoms. Due to a decoupling of the nuclear and

electronic spins, these rates fall with increasing field. At the typical magnetic

fields of alkali atom Feshbach resonances (B ∼ 200G−1200G), the Raman rates

have the same order of magnitude as their zero field values, suggesting one

can combine Raman-induced gauge fields or spin-orbit coupling with strong

Feshbach-induced interactions. The exception is 6Li, where there is a factor of

7 suppression in the Raman coupling, compared to its already small zero-field

value.

9.2 Introduction

Two-photon “Raman” transitions act as an important control parameter in cold

atom experiments. These optical transitions couple motional and internal de-

grees of freedom, mimicking important physical processes such as gauge fields

[1, 12] and spin-orbit coupling [6, 138, 139, 155]. They have also been used
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as spectroscopic probes, for example allowing scientists to measure excitation

spectra [138, 156, 157]. The most exciting future applications of these techniques

will involve strongly interacting atoms near Feshbach resonances [144, 158, 159,

160, 161, 162, 163, 164, 165, 166]. Here we study the Raman couplings as a func-

tion of magnetic field, quantifying the practicality of such experiments. We find

that for relatively heavy atoms, such as 40K, the Raman techniques are compati-

ble with the magnetic fields needed for Feshbach resonances. Despite important

experimental demonstrations [139], lighter atoms, such as 6Li are less promis-

ing, as the ratio of Raman Rabi frequency to the inelastic scattering rate is not

sufficiently large. This problem is exacerbated by the magnetic field.

We are interested in two-photon transitions which take an atom between two

hyperfine states |g1〉 and |g2〉. Optical photons only couple to electronic motion

in an atom. Hence such Raman transitions rely on fine and hyperfine inter-

actions. The former couple electronic spins and motion, and the latter couple

nuclear spins to the electronic angular momentum. One expects that magnetic

fields will reduce these Raman matrix elements, as the disparate Zeeman cou-

pling of electronic and nuclear degrees of freedom competes with the fine and

hyperfine interactions. We find that at the typical magnetic fields of Feshbach

resonance (B ∼ 200G−1200G [65]), the Raman couplings are still quite strong.

The exception is 6Li, where there is a factor of 7 suppression, compared to its

already small zero-field value.

A key figure of merit in experiment is the ratio of the Raman Rabi frequency

to the inelastic scattering rate β ≡ ΩR/Γine. The inverse Rabi frequency gives

the time required for an atom to flip between |g1〉 and |g2〉, and the inverse in-

elastic scattering rate gives the average time between photon absorption events,
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which leads to heating. For equilibrium experiments on Raman-dressed atoms,

one needs ΩR ∼ µ/~ ∼ kHz, where µ is the chemical potential. A typical ex-

periment takes one second. Thus if β . 103, the inelastic light scattering has a

large impact. As argued by Spielman [4], both of these rates at sufficiently large

detuning limit are proportional to the laser intensity and inversely proportional

to the square of the detuning. We numerically calculate this ratio as a function

of magnetic field, including all relevant single-particle physics. We also explore

the detuning dependence of this ratio.

The remainder of this chapter is organized as follows. In Sec. II, we esti-

mate the ratio of the Raman Rabi frequency to the inelastic scattering rate in

the absence of magnetic field for various alkali atoms. In Sec. III, we calculate

the magnetic field dependence of electric dipole transitions: We introduce the

single-particle Hamiltonian in Sec. III(A), and in Sec. III(B) we introduce the

formal expression of the electric dipole transitions. The analytical discussions

and numerical results are elaborated in Sec. III(C) and Sec. III(D). In Sec. IV, we

calculate the ratios for 23Na, 40K, 85Rb, 87Rb and 133Cs, and further study 6Li and

explore how the ratio depends on detuning. Finally we conclude in Sec. V.

9.3 Raman coupling

We consider a typical setup of a Raman experiment, as shown in Fig. 9.1: Two

hyperfine ground states |g1〉 and |g2〉 with energies Eg, are coupled to a pair of

excited multiplets
{
|eµ〉, |eν〉

}
by two lasers, where the coupling strengths are char-

acterized by the Rabi frequencies Ω1 and Ω2. The states |eµ〉 and |eν〉 are states

in the J = 1/2 and J = 3/2 manifolds, with energies Eµ and Eν, and the energy
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Figure 9.1: Sketch of the energy level structures in a Raman experiment. The
Rabi frequencies Ω1,Ω2 characterize the coupling strengths between the ground
states |g1〉, |g2〉 and the excited states. The fine structure energy splitting between
|eµ〉 and |eν〉 is A f = Eν − Eµ. The laser detuning is ∆ =

(
Eµ − Eg

)
− ~ω.

difference A f = Eν − Eµ. For 6Li, A f ∼ (2π~) × 10GHz. For heavier atoms such

as 40K, A f ∼ (2π~) × 1THz. The laser detuning ∆ =
(
Eµ − Eg

)
− ~ω, characterizes

the energy mismatch between the laser frequency f = ω/2π and the atomic D1

transition.

