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Motivated by rapid experimental progress in the fields of ultracold atoms and

quantum optics, I present a series of theoretical studies which explore collec-

tive phenomena in quantum gases of atoms and photons. In Chapter 1, I high-

light the major developments in the research field and identify the overarching

themes and motivations. I also provide a roadmap for the rest of the thesis

and summarize the main results. The remaining eight chapters contain original

studies, organized along three broad motifs. In Chapters 2 through 5, I investi-

gate how the nature of collective excitations and quasiparticles can be explored

in modern experiments. More specifically, I model the dynamics of a spin im-

purity in a Bose lattice gas, develop a protocol for observing fractionalized exci-

tations or anyons in an optical cavity, and characterize the collective dynamics

of Bogoliubov quasiparticles and domain walls in a Fermi superfluid. In Chap-

ters 6 and 7, I examine unconventional superfluid phases in spin-imbalanced

Fermi gases. In particular, I propose a novel technique for engineering the long-

sought-after Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase and study the rel-

ative stability of exotic phases across a dimensional crossover. Finally, Chapters

8 and 9 are devoted to studies of kinetics in out-of-equilibrium systems. I model

the formation of a Bose-Einstein condensate in a dimple trap and characterize

the approach to thermal equilibrium in quasi-one-dimensional geometries.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Motivation and themes

“If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sen-

tence passed on to the next generations of creatures, what statement would contain the

most information in the fewest words? I believe it is that all things are made of atoms—

little particles that move around in perpetual motion, attracting each other when they

are a little distance apart, but repelling upon being squeezed into one another. In that

one sentence, you will see, there is an enormous amount of information about the world,

if just a little imagination and thinking are applied.”— Feynman, 1963.

In this thesis, I will be uncovering some of that information about the quan-

tum world, where simple interactions between the particles can give rise to an

amazingly rich variety of complex collective phenomena [1]. I will theoretically

explore a subset of these phenomena in quantum gases of atoms and photons,

using a blend of analytical and numerical techniques to model their behavior.

Such studies are motivated in part by the remarkable experimental progress

in trapping, cooling, and manipulating atoms that has taken place over the past

two decades [2–6]. In June 1995, experimentalists used lasers and magneto-

optical traps to cool rubidium atoms down to near absolute zero temperatures,

producing the first Bose-Einstein condensate [7–11]. Since then, ultracold-atom

setups have rapidly emerged as one of the most versatile playgrounds for ex-

ploring novel quantum phenomena [12, 13]. The features which make these

systems so effective are reduced thermal fluctuations, isolation from sources of
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decoherence, and a high degree of control over the atomic degrees of freedom.

Experimentalists routinely cool down bosonic [14] and fermionic [15] atoms to

nanokelvin temperatures, tune their interactions via Feshbach resonance [16],

control their spin states with microwaves and radio waves [17, 18], and control

their motional states through optical traps of varying shape and dimensional-

ity [19, 20]. They also project arbitrary time-dependent potentials [21, 22], ap-

ply synthetic magnetic fields [23–27], address single atoms with high-resolution

microscopes [28–32], and measure the atom distribution and equation of state

through advanced imaging and spectroscopy [33–35]. Such capabilities offer

unprecedented access to the behavior of interacting quantum systems, inspir-

ing both theoretical and experimental investigations.

There are several broad themes underlying this exciting field of research,

which overlap with one another. Below we highlight three major research di-

rections and two other significant motivators:

Quantum simulation: The highly controllable experimental setting provides

an ideal testbed to simulate iconic many-body Hamiltonians over a wide range

of parameters [36–38]. This “quantum simulation” [39, 40] has, most notably,

been implemented by loading cold atoms in optical lattices to mimic the behav-

ior of electrons in solids [41, 42], thus realizing various Hubbard models which

yield valuable insights into quantum magnetism and superconductivity [43–53].

Novel quantum states: Another theme is to observe and engineer new states

of matter. A major success of this endeavor was the creation of the first fermionic

condensate in 2003 [54], which led to the first experimental demonstration of

the long-predicted BEC-BCS crossover in a Fermi gas [55–60]. The ability to

tune parameters has enabled the generation of strongly correlated [61–66] and
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topological [67–72] phases. We have seen exotic many-body states arising from

an interplay of two competing orders, such as superfluidity and magnetism [73–

77], or interactions and disorder [78–80]. We have also seen novel few-body

physics [81], such as Efimov states [82–85] and ultracold molecules [86–88].

Nonequilibrium physics: A third motif is the characterization of quantum

dynamics in systems out of equilibrium [89]. Here, one group of studies have

focused on quench experiments which reveal the spontaneous generation of do-

main walls and topological defects following a sudden change of parameters

[90–101]. Others have examined the relaxation to thermal equilibrium in iso-

lated quantum systems [102–107], motivated by striking demonstrations like the

quantum Newton’s cradle [108–110]. Further insights into dynamics have come

from studying periodically driven systems [111], leading to observations of such

dramatic phenomena as time crystals [112, 113] and Bose fireworks [114].