Within such a setup, the two lasers couple |g1〉 and |g2〉 via two-photon transi-

tions, and the Raman Rabi frequency, which characterizes the (Raman) coupling

strength, is

ΩR =
∑
µ

~Ω1µΩ2µ

4∆
+

∑
ν

~Ω1νΩ2ν

4
(
∆ + A f

) , (9.1)

where the optical Rabi frequency Ωiε = Ei · 〈gi|d|eε〉 /~ with electronic dipole

d = er, characterizes the individual transition element between the ground state

|gi〉 and the excited state |eε〉 (i = 1, 2 and ε = µ, ν). In our following calculations,

we assume |g1〉 and |g2〉 are the lowest two ground states.

This expression can be simplified by noting that the ground state quadrupole
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matrix element
〈
gi|dadb|g j

〉
= 0 unless i = j and a = b (a, b = x, y, z). This reflects

the spherical symmetry of the electron wavefunction, and the fact that the elec-

tronic dipole does not couple to spin. Inserting a complete set of exited states,

we find
∑
µ Ω1µΩ2µ +

∑
ν Ω1νΩ2ν = 0, allowing us to write Eq. (9.1) solely in terms

of the matrix elements for the D1 line,

ΩR =
~A f

4∆
(
∆ + A f

) ∑
µ

Ω1µΩ2µ. (9.2)

It is thus clear that ΩR ∼ A f /∆
2 for ∆ � A f . The inelastic scattering rate that

emerges from the spontaneous emission of the excited states is

Γine = γ

∑
µ

~2
(
Ω2

1µ + Ω2
2µ

)
4∆2 +

∑
ν

~2
(
Ω2

1ν + Ω2
2ν

)
4
(
∆ + A f

)2

 (9.3)

where γ denotes the decay rate of these excited states. For ∆ � A f , this rate

scales as Γine ∼ γ/∆2. Explicit calculations show that to a good approximation

β ≡ ΩR/Γine ≈ βe ≡ A f /12~γ for ∆ � A f . The factor of 1
12 can crudely be related

to cancellation of terms of opposite signs in the expression for ΩR. As an illus-

tration, we show A f , γ, and βe for various alkali atoms in Tab. I. We also present

results of our numerical calculation of β. The details of this calculation will be

given in Sec. III.

Alkalis 6Li(2p) 6Li(3p) 23Na 40K 85Rb 87Rb 133Cs
A f /(2π~)GHz 10.0 2.88 515 1730 7120 7120 16600
γ/(2π)MHz 5.87 0.754 9.76 6.04 5.75 5.75 4.57
βe/103 0.14 0.32 4.4 24 103 103 303
β/103 0.13 0.30 4.0 23 101 103 304

Table 9.1: Fine structure energy splitting A f , spontaneous decay rate γ, and ra-
tios βe and β for various alkali atoms. For 6Li, we consider either 2p states or
3p states as the excited multiplet. For other atoms, we consider the lowest p
multiplet. The ground states for all alkali atoms are the two lowest magnetic
substates. Data in the first two rows were extracted from archived data [167].

As seen from the table, the heavier atoms have more favorable ratios (β & 103

116



for most alkali atoms). For 6Li we include the rates for Raman lasers detuned

from the 2s − 2p line and the narrower 2s − 3p line. For all other atoms we just

consider the lowest energy s − p transition. We see that the ratio for 6Li can be

improved by a factor of 2.2 by using the 3p states. Similar gains are found for

laser cooling schemes using these states [168].

9.4 Magnetic field dependence of electric dipole transitions

In this section we will calculate Ωiε and its dependence on the magnetic field. In

the following section we will use these results to calculate ΩR and Γine.

9.4.1 Single-particle Hamiltonian

Fixing the principle quantum number of the valence electron, the fine and hy-

perfine atomic structure of an alkali in a magnetic field is described by a coupled

spin Hamiltonian

H = Ha + HB (9.4)

where

Ha = c f L · S + ch f 1L · I + ch f 2S · I (9.5)

HB = µB (gLL + gS S + gI I) · B. (9.6)

Here the vectors L and S are the dimensionless orbital and spin angular mo-

mentum of the electron, and I is the angular momentum of the nuclear spin.

The coefficients c f and ch f 1, ch f 2 are the fine structure constant and hyperfine
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structure constants, which were measured in experiments [167, 169]. µB is the

Bohr magneton and gL, gS , gI are the Lande g-factors.

For 6Li, the Zeeman splitting energy is EB ∼ (2π~) × 5GHz at the magnetic

field of the wide Feshbach resonance B = 834G [65]. This splitting is comparable

to the fine structure constant c f ∼ (2π~) × 7GHz. For other heavier atoms where

EB � c f ∼ (2π~) × 1THz, the fine structure interaction is robust against the

magnetic field, and we can appropriate the Hamiltonian as

H = ch f J · I + µB (gJ J + gI I) · B (9.7)

with the vector J = L + S.

The Hamiltonian (9.4) can be diagonalized in the basis |LmLmS mI〉, where

{mL,mS ,mI} are the z-components of {L, S , I}, and the eigenstate |LQ〉 can be ex-

panded as

|LQ〉 =
∑

mLmS mI

CQ
mLmS mI

|LmLmS mI〉 (9.8)

where Q labels the eigenstate, and CQ
mLmS mI corresponds to the eigenvector. We

will use these coefficients to calculate the electric dipole transition in the follow-

ing subsections.

9.4.2 Formal expressions

We define Dq ≡ 〈LmLmS mI |erq|L′m′Lm′S m′I〉, the electric dipole transition between

|LmLmS mI〉 and |L′m′Lm′S m′I〉, where rq is the position operator, expressed as an

irreducible spherical tensor: q = −1, 0, 1 correspond to σ−, π, σ+ polarized light.

Note that the electric dipole erq does not directly couple to the electric spin mS

118



or the nuclear spin mI , and Dq is of the form Dq = δmS m′S δmIm′I〈LmL|erq|L′m′L〉. Using

the Wigner-Eckart theorem, we obtain

Dq = δmS m′S δmIm′I W
L′L
m′LqmL

〈L||er||L′〉 (9.9)

where 〈L||er||L′〉 is the reduced matrix element, independent of {mL,mS ,mI}. The

coefficient WL′L
m′LqmL

can be written in terms of the Wigner 3- j symbol [170]

WL′L
m′LqmL

= (−1)L′−1+mL
√

2L + 1

 L′ 1 L

m′L q −mL

 (9.10)

Combining Eq. (9.8) and Eq. (9.9), we obtain the electric dipole transition be-

tween two eigenstates |LQ〉 and |L′Q′〉,

DL′Q′

q,LQ ≡ 〈LQ|erq|L′Q′〉 =
∑

m̄Lm̄′Lm̄S m̄I

CQ
m̄Lm̄S m̄I

CQ′

m̄′Lm̄S m̄I
WL′L

m̄′Lqm̄L
〈L||er||L′〉 (9.11)

where the coefficients CQ
m̄Lm̄S m̄I

are defined by Eq. (9.8).

9.4.3 Analytical discussions

While CQ
m̄Lm̄S m̄I

can be numerically calculated by extracting the eigenvector of the

Hamiltonian, in some regimes the problem simplifies, and CQ
m̄Lm̄S m̄I

corresponds

to a Clebsch-Gordan coefficient. In this subsection we discuss these simple lim-

its.

In a weak magnetic field such that the Zeeman splitting energy EB � ch f , the

electronic angular momentum and the nuclear spins are strongly mixed. Here

Q corresponds to the three quantum numbers {J, F,mF}, where F is the quantum

number associated with the total hyperfine spin F = J + I, and mF labels the

magnetic sublevels. In this limit CQ
m̄Lm̄S m̄I

= CJFmF
m̄Lm̄S m̄I

= 〈m̄Lm̄S |Jm̄J〉〈m̄Im̄J |FmF〉 is

simply the product of two Clebsch-Gordan coefficients.
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In the regime ch f � EB � c f , the electronic angular momentum and the

nuclear spins are decoupled, and Q corresponds to {J,mJ,mI}, with CQ
m̄Lm̄S m̄I

=

〈m̄Lm̄S m̄I |JmJmI〉 = δm̄ImI〈m̄Lm̄S |JmJ〉. In this case, the dipole transition element

obeys DL′Q′

q,LQ ∝ δmIm′I , and the states with different nuclear spins are not coupled

by the lasers.

In an extremely strong magnetic field such that EB � c f , the electronic spins

and the electronic orbital angular momentum are decoupled, and Q corresponds

to {mL,mS ,mI}, with CQ
m̄Lm̄S m̄I

= δm̄LmLδm̄S mS δm̄ImI . In this case, the dipole transition

element obeys DL′Q′

q,LQ ∝ δmS m′S δmIm′I , and states with disparate nuclear or electronic

spin projections are not coupled by the lasers. In short, the large fields polarize

the electronic spins and nuclear spins, making them robust quantum numbers

which cannot be influenced by optical fields.

9.4.4 Numerical results

Here we numerically calculate DL′Q′

q,LQ in the intermediate regime EB & ch f . For

6Li, ch f . EB . c f , one needs to diagonalize the Hamiltonian (9.4). The nu-

merics are simpler for other alkali atoms where ch f . EB � c f . In this case

Q is decomposed into J and Q̃, with the latter labeling the eigenstates of the

simplified Hamiltonian in Eq. (9.7). The coefficient CQ
m̄Lm̄S m̄I

is then reduced as

CQ
m̄Lm̄S m̄I

= 〈m̄Lm̄S |Jm̄J〉C
Q̃
m̄Jm̄I

.

As an illustration, in Fig. 9.2 we plot the dimensionless electric dipole tran-

sitionDQ̃Q̃′
q ≡ DL′J′Q̃′

q,LJQ̃
/〈L||er||L′〉 as a function of the magnetic field for 23Na, where

we choose the eigenstates of L = 0, J = 1/2 and L′ = 1, J′ = 1/2 as the initial

states and the final states (D1 transitions), and use σ− polarized light.
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Figure 9.2: Dimensionless electric dipole transition DQ̃Q̃′
q ≡ DL′J′Q̃′

q,LJQ̃
/〈L||er||L′〉 as

a function of magnetic field for 23Na, with the parameters L = 0, J = 1/2, L′ =

1, J′ = 1/2 and q = −1. The twelve different lines correspond to all of the various
allowed dipole transitions for σ− light.