Cavity QED: An expanding frontier is to look for new physics at the inter-

section of quantum optics and cold atoms [115–118]. Advances along this line

date back to the turn of the century, when experimentalists could slow down

[119] and stop [120] light by coupling photons with atoms. Optical cavities pro-

vide an ideal platform to enhance this coupling [121] and have been used, in

conjunction with Rydberg atoms [122, 123], to mediate strong photon-photon

interactions, paving the way for multi-photon quantum states [124–128]. Simi-

larly, experiments have designed photon-mediated atom-atom interactions who

strength and range are both tunable [129, 130]. Further, since cavities are open

to the environment, they provide a natural setting to explore novel many-body

states by engineering drive, dissipation, measurement, and feedback [131–134].

Technological applications: The ability to prepare and manipulate nontriv-
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ial quantum states makes these systems ideally suited for developing future

quantum technologies. Optical atomic clocks are already at the forefront of mea-

surement science, with a record precision of 2.5 × 10−19 [135]. They can have

wide-ranging applications in sensors, navigation, communications, metrology,

and fundamental physics [136]. Atom-cavity systems [137–139], Rydberg gases

[140–142], and optical lattices [143–147] are leading platforms for realizing large-

scale entanglement and quantum information processing [148–152], and even a

quantum internet [153]. A complementary approach is the generation of the still

elusive non-Abelian anyons [154], such as Majorana zero modes [155], which

could enable topological quantum computation [156–158].

Needless to say, it is an active, diverse, and interdisciplinary field which is

firmly grounded in experimental reality [159]. A hallmark of its rapid progress

in the first two decades has been a fruitful collaboration between theory and ex-

periment. Despite this progress, so far we’ve only had a glimpse at the strange

world of interacting quantum systems and there are many things to discover,

which presents many opportunities for a theorist to explore this landscape and

understand experiments. In this thesis, I will present a series of such explo-

rations which touch on several of the aforementioned themes.

1.2 Outline

The studies I will describe are like points on a map. There are several ways

one could traverse them, but certain routes are more natural than others. Thus,

instead of simply presenting them in the chronological order, I have decided to

arrange them into broadly defined groups having common themes, as follows.
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1.2.1 Quasiparticles and collective excitations

These two terms are often used interchangeably and represent elementary ex-

citations of an interacting system [160]. Ever since the time of Landau [161],

the concept of quasiparticles has proven incredibly useful to obtain a better un-

derstanding of complex many-body phenomena [162, 163]. In Chapters 2–5, I

investigate the properties of various quasiparticles arising in quantum gases.

Chapter 2: Polarons and bipolarons

Adapted from S. Dutta and E. J. Mueller, Phys. Rev. A 88, 053601 (2013)

A polaron is formed when a quantum impurity in a medium is “dressed” by

the excitations which result from the impurity-bath interactions [164–167]. They

arise in a wide range of physical systems [168–172]. Here, we model the dynam-

ics of a spin impurity in a one-dimensional (1D) Bose lattice gas [173]. The study

was motivated by an experiment [174] where Fukuhara et al. prepared an array

of spin-polarized 87Rb atoms and then flipped one of the spins (see Fig. 1.1).

They measured how fast this impurity spreads through the gas as a function of

the interaction strength, finding its motion to be strongly influenced by the gas.

We use a variational wave function which captures the binding of the impurity

with a hole, explaining the main features observed in the experiment. We find

a stable polaron both in the Mott-insulating regime and the strongly-interacting

superfluid regime. Below a critical interaction strength, the polaron becomes

unstable over a finite range of momentum, decaying into uncorrelated particle-

hole pairs. We show how this instability can be detected in future experiments

by measuring the impurity-hole correlation.

5
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Figure 1.1: A picture summary of Chapter 2. From top to bottom, one sees a
schematic of the experiment, the main variational ansatz, and two of the central
results. On the left is the speed v of the impurity as a function of the hopping
parameter J and on-site interaction U . On the right is a phase diagram showing
the stability of a polaron as a function of its momentum k and U/J .

Multiple quantum impurities can attract one another through their interac-

tions with the medium. This attraction can lead to a two-impurity bound state,

or a bipolaron [165, 175]. We generalize our variational ansatz to incorporate

two spin impurities, finding bipolarons for sufficiently strong interactions.

Chapter 3: Polaritons and anyons

Adapted from S. Dutta and E. J. Mueller, Phys. Rev. A 97, 033825 (2018)

When light is strongly coupled with a matter excitation, the resulting hybrid

quasiparticle is called a polariton [127]. Depending on the type of matter exci-

tation, there can be multiple flavors of polaritons [176]. The ability to tune the

polaritonic properties by engineering the light-matter coupling could enable all-

optical quantum information processing in the near future [122, 177]. A major
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breakthrough in this direction has come from coupling photons with metastable

Rydberg excitations of cold atomic ensembles [116, 122–124]. These Rydberg

polaritons are both long lived [178] and strongly interacting [179], which are

necessary to prepare and manipulate nontrivial photonic states. Here, we build

on these advances to develop a protocol for creating fractional quantum Hall

states of polaritons in a cavity and probe their topological excitations [180].

The fractional quantum Hall effect was first observed in a two-dimensional

(2D) electron gas in a semiconductor placed in a magnetic field [181]. They are

described by many-body wave functions with topological order, the simplest of

which is the Laughlin state [182]. Such states are known to possess quantized

vortex-like excitations with fractional statistics, called anyons [183], which can

be used to implement fault-tolerant quantum computation [156–158]. Directly

observing and controlling anyons in experiments is one of the most important

challenges of contemporary physics. We show how one can produce anyonic

excitations and measure their statistics in the proposed experiment.