The F = 1, 2 and F′ = 1, 2 manifolds allow twelve σ− transitions. At large

fields, the absolute values of four of them saturate at finite values while the rest

of them approach zero. This large field result stems from the decoupling of the

electronic and nuclear spins. (the Q̃ eigenstates can be described by mJ,mI in that

limit). Under such circumstance, the allowed transitions for the σ− transition

only occur at mJ = 1/2,m′J = −1/2 and mI = m′I with mI = −3/2,−1/2, 1/2, 3/2.

9.5 Magnetic field dependance of Raman coupling

We have illustrated how the electric dipole transitionDQ̃Q̃′
q depends on the mag-

netic field. Here we calculate the ratio β = ΩR/Γine using Eq. (9.1) and Eq. (9.3)

from Sec. II, and the relation Ωiε ∝
√

IiD
Q̃Q̃′
q , with Ii the intensity of each laser.

In Fig. 9.3, we plot β as a function of the magnetic field for various alkali

atoms at ∆ = (2π~)× 100THz� A f , where we assume |g1〉 and |g2〉 are the lowest
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Figure 9.3: Ratio β = ΩR/Γine as a function of magnetic field B for various alkali
atoms at ∆ = (2π~) × 100THz. ΩR is the Raman Rabi rate, and Γine is the inelastic
scattering rate. Note the logarithmic vertical scale.

ground states, and the two lasers with σ+ and π polarized light have an equal

intensity. We see that although the ratios decrease with the magnetic field, they

are still quite appreciable at B ∼ 200G−1200G, suggesting that the Raman exper-

iment and strong Feshbach-induced interactions are compatible.

Given that 6Li is in a different regime than the other alkalis, it is convenient

to discuss its properties separately. Analyzing Eqs. (9.5)-(9.6), without mak-

ing the approximations inherent in Eq. (9.7), yields the transition rates in Fig.

9.4. Looking at the blue (dashed) curve in Fig. 9.4(a), we see at the large de-

tuning, the ratio of the Raman Rabi rate to the inelastic scattering rate for 6Li

decreases faster than those for the heavier atoms in Fig. 9.3. This rapid fall-off

can be attributed to the much weaker coupling between the electronic and nu-

clear spins in 6Li. At the magnetic field of Feshbach resonance B = 834G [65],

β is suppressed by a factor of 7. At small detuning ∆ the ratio β changes non-

monotonically with the magnetic field, as Γine decreases faster than ΩR. In Fig.

9.4(b), we see that β increases rapidly for small ∆ and levels out at large ∆. There
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Figure 9.4: (a): Ratio β = ΩR/Γine as a function of magnetic field B for various
detuning ∆ for 6Li. (b): Ratio β as a function of detuning ∆ for various magnetic
field B.

is an optimal detuning near ∆ ≈ A f , where β has a maxima. The peak value of β,

however, is only marginally larger than its large ∆ asymptotic value. Moreover,

the peak is further reduced as B increases.
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9.6 Conclusions

In summary, we comprehensively studied the Raman Rabi rates of alkali atoms

in the presence of a magnetic field. While the ratio of the Raman Rabi frequency

to the inelastic scattering rate decreases with the magnetic field, the suppres-

sion is not significant for most alkali atoms at the typical fields of the Fesh-

bach resonance. Our primary motivation is evaluating the feasibility of using

Raman techniques to generate strongly interacting Fermi gases with spin-orbit

coupling. We conclude that 6Li is not a good candidate, but 40K is promising.
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CHAPTER 10

ANOMALOUS CHARGE PUMPING IN A ONE DIMENSIONAL

SUPERLATTICE

This chapter was adapted from ”Anomalous charge pumping in a one dimensional

optical superlattice” by Ran Wei and Erich J. Mueller, published in Physical Review A

92, 013609 (2015).

10.1 Abstract

We model atomic motion in a sliding superlattice potential to explore topolog-

ical “charge pumping” and to find optimal parameters for experimental obser-

vation of this phenomenon. We analytically study the band-structure, finding

how the Wannier states evolve as two sinusoidal lattices are moved relative to

one-another, and relate this evolution to the center of mass motion of an atomic

cloud. We pay particular attention to counterintuitive or anomalous regimes,

such as when the atomic motion is opposite to that of the lattice.

10.2 Introduction

Slow periodic changes in a lattice potential can transport charge. For a filled

band, the integrated particle current per cycle in such an adiabatic pump is

quantized [171]. We study a simple but rich example of this phenomenon,

namely charge transport in a sliding superlattice, and draw attention to its coun-

terintuitive properties such as regimes where the charge moves faster than the

potential, or even travels in the opposite direction. The mathematics predicting
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this anomalous transport goes back 30 years [33, 172], but has not been observed

in experiments. We here argue that this effect is observable in a cold atom ex-

periment.

The quantum mechanics of particles in a one dimensional (1D) superlattice is

rich, for incommensurate periods boasting a fractal energy spectrum [19], and a

localization transition similar to what is seen in disordered lattices [173]. While

recent studies have focused on the tight-binding limit (the Aubry-Andre model)

[174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,

191], we study the continuous limit of the 1D superlattice, where, because of

the weak potential, the single-particle spectra can be calculated perturbatively.

Related cold atom proposals on quantized transport [192, 193, 194, 195, 196, 197]

have focused on the simplest superlattice where one sub-lattice constant is half

of the other, and the lowest band is therefore not in the anomalous regime which

interests us. Ref. [192], draws attention to anomalous retrograde motion of

particles in the second band, an approach which complements our ground-state

proposal.

The 1D superlattice can be mapped onto the Harper-Hofstadter model [19,

18]. The topological numbers (Chern numbers) associated with charge pump-

ing can be mapped onto quantized Hall conductances [33, 198]. Recent experi-

ments involving artificial gauge fields on 2D optical lattice have aimed to mea-

sure these 2D Chern numbers [12, 13, 14, 199, 200]. There are also related stud-

ies based on measurement of Hall drift [201], Bloch oscillations [202, 203], Zak

phase [204, 205, 206], time-of-flight images [207, 208, 209], edge states [210, 211,

212, 213, 214, 215], or density plateaus [216, 217].

In this chapter, we study the charge transport in a 1D sliding superlattice,
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where the moving lattice period is an arbitrary rational multiple of the static

lattice. We analytically calculate energy band gaps and the topological invari-

ants which give the integrated adiabatic current per pumping cycle [171]. The

fact that this current can be made arbitrarily large and/or opposite to the direc-

tion of the sliding potential is counterintuitive. We present a physical inter-

pretation of this phenomenon in terms of the quantum tunneling of Wannier

functions between minima in the potential. We propose an experiment to detect

this anomalous adiabatic current, and derive the optimal parameters. Through

numerical simulations, we confirm that a negative integrated current and a non-

trivial Chern number C = −1 is readily measured in an experiment. We analyze

corrections to adiabaticity, the harmonic trap, multi-band effects, and finite-size

effects.

10.3 Model

We consider the Hamiltonian of a 1D superlattice where one lattice adiabatically

slides relative to the other,

H =

∫
dxψ†(x)

(
−
~2

2m
∂2

x + V1(x, ϕ) + V2(x)
)
ψ(x) (10.1)

where ψ(x) represents the field operator of the particle, ~ is Planck’s constant,

and m is the mass of the particle. The periodic potentials V1(x, ϕ) = 2v1 cos(px−ϕ)

and V2(x) = 2v2 cos(qx) are commensurate, with lattice constants 2π/p and 2π/q,

intensities v1 and v2. We take the relative phase ϕ to be slowly varying in time.

The period of the Hamiltonian is set by the greatest common divisor of p and

q, i.e., κ ≡ gcd(p, q), as illustrated in the inset of Fig. 10.1. Treating 1/κ as the

unit length, we redefine xκ → x, p/κ → p, and q/κ → q. Treating Er = ~2κ2/m
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as the unit energy, we redefine H/Er → H, v1/Er → v1, and v2/Er → v2. The

dimensionless Hamiltonian in the momentum space is then

H =
∑

k

k2

2
ψ†kψk +

(
v1e−iϕψ†kψk+p + v2ψ

†

kψk+q + h.c.
)

(10.2)

Here ψk = 1
√

L

∫
dx eikxψ(x), with dimensionless system length L and dimension-

less momentum k. Since states of momentum k are coupled only to those of

momentum k + n for integer n, we restrict ourselves to the first Brillouin zone

(0 ≤ k < 1) and rewrite the Hamiltonian,

H =
∑

0≤k<1

∞∑
n=−∞

1
2

(k + n)2ψ†nψn +
(
v1e−iϕψ†nψn+p + v2ψ

†
nψn+q + h.c.

)
(10.3)

where we have suppressed the k index, writing ψn ≡ ψk+n.

0.2 0.4 0.6 0.8 1.0
k

E

2⇡/  = gcd(p, q)

2v1

2v2

⇠ v1v2

x

2v1cosHpxL

x

2v2cosHqxL

Figure 10.1: Band structure of a 1D superlattice for p = 2, q = 3, showing energy
E vs dimensionless wave-vector k for weak potentials. Inset shows the two
potential making up the superlattice, and illustrates the unit cell with period
set by the greatest common divisor κ ≡ gcd(p, q). For this choice of p and q, the
energy gap between the third and fourth band is set by the potential strength
2v2, the gap between the second and third band is set by the potential strength
2v1, and the small gap between the second and third band scales as ∼ v1v2.