We envision an optical cavity built by carefully aligning a set of high-quality

mirrors, as shown in Fig. 1.2. The anyons are formed in a transverse plane

of the cavity where photons are coupled to atoms to form Rydberg polaritons.

The mirrors are not in the same plane, which gives rise to an effective magnetic

field for the polaritons, as already demonstrated in Ref. [184]. We show how

one can drive the cavity with lasers to sequentially inject photons, building up

a many-particle Laughlin state. One produces anyonic quasihole excitations in

such a state by moving additional lasers in from the edge of the cloud. One then

stirs these pinning lasers to move the quasiholes around, extracting their any-

onic statistics by interferometry. We carefully model all stages of the protocol,
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Figure 1.2: A picture summary of Chapter 3. On the left is a schematic of the
proposed experiment for observing anyons in an optical cavity. The noncopla-
nar arrangement of the mirrors yields an effective magnetic field for the cavity
photons, which are coupled with atoms to form strongly interacting Rydberg
polaritons. We show how one can drive these polaritons to generate fractional
quantum Hall states. Additional lasers are used to produce localized repulsive
potentials and bind anyonic quasihole excitations, as shown on the right.

identifying potential challenges and how to overcome them.

Chapter 4: Bogoliubov quasiparticles

Bardeen, Cooper, and Schrieffer showed in 1957 that an attractively interacting

Fermi gas with equal number of ↑- and ↓-spins has an instability whereby an

↑-spin forms a pair with a ↓-spin and these Cooper pairs Bose condense to form

a superfluid [185, 186]. Shortly thereafter, Bogoliubov [187] and Valatin [188],

and later de Gennes [189], showed that the excitation spectrum of a superfluid is

composed of quasiparticle modes that are linear combinations of particles and

holes with opposite spin. These modes are known as Bogoliubov quasiparticles.

Here, we briefly review the well-established Bogoliubov–de Gennes (BdG) for-
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malism [190] in the context of ultracold Fermi gases with spin imbalance. In par-

ticular, we summarize two competing conventions for the Bogoliubov modes

that are found in the literature. We use the formalism in the next three chapters

to explore domain-wall dynamics and unconventional superfluidity.

Chapter 5: Solitons or domain walls

Adapted from S. Dutta and E. J. Mueller, Phys. Rev. Lett. 118, 260402 (2017)

Solitons are persistent nonlinear waves—“pulses” which travel without chang-

ing shape [191]. They are ubiquitous in nature [192–199] and have a number

of technological applications [200–203]. Matter-wave solitons manifest as do-

main walls in superfluids, i.e., sharp changes in the Cooper pair wave function,

∆(x) [197]. Soliton trains are spontaneously generated in quench experiments

in Bose-Einstein condensates [90–96]. They can also be created in a controlled

manner by phase imprinting, where one shines off-resonant light on selected

regions of a superfluid to rotate the local phase by π [204]. Recently, Fermi gas

experiments have used phase imprinting and advanced imaging to produce sin-

gle solitons and directly observe their motion [205–207]. Here, we model the

collective dynamics of a train of solitons in a quasi-1D Fermi superfluid [208].

We linearize the dynamics of a soliton train, finding a rich set of collective

modes, as illustrated in Fig. 1.3. The soliton train spontaenously breaks gauge-

and translational symmetries, which gives rise to two Goldstone modes [209]:

a “phonon” mode describing phase twists and an “elastic” mode describing os-

cillations in the spacing between solitons. We find a mode of amplitude oscilla-

tions, which is the remnant of the “Higgs” mode in a uniform Fermi superfluid

[210, 211]. In addition to these expected modes, we discover novel collective

9
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Figure 1.3: A picture summary of Chapter 5. On top, we see various collective
oscillations of a soliton train in a Fermi superfluid. Here, ∆(x) denotes the su-
perfluid order parameter. In addition to the expected Goldstone- and “Higgs”
modes, there are novel “core” modes describing oscillations in the width and
grayness of each soliton. Below, we see a dynamical instability where pairs of
neighboring solitons collide and annihilate. The instability rate decreases with
polarization and vanishes when each soliton is filled with one excess fermion.

oscillations of the soliton cores, which are not found in a Bose superfluid. An-

other distinctive feature of the dynamics is an instability where pairs of adjacent

solitons collide and annihilate. The instability rate is sensitive to the separation

of solitons and the interaction between atoms, both of which can be tuned in

experiments. Further, the instability is prevented by polarizing the gas, which

realizes a spin-imbalanced spatially modulated superfluid, a long-sought-after

phase of condensed matter physics [73, 212, 213]. This result provides a way to

directly engineer such a phase in cold Fermi gases, as we describe in Chapter 6.