To illustrate the resulting band structure, we impose a cut-off on n, and nu-

merically diagonalize the Hamiltonian in Eq. (10.1) for p = 2 and q = 3. The
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lowest four energy bands are shown in Fig. 10.1, and even for this simple case

the gaps display a range of behaviors for small v1 and v2. The gap between the

third and fourth band is induced by the potential V2(x), and is proportional to

v2 for weak potentials. The gap between the second and third band is induced

by V1(x), and is proportional to v1. The small gap between the second and third

band is induced by the combination of these two potentials, which scales as

∼ v1v2. In the following section, we will discuss the origin of these scalings in

the context of understanding the lowest energy gap.

10.4 Band gaps and topology

The eigenstates of the Hamiltonian in Eq. (10.3) can be found perturbatively in

the limit of v1, v2 � 1. Suppressing the index k, we write H = H0 + λH1, with

H0 =

∞∑
n=−∞

1
2

(k + n)2ψ†nψn (10.4)

λH1 = λpHp + λ−pH−p + λqHq + λ−qH−q, (10.5)

where Hp =
∑∞

n=−∞ ψ
†
nψn+p, Hq =

∑∞
n=−∞ ψ

†
nψn+q, and λ is a formal small parameter,

with λp = λ∗−p = v1e−iϕ and λq = λ∗−q = v2.

For small λ and 0 ≤ k < 1, the eigenstates of the lowest band will be su-

perpositions of | − 1〉 and |0〉, where |m〉 = ψ†m|vac〉. We let δk = k − 1/2 denote

the distance of k from the band crossing point and assume δk > 0. The physics

for δk < 0 is analogous. While ordinary perturbation theory works far from

the crossing (δk � ε, where ε will be precisely defined below), one must use

higher order degenerate perturbation theory to find the eigenstates for δk . ε.
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As argued in Appendix 10.8.1, the resulting effective Hamiltonian is of the form

Heff = PH0P +
∑
s+≥0

∑
s−≥0

∑
r+≥0

∑
r−≥0

λs+
p λ

s−
−pλ

r+
q λ

r−
−qL

(s+,s−,r+,r−) (10.6)

where P = | − 1〉〈−1|+ |0〉〈0|, and s+, s−, r+, r− are integers. The operator L(s+,s−,r+,r−)

is the contribution to Heff involving the absorption of η = sp + rq units of mo-

mentum from the lattices, where s = s+ − s− and r = r+ − r−. By conservation

of momentum, α ≡
〈
−1

∣∣∣L(s+,s−,r+,r−)
∣∣∣ 0〉 = 0 unless η = 1. We linearize Heff about

δk = 0, and write the operators in the basis {| − 1〉, |0〉}. At the lowest nontrivial

order, we have

Heff =

 −
1
2δk α∆eiχ

α∆e−iχ 1
2δk

 + const., (10.7)

where ∆ = v|rm |

1 v|sm |

2 , χ = −smϕ, and sm, rm correspond to the absolutely smallest

solution to the Diophantine equation sp + rq = 1. This result agrees with a

similar perturbative analysis carried out by Thouless et al. [33] and Niu [172]

for related models.

The off-diagonal terms of Eq. (10.7) split the energy degeneracy at δk = 0,

and create an energy gap of size ∆Eg ≡ 2|α∆|. For example, if p = 2, q = 3, the

absolutely smallest solution to the Diophantine equation has sm = −1, rm = 1, as

−p + q = 1. Thus the energy gap is 2|αv1v2|, as denoted in Fig. 10.1. For larger |sm|

and |rm|, the energy gap can be extremely small. Ordinary perturbation theory

would have sufficed in the regime where δk � 2|α∆|, allowing us to identify ε

as 2|α∆|. Properties of higher bands can be analyzed similarly.

By analyzing Eq. (10.7), we find that the lowest energy eigenstate of Eq.

(10.4-10.5) has the form

|k, ϕ〉 = −sin
β

2
eiχ/2| − 1〉 + cos

β

2
e−iχ/2|0〉 + ..., (10.8)
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where tanβ = −2α∆/δk. The neglected terms are higher order in v1 and v2. For

δk � 2|α∆|, sinβ

2 ≈ 1 and cosβ2 ≈ 0, and the coefficients are featureless.

Slowly changing ϕ generates an adiabatic current [171]. For a completely

filled band, the integrated current in one pumping period (ϕ from 0 to 2π) is [37]

∆Q = 2πC =

∫ 1

0
dk

∫ 2π

0
dϕΩkϕ (10.9)

where the Berry curvature is

Ωkϕ = i
(
∂ϕ 〈k, ϕ |∂k| k, ϕ〉 − h.c.

)
=

sm

2
∂kcosβ. (10.10)

We see Ωkϕ is concentrated near the location of the energy gap. Integrating the

Berry curvature is trivial, yielding the Chern number C = sm. Although our

argument requires that v1 and v2 are small, due to the quantized nature of C, the

result should hold for all nonzero v1 and v2. In our numerical calculations with

larger v1, v2, we find the curvature is roughly uniform over the Brillouin zone,

but as expected its integral is unchanged.

10.5 Anomalous charge pumping

By appropriately choosing p and q, one can make C = sm an arbitrary integer

[218, 219, 220, 221]. This means that in one pumping cycle a single particle may

move arbitrarily far and/or opposite to the direction of the sliding potential.

Such long-distance and/or retrograde transport seems unphysical. The magic

comes from the adiabatic process: If the potential moves sufficiently slowly, the

particles always stay in a global minimum of the potential. Due to the structure

of the superlattice, a slight motion of the potential could result in a dramatic

change of the locations of the global minima (see Fig. 10.2(a)). Within a small
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portion of a pumping cycle, the particles may “tunnel” to the new global min-

ima which could be a large distance away from the old minima.

0 1 2 3
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(c)
|W (x)|2

V1(x,') + V2(x)
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DQê2p

x/2⇡

'/2⇡
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(d)

Figure 10.2: (a) Illustration of adiabatic charge transport in a 1D superlattice,
where the particle “travels” through three unit cells to the left when the lat-
tice potential moves to the right by one period. Solid lines show the potential
V1(x, ϕ) + V2(x) for different values of ϕ. Arrows schematically show how the
locations of the minima shift discontinuously. (b) illustrates evolution of two
separated potentials of the superlattice: the right-sliding potential V1(x, ϕ) (solid
red) and the static potential V2(x) (dashed black). (c) Evolution of Wannier func-
tion. Arrows indicate the “tunneling” process. (d) shows the evolution of inte-
grated adiabatic current as a function of ϕ. In these plots we choose p = 2 and
q = 7, so the Chern number is C = sm = −3. Other parameters are v1 = 0.5 and
v2 = 0.25.

To further quantify our interpretations, we calculate the integrated current

∆Q(ϕ) =
1

2π

∫ 1

0
dk

∫ ϕ

0
dϕ′Ωkϕ′ , (10.11)
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and the Wannier function at lattice site j [222]

W j(x, ϕ) =
∑

0≤k<1

eik jΨk(x, ϕ), (10.12)

where the Bloch wave function is

Ψk(x, ϕ) =
1
√

L

∞∑
n=−∞

〈n|k, ϕ〉e−i(n+k)x. (10.13)

Here we choose a smooth gauge for the Bloch wave function, so the Wannier

function is well localized [223].

Fig. 10.2(d) shows the integrated current as a function of ϕ, calculated from

Eq. (10.11) using a similar method to Ref. [224]. We see the function is “step-

like”: Flat regions correspond to slow transport, while the particle motion is

rapid in the steep regions. This is further illustrated by the Wannier function

in Fig. 10.2(c). During the slow transport, the Wannier function slowly drifts,

while during the rapid transport, one peak drops in amplitude, and a second

peak rises. This corresponds to tunneling.

For small v1, v2, the timescale for adiabaticity τ is related to the size of the

gap, 1/τ ∼ |α∆| ∼ v|sm |

1 v|rm |

2 . Thus when the Chern number C = sm is large and the

potentials are weak, adiabaticity is hard to maintain in a practical experiment.

For large v1, v2, the gap again falls, owing to the large potential barriers. Fig. 10.3

shows the energy gap ∆Eg as a function of v1 and v2 for p = 2, q = 3. The gap

has a maximium value of ∆Eg ≈ 0.09 at v1 = 0.23 and v2 = 0.95. An optimized

experiment would be performed with these parameters.
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Figure 10.3: Energy gap ∆Eg as a function of v1, v2 for p = 2, q = 3. The gap has a
maximium value of ∆Eg ≈ 0.09 at v1 = 0.23 and v2 = 0.95.

10.6 Experimental proposal

To observe this anomalous current, we envision a Fermi gas confined to a quasi-

1D tube, such that only one transverse mode is occupied. Although the present

analysis is 1D, we expect the phenomena will persist for more general trans-

verse confinement. Along the tube we engineer two longitudinal periodic po-

tentials V1(x, ϕ) = 2v1 cos(px− ϕ) and V2(x) = 2v2 cos(qx) via two pairs of counter-

propagating laser beams. The time-dependent phase ϕ = δω t is produced by

a frequency difference δω between two of the beams. To satisfy the adiabatic

condition, we require ~δω � ∆Eg. The resulting adiabatic particle current can

be detected by observing the motion of the center of mass of the cloud: After

time t = 2πN/δω, the center of mass should move a distance rc = 2πCN/κ. A di-

mensionless measure of this displacement is xc = κrc. The displacement can be
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measured in-situ [225, 226, 227] or after time-of-flight [228]. Similar experiments

were proposed by Chiang and Niu [192], and Wang, Troyer and Dai [195].

In modeling this experiment, one must account for the finite cloud size. We

include this physics by adding a harmonic potential along the tube, V(x) =

mω2
0x2/2. Such potentials are always found in such experiments. Within a local

density approximation, the lowest band will be filled at the center of the cloud,

but only partially filled near the edge. Although our Chern number argument

only applies to the central region, we still expect the center of mass motion to

be nearly quantized. For ~ω0 � v1, v2, and the particle number much greater

than one, only a very small portion of particles live at boundaries. Our numer-

ical simulations (detailed below) confirm this results. For a typical experiment,

ω0 ∼ 10 Hz, and v1/~, v2/~ ∼ 100 kHz [229].