We also discuss how the various modes can be detected in experiments and how

our results generalize to other physical systems.
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1.2.2 Superfluidity in spin-imbalanced Fermi gases

In an attractively interacting cold Fermi gas with equal number of ↑- and ↓-

spins, each ↑-spin is paired with a ↓-spin, forming a Bardeen-Cooper-Schrieffer

(BCS) superfluid [185]. Unbalancing the spin populations, through a magnetic

field or a radio-frequency pulse, frustrates the Cooper pairs, which can lead to

unconventional superfluid phases with exotic pairing mechanisms [73–76]. The

most studied example of such phases is the Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) state, which was first proposed in 1964 in the context of superconductors

with magnetic impurities [214, 215]. In this state, pairing occurs at a finite mo-

mentum, leading to periodic spatial domains in the order parameter where the

unpaired fermions reside. Despite much effort, experimental evidence of FFLO

pairing has been rather elusive and mostly indirect [216, 217]. In Chapters 6–7,

we explore the creation and stability of such phases in cold Fermi gases.

Chapter 6: Engineering FFLO states in a quasi-1D Fermi gas

Adapted from S. Dutta and E. J. Mueller, Phys. Rev. A 96, 023612 (2017)

Past attempts to observe FFLO states in Fermi gases have centered on searching

for parameters which minimize the free energy, so that the system can be cooled

to an FFLO phase [74–76]. Although thermodynamic evidence has been found

in a few experiments [77, 217], the nature of the superfluid pairing could not be

ascertained. Here, we develop a protocol which circumvents thermodynamics

and directly drives a quasi-1D Fermi gas into an FFLO state [218].

Our protocol stems from the results in Chapter 5, where we found that it is

possible to stabilize a train of solitons in a quasi-1D Fermi gas by filling each

11
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Figure 1.4: A picture summary of Chapter 6. The sketch on the left shows how a
soliton train can be generated by phase imprinting. Figures (a) and (b) illustrate
a rapid adiabatic passage protocol for polarizing the soliton train. A detailed
explanation of the protocol and the various symbols can be found in Sec. 6.5.
Roughly, the blue curves show the Bogoliubov spectrum of a soliton train com-
posed of spin-↑ and spin-↓ atoms, and the red curves show the dispersion of
a third noninteracting spin state |φ〉. A controlled radio-frequency sweep (red
arrow) couples the spin-↑ state with |φ〉, thus altering the Bogoliubov mode oc-
cupations in such a way that each soliton is left with an unpaired spin-↓ atom.

domain wall with one unpaired fermion. This partially polarized state is noth-

ing but an FFLO phase. Since the separation of the domains can be controlled

by phase imprinting [204], this result offers a route to generating stable FFLO

states of a given period. Here, we propose a two-step protocol to achieve this

goal (Fig. 1.4). First, one employs phase imprinting to produce a train of do-

main walls in a balanced superfluid, with equal number of spin-↑ and spin-↓

atoms. Second, one applies a controlled radio-frequency sweep to selectively

break Cooper pairs near the domain walls and transfer the spin-↑ atoms to a

third noninteracting spin state, leaving behind an FFLO state with exactly one

unpaired ↓-spin per domain wall. We carefully model this creation process and

show that the protocol can be implemented with high fidelity for a wide range

of parameters in present-day experimental conditions.
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Chapter 7: Dimensional crossover in a spin-imbalanced Fermi gas

Adapted from S. Dutta and E. J. Mueller, Phys. Rev. A 94, 063627 (2016)

The FFLO phases are more stable in lower dimensions due to enhanced Fermi

surface nesting [219]. Calculations have shown that they occupy a large part of

the phase diagram in 1D but require extensive finetuning in three dimensions

(3D) [74, 220]. However, since long-range order is absent in 1D [221, 222], they

are also more susceptible to fluctuations. Nonetheless, experiments have seen

indirect evidence of FFLO in elongated 1D tubes [77, 217]. Further modeling of

an array of weakly-coupled tubes indicate that such phases will be most robust

in quasi-1D regimes, where the dynamics are largely 1D but the residual trans-

verse degrees of freedom help establish long-range order [223]. Here, we study

this 1D-to-3D crossover in a trapped spin-imbalanced Fermi gas [224].

First, we consider a Fermi gas in a transverse harmonic confinement, where

the crossover from 1D to 3D occurs when multiple transverse channels become

accessible as a result of increased density or strong interactions. We calculate

the phase diagram as a function of density, imbalance, interaction strength, and

temperature (Fig. 1.5), finding large parameter regions where the FFLO phase

is stable. For weak interactions and low density, we find 1D-like islands which

repeat as a function of the chemical potential, eventually giving way to 3D-like

behavior once sufficiently many channels are occupied. Stronger atom-atom in-

teractions mix the energy levels of the trap, which changes the nature of this

crossover, yielding a more 3D-like phase diagram for all densities. For strong

interactions and high density, we also find a stable breached-pair (BP) super-

fluid phase, where pairs exist with a Fermi surface [225–227]. We discuss the

prospects of observing these exotic phases in cold-atom experiments.
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Figure 1.5: A picture summary of Chapter 7. On the top left is a sketch of a spin-
imbalanced Fermi gas in a quasi-1D trap. Experiments performed in such traps
in the low-density limit agree with the 1D phase diagram calculated from Bethe
Ansatz, which is shown to the right. Here, µ and h are the average chemical
potential and the chemical potential difference of the two spins, respectively. At
the bottom are mean-field phase diagrams for a spin-imbalanced Fermi gas in
a transverse harmonic trap of frequency ω⊥. The nature of the phase diagram
changes from 1D-like to 3D-like as interactions are increased.

In the Supplement, we consider the more general case of Fermi gases in a 2D

optical lattice. For large lattice depths, the gas splits into 1D tubes at individual

lattice sites. By tuning the lattice depth, one can control the coupling between

sites and induce a 1D-to-3D crossover [217]. We investigate how this crossover

occurs by studying the phase diagrams as a function of the lattice depth.
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1.2.3 Kinetics of Bose condensation and thermalization

The exquisite control and long coherence times available in cold-atom setups

have enabled direct observations of out-of-equilibrium dynamics [103], stimu-

lating intense theoretical activity to understand such processes [89, 102]. Central

to this pursuit is a proper modeling of the kinetic processes at the single-particle

level. In Chapters 8–9, we use quantum Boltzmann master equations [228, 229]

to model the kinetics of Bose condensation and thermalization in trapped gases.

Chapter 8: Bose-Einstein condensation in a dimple trap

Adapted from S. Dutta and E. J. Mueller, Phys. Rev. A 91, 013601 (2015)

Designing efficient cooling schemes is a prerequisite for creating novel many-

body quantum states [230]. One effective paradigm is to divide the system into

a high-entropy reservoir, which can be readily cooled, and a low-entropy sub-

system where the interesting phase will develop [231, 232]. Dimple traps im-

plement this strategy for producing Bose-Einstein condensates [233]. They con-

sist of a large but shallow reservoir trap with a strongly attractive “dimple” at

the center (see Fig. 1.6). In experiments, precooled thermal atoms are loaded

in the reservoir before turning on the dimple with a focused laser beam. The

subsequent dynamics cause a rapid growth of phase space density inside the

dimple, yielding a Bose-Einstein condensate [234]. Here, we model the loading

and equilibration of weakly-interacting bosons in a dimple trap [235].

We construct rate equations incorporating two-body elastic- and three-body

inelastic collisions. The two-body processes populate the dimple and lead to

loss when one of the atoms is ejected from the trap. The three-body processes
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Figure 1.6: A picture summary of Chapter 8. On the top left is a sketch of the
dimple trap, showing a large resevoir region and a tight “dimple” at the center.
The reservoir is modeled by a shallow harmonic trap and the dimple is modeled
by a deep square well, as shown to the right. The single-particle states in the
reservoir and the dimple are labeled by momentum ~k and quantum number n,
respectively. Below, we sketch the two-body and three-body processes which
govern the occupation of these states. Here, the blue arrows denote atoms in
the reservoir and the red ones denote atoms in the dimple. The lower panel
shows the how the condensate fraction in the dimple evolves with time.

cause heating and loss. We study the resulting dynamics, providing quantita-

tive estimates for condensate yields, lifetimes, thermalization timescales, and

temperature variations. We study the variation of these quantities with the trap

parameters and the initial conditions, explaining the trends in physical terms

and extracting optimal parameters for future experiments.
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Figure 1.7: A picture summary of Chapter 9. On the left is a schematic of a
typical experiment, where atoms are loaded into an array of coupled tubes by
turning on a lattice in the horizontal plane. The intertube tunneling is denoted
by J . On the right are plots showing the time evolution of the quasimomentum
distribution n(k) for a slow (above) and sudden (below) turn on of the lattice.

Chapter 9: Thermalization in a quasi-1D trap

A major frontier of contemporary physics is understanding the mechanisms of

thermalization in a closed many-body quantum system [102, 103]. Much of the

recent progress in this field has been fueled by pioneering experiments probing

the dynamics of near-integrable cold atomic gases in quasi-1D traps [108, 109].

It is known that purely 1D systems cannot reach thermal equilibrium due to

kinematic constraints [89, 236]. However, in quasi 1D, there are leftover trans-

verse degrees of freedom which can redistribute momenta, causing thermaliza-

tion. Here, we use rate equations for binary elastic collisions to characterize the

approach to thermal equilibrium in such a system.
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In a typical quasi-1D experiment, atoms are loaded into an array of weakly-

coupled “tubes” by turning on an optical lattice in the transverse plane [64, 77].

If the lattice is turned on slowly compared to the rate of collisions, which is

the situation in most experiments, we find the quasimomentum distribution

evolves smoothly into a thermal profile (Fig. 1.7). We show that for small inter-

tube tunneling J , the rate of equilibration grows as J2 ln J , which is consistent

with the hugely different timescales observed in Refs. [64, 77]. Conversely, for

a sudden turn on of the lattice, the momentum distribution develops multiple

isolated peaks, which later merge and eventually reach a thermal profile. These

nonequilibrium peaks originate from the exchange of particles between differ-

ent energy bands of the lattice and can be resolved for about 50 collision times.
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CHAPTER 2

DYNAMICS OF SPIN IMPURITIES IN A ONE-DIMENSIONAL BOSE

LATTICE GAS

This chapter was adapted from “Variational study of polarons and bipolarons in a one-

dimensional Bose lattice gas in both the superfluid and the Mott-insulator regimes” by

Shovan Dutta and Erich J. Mueller, published in Physical Review A 88, 053601 (2013).

2.1 Abstract

We use variational methods to study a spin impurity in a one-dimensional Bose

lattice gas. Both in the strongly interacting superfluid regime and in the Mott

regime we find that the impurity binds with a hole, forming a polaron. Our

calculations for the dispersion of the polaron are consistent with recent exper-

iments by Fukuhara et. al. [Nat. Phys. 9, 235 (2013)] and give a better un-

derstanding of their numerical simulations. We find that for sufficiently weak

interactions there are ranges of momentum for which the polaron is unstable.

We propose experimentally studying the stability of the polaron by measuring

the correlation between the impurity and the hole. We also study two interact-

ing impurities, finding stable bipolarons for sufficiently strong interactions.

2.2 Introduction

Using single-site imaging techniques [1–6] it is now possible to track the mo-

tion of spin impurities in a gas of cold atoms trapped in an optical lattice [7–11].

Such a direct probe is unprecedented in condensed matter physics [12–15], and
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has stimulated a rich body of theoretical work [16–21]. These experimental and

theoretical studies are motivated in part by connections between the physics of

a spin impurity and larger questions in quantum magnetism [22], high-Tc su-

perconductivity [23], and transition-metal oxides [24]. Here we present a theo-

retical study of the properties of spin impurities in a one-dimensional (1D) Bose

lattice gas.

In a typical experiment of this type, one first prepares an array of spin-

polarized atoms on a lattice. Then Raman lasers flip one or more of these atomic

spins, creating spin impurities. The excitations of the spin-polarized bath can

dress such an impurity, producing a composite particle called a polaron [25–

30]. In one recent experimental study involving a bosonic spin impurity in

87Rb, Fukuhara et. al. found preliminary evidence of polaron like behavior

within the superfluid regime [10]. They observed a suppression of the bath

density near the impurity, and a strong renormalization of the impurity’s hop-

ping rate. In the Mott phase, their results are understood by mapping the sys-

tem to a Heisenberg chain [31–34], whereas in the superfluid phase, they find

good agreement with numerical time-dependent density-matrix renormaliza-

tion group (t-DMRG) simulations [35]. Here we use simple variational argu-

ments to explain the underlying physics.

We model this system by the two-species Bose-Hubbard Hamiltonian [36–

38]. In Sec. 2.3.1, we analytically study the limiting cases of very strong and

very weak coupling. Guided by these limiting behaviors, in Sec. 2.3.2, we pro-

pose a simple variational model that captures the physics in both limits, extend-

ing those descriptions to all interaction strengths. Our model begins with the

Gutzwiller mean-field wave function [39–42] and adds correlation between a
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single impurity and a hole. We find that our ansatz provides a rich picture of

the physics of a spin impurity, and we believe it fully captures all the relevant

physics. It is exact in the strongly and weakly interacting limits, but, like the un-

derlying Gutzwiller mean-field theory, we do not believe that it is quantitatively

accurate for intermediate coupling [43, 44].

In terms of the single-particle hopping rate J and the on-site interaction U

[see Eq. (2.1)], we find stable polarons for all momenta when J/U . 2.3. This

agrees with the experimental observation of a stable polaron at J/U = 0.47 [10].

We fully characterize the polaron, calculating its energy, spatial structure, and

dispersion. From the dispersion we calculate the rate of expansion for a wave

packet and find qualitative agreement with experimental and numerical stud-

ies in Ref. [10]. At weaker coupling (J/U & 2.3), our ansatz predicts that the

energy for a total momentum k may be lowered by unbinding the hole from the

impurity. For J/U ≈ 2.3, this instability only occurs for k ≈ 2π/3a, where a is

the lattice spacing. As J/U is increased, the instability window grows. Future

experiments can map out such a “polaron phase diagram” by studying the cor-

relations between the impurity and the density of the bath. We provide detailed

predictions for such measurements.

Adding a second impurity to the system admits the possibility of a bound

state of two polarons, a bipolaron. Such bound states are of intrinsic interest for

a variety of reasons, including their possible role in high-Tc superconductivity

[11, 45, 46]. In a recent experiment, two-magnon bound states were observed

in the Mott phase [11]. The measurements are consistent with analytical predic-

tions of the Heisenberg model. The study of polaron binding in the superfluid

phase is much more challenging [45, 47]. We study a simple generalization of
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our original variational model for the case of two impurities with zero total

momentum. Our results indicate the formation of stable bipolarons in the su-

perfluid phase for sufficiently strong interactions.

The rest of this article is organized as follows. In Sec. 2.3, we introduce the

physical system and describe our proposed variational model. We analyze the

system’s properties in the Mott and the deep superfluid regime, with emphasis

on how the correlation length of the impurity-hole binding changes with in-

teraction strength. In Sec. 2.4, we discuss several physical predictions of our

model, and present numerical results. In particular, we identify two qualita-

tively distinct regions in the superfluid phase, polaronic and “two particle.” We

show how the crossover can be detected experimentally from correlation mea-

surements. Our variational model is extended to incorporate two impurities in

Sec. 2.5, where we infer the existence of stable bipolarons at adequately large

interactions. Finally, we summarize our findings and indicate possible direc-

tions of future research in Sec. 2.6. The appendices contain derivations of key

analytical results.

2.3 Formalism

2.3.1 The Bose lattice gas and its limiting behaviors

We consider a one-dimensional chain of bosonic atoms in an optical lattice

with a single spin impurity. Such a system can be experimentally realized by

initially preparing the atoms (e.g., 87Rb) in a definite hyperfine state (such as

|F = 1,mF = −1〉), and then changing the hyperfine state of one atom by the
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single-site addressing technique (for example, to |F = 2,mF = −2〉) [10]. The

system is described by the two-species single-band Bose-Hubbard Hamiltonian

at unity filling [36, 37]:

Ĥ = −J
∑

(l1,l2),σ

b̂†l1,σ b̂l2,σ +
U

2

∑
l,σ,σ′

n̂l,σn̂l,σ′ − µ
∑
l,σ

n̂l,σ . (2.1)

Here (l1, l2) varies over all neighboring sites l1 and l2, σ denotes the spin index

(↑ or ↓), J represents the single-particle hopping amplitude, and U is the on-site

repulsion energy. As is appropriate for models of 87Rb, the interactions only de-

pend on the total density on a site, and not the density of each spin component.

b̂†l,σ (b̂l,σ) and n̂l,σ denote the creation (annihilation) and number operators for the

boson of spin σ at site l. The chemical potential µ should be chosen so that the

ground state is at unity filling. Although the experiment includes an additional

trap along the chain, we do not model it here, as all observations are made near

the center of the trap where the potential is roughly constant. The system un-

dergoes a Mott-superfluid phase transition as J/U is increased beyond a critical

value, (J/U)c ≈ 0.086 within mean-field theory [36]. In comparing with exper-

iments it is useful to note that the Gutzwiller ansatz overestimates the stability

of the superfluid, and the Mott transition actually occurs at J/U ≈ 0.29 [48].

Mott regime

For J � U , single-particle hopping is energetically expensive, as it changes

the on-site populations. This results in an interaction-driven “Mott” insulator.

However, the impurity is able to move through a second-order process, and the

system can be mapped onto the isotropic spin-1/2 Heisenberg chain [31–34]

Ĥeff = −Jex

2

∑
(i,j)

(Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j )− Jex

∑
(i,j)

Ŝzi Ŝ
z
j , (2.2)
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where Ŝ+
i = | ↑〉i| ↓〉i and Ŝ−i = | ↓〉i| ↑〉i are the spin-flip operators, Ŝzi = (n̂i,↑ −

n̂i,↓)/2, and Jex = 4J2/U is the superexchange coupling. Here the impurity has

dispersion

εMott(k) = εMott(0) + Jex(1− cos k) (2.3)

corresponding to eigenstates

|kMott〉=
∑
j

eikj
[
|↓〉j +

J

U

{
(1 + eik)|+〉j + (1 + e−ik)|−〉j

}]
, (2.4)

where | ↓〉j is the state where the ↓ impurity is localized at site j, and |±〉j =

b̂j±1,↑b̂
†
j,↑|↓〉j (see Appendix 2.7 for a derivation). We see from Eq. (2.4) that the

correlation hole is mostly localized at the impurity site, with a spread of order

(J/U)2 into the neighboring sites.

Deep superfluid regime

In the weak-coupling limit (U � J), one can study the system within the Bo-

goliubov approximation [49–52], where one takes quadratic fluctuations about

a state where b̂0,σ = b̂†0,σ =
√
Nσ, Nσ being the number of particles in the con-

densate of spin σ. The single-impurity physics emerges in the limit N↓ → 1.

The Bose-Hubbard Hamiltonian [Eq. (2.1)] can be expressed in momentum

space as (N denotes the total number of lattice sites)

Ĥ = −
∑
p,σ

(
2J cos p+ µ− U

2

)
b̂†p,σ b̂p,σ +

U

2N
∑

p1,p2,q,σ1,σ2

b̂†p1,σ1 b̂
†
p2,σ2

b̂p1+q,σ1 b̂p2−q,σ2 ,

(2.5)

where the momenta are summed over 2πm/N with integer m. To quadratic
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order in fluctuations (see Appendix 2.8 for derivation),

Ĥ = E0 +
∑
p 6=0

[
εc(p) ĉ

†
pĉp + ε0(p) d̂†pd̂p

]
, (2.6)

where ε0(p) = 2J (1− cos p) (2.7)

and εc(p) =
√

[ε0(p)]2 + 2 ε0(p) U (n↑ + n↓) (2.8)

are the excitation spectra, nσ denote the average particle densities of the con-

densates, and E0 is a constant. ĉp and d̂p are the annihilation operators of the

Bogoliubov quasiparticles, defined by the canonical transformation

b̂p,↑/↓ =

√
n↑/↓

n↑ + n↓
(upĉp + vpĉ

†
−p)∓

√
n↓/↑

n↑ + n↓
d̂p , (2.9)

with up, vp = 0.5
[√

ε0(p)/εc(p)±
√
εc(p)/ε0(p)

]
. (2.10)

In the limit n↓ → 0, the d̂p operators simply correspond to the impurity an-

nihilation operators, and the ĉp’s reduce to the standard single-component Bo-

goliubov operators. More generically, ε0(p) corresponds to the energy of the

Goldstone mode associated with the SU(2) rotational symmetry between the ↑

and ↓ spins.

In the limit n↓ → 0 and n↑ → 1, we wish to calculate nh,j , the hole density at

a distance j from the impurity. We relate nh,j to a correlation function by noting

that, in the limit of small n↓,

Cj ≡ 〈b̂†j,↑b̂j,↑b̂†0,↓b̂0,↓〉 = n↓(1− nh,j) . (2.11)

Direct calculation of Cj then yields

nh,j =
1

N
∑
p 6=0

(
1− ε0(p)

εc(p)

)
cos pj . (2.12)

As shown in Fig. 2.1, there is a strong tendency to have a hole near the impurity.
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Figure 2.1: Correlation-hole density in the Bogoliubov approximation for zero
total momentum, plotted with N = 101. The impurity-hole binding weakens at
lower U/J , leading to a flatter profile.

As indicated by the strength of the correlations at short distances, the

impurity-hole binding becomes weaker at lower interaction. The areas under

the curves in Fig. 2.1 are constant. In fact, summing Eq. (2.12) over all j yields∑
j nh,j = 0. The impurity “pushes away” the bath atoms, causing an excess of

particles far away.

2.3.2 The variational wave function

Guided by the limiting properties of the impurity-hole binding discussed above,

we propose the following variational wave function for the system with mo-

mentum k:

|k〉 =
∑
j

|j〉 eikj, where |j〉 = A b̂†j,↓|MF〉+
∑
i

fi b̂i+j,↑b̂
†
j,↓|MF〉. (2.13)

Here |MF〉 =
∏

l

∑
n βn|n〉l denotes the Gutzwiller mean-field ground state of

the bath, where the amplitudes βn for having n bath atoms on a site are de-

termined by minimizing the energy. Variational parameters A and fi encode

whether and how strongly the impurity binds with a hole at different distances.
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In the Mott phase, the impurity is strongly bound to a localized hole with

a small spread, as seen from Eq. (2.4). Thus in this limit we expect A → 0,

f±1 → (J/U)(1 + e±ik)f0, and fi . O((J/U)2) for |i| ≥ 2, whereas for weak cou-

pling, the fi’s should approach uniform magnitudes as the interactions are low-

ered, since the correlation length ought to increase. These conjectures are con-

firmed in our numerical studies. In the next section, we present several physical

predictions of our model. For our numerical calculation we use 101 lattice sites

with a maximum of 20 bath atoms at one site. Throughout the remainder we

set ~ = 1 and a = 1. We label the optimized energy of the variational state as

Evar(J/U, k).

2.4 Results

2.4.1 Polarons

We find that the system exhibits stable polaronic excitations for all momenta at

sufficiently strong repulsive interactions (U/J & 0.44). Here the impurity dis-

places bath atoms around it, as illustrated by the correlations plotted in Fig. 2.2.

The polaron becomes more spread out as U/J is lowered. The momentum de-

pendence of the polaron’s size is more complicated. For a givenU/J , the healing

length increases with k for small k, reaches a maximum for k ≈ 2π/3, then de-

creases rapidly. At finite k we observe decaying oscillations in the correlations

with wavelength λ ≈ 4π/k.

In Ref. [10] the experimentalists measure the speed of propagation of an ini-

tially localized spin impurity. As a first step toward understanding such trans-
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Figure 2.2: Correlation-hole density in the vicinity of the impurity located at
0 for (a) k = 0, (b) k = 0.25π, (c) k = 0.66π, and (d) k = 0.88π, from our
variational wave function. At strong interactions, we see polaronic excitation
for all values of k. Here the impurity displaces nearby bath atoms, creating a
(symmetric) bath density oscillation of period≈ 4π/k within the healing length.
The healing length increases with decreasing U/J and is largest for k ≈ 2π/3.
For nonzero k, the system crosses over to the particle-hole continuum below
a certain interaction strength, where the bath distribution becomes essentially
independent of the impurity location. This crossover occurs at U/J ≈ 0.16, 0.44,
and 0.29 for k = 0.25π, 0.66π, and 0.88π, respectively. Such a crossover does not
happen for k = 0 (compare with Fig. 2.1).

port, in Fig. 2.3(a) we plot the polaron group velocity vg = ∂Evar(J/U, k)/∂k

for several points in the Brillouin zone. We see that the velocities (in units of

J) rapidly grow for small J/U , then reach plateaus when J & 0.5 U . The max-

imum velocity is much smaller than the maximum speed of propagation of a

free particle with a tight-binding dispersion, vf = 2J .

To model the propagation of an initially localized impurity we project the

initial state |ψ(0)〉 = b̂0,↑b̂
†
0,↓|MF〉 into our variational subspace to find its time

evolution:

|ψ(t)〉 =
∑
k

〈k|ψ(0)〉
〈k|k〉 |k〉e

−iEvar(k)t . (2.14)
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Figure 2.3: (a) Polaron group velocity at different momenta. After a rapid
growth for small J/U , these saturate for J/U & 0.5. (b) Propagation speed of an
initially localized impurity in |ψ(0)〉 = b̂0,↑b̂

†
0,↓|MF〉 projected into our variational

subspace. vσ and vedge denote expansion speeds of the standard deviation and
the leading edges of the impurity