Because of the trap, the displacement rc cannot be made arbitrarily large.

When mω0r2
c/2 is of order of the band gap ∆Eg, atoms can tunnel to the higher

bands. In our numerical simulation, we see that for small δω, the maximum

displacement scales as 1/ω0.

10.7 Numerical simulation

In order to see the feasibility of our experimental proposal, we numerically

simulate the dynamical evolution of a 1D Fermi gas. We take the many-body

state to be a Slater determinant, made up from single-particle wave functions

ψi(x, t) with 1 ≤ i ≤ ν, where ν is the number of fermions. At time t = 0,

ψi(x, 0) is the ith eigenstate of the Hamiltonian. We evolve ψi(x, t) via the time-

dependent single-particle Schrödinger equation, and then calculate the center
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Figure 10.4: Displacement of the center of mass (in units of the superlattice)
after one pumping period T = 2π/δω for ν = 63 fermions in a superlattice with
p = 2, q = 3, v1 = 0.23Er, v2 = 0.95Er, and a harmonic trap ~ω0 = 2.2 × 10−3Er.
Physically, δω is the detuning between the beams producing the lattice with
wave-number p. We see xc/2π → C = −1 as δω decreases. Inset shows the
evolution of the center of mass for ~δω = 0.002Er. [c.f. Fig. 10.2(d)]

of mass xc(t) ≡ 1/ν
∑ν

i=1

∫
dx x|ψi(x, t)|2. Fig. 10.4 shows the results for p = 2, q = 3

where the Chern number is C = −1. We see xc < 0, meaning that the par-

ticles travel in the opposite direction to the sliding potential. Remarkably this

retrograde motion persists even for relatively large δω. As δω → 0 the motion

becomes quantized. A typical experiment has Er/~ ∼ 100 kHz [229], so the

Chern number C = −1 is readily extracted when δω . 200 Hz. The inset of

Fig. 10.4 shows the evolution of the center of mass in one pumping cycle for

~δω = 0.002Er. We see the function is “step-like”, similar to the ideal case (no

harmonic trap and adiabatic) in Fig. 10.2(d).
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10.8 Appendix

10.8.1 Derivation of effective Hamiltonian

Here we derive an effective Hamiltonian for Eq. (10.4-10.5). For small λ Since

the eigenstates of the lowest band will be superpositions of | − 1〉 and |0〉, moti-

vating projection operators

P = | − 1〉〈−1| + |0〉〈0| (10.14)

Q = 1 − P. (10.15)

The states |m〉 = ψ†m|vac〉, satisfy H0|m〉 = 1
2 (kx + m)2|m〉. We seek eigenstates H|ψ〉 =

E|ψ〉. We break the wave function into two parts

|ψ〉 = P|ψ〉 + Q|ψ〉 ≡ |ψ0〉 + |ψex〉, (10.16)

where |ψ0〉 is in the low energy sector, and |ψex〉 is a superposition of the higher-

energy states. The eigen-equation is then decoupled into two equations

PH|ψ〉 = PE|ψ〉 = E|ψ0〉 (10.17)

QH|ψ〉 = QE|ψ〉 = E|ψex〉. (10.18)

Inserting the identity P2 + Q2 = P + Q = 1 on the left hand side of Eq. (10.17)-

(10.18) and substituting |ψex〉 in terms of |ψ0〉, we obtain a closed equation for

|ψ0〉,

Heff |ψ0〉 = E|ψ0〉, (10.19)

where

Heff ≡ PHP + PHQ
1

E − QHQ
QHP. (10.20)
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Using the identity PH0Q = 0 and expanding the second term of Eq. (10.20), we

obtain

Heff = PH0P + λPH1P + λ2PH1Q
∞∑
j=0

1
E − QH0Q

(
λ

QH1Q
E − QH0Q

) j

QH1P. (10.21)

This equation can be written as

Heff = PH0P +
∑
s+≥0

∑
s−≥0

∑
r+≥0

∑
r−≥0

λs+
p λ

s−
−pλ

r+
q λ

r−
−qL

(s+,s−,r+,r−) (10.22)

where the momentum conservation implies that α ≡
〈
−1

∣∣∣L(s+,s−,r+,r−)
∣∣∣ 0〉 = 0 un-

less sp + rq = 1, where s = s+ − s− and r = r+ − r−. In our problem, the lowest

order contribution to α has either s+ = 0 or s− = 0. Similarly r+ = 0 or r− = 0.

The lowest order contribution to the diagonal elements of Heff corresponds to an

identity matrix.

Linearizing Heff about δk = 0, and writing the operators in the basis {| − 1〉, |0〉},

we have

Heff =

 −
1
2δk α∆eiχ

α∆e−iχ 1
2δk

 + const., (10.23)

where ∆ = v|rm |

1 v|sm |

2 , χ = −smϕ, and sm, rm correspond to the absolutely smallest

solution to the Diophantine equation sp + rq = 1.
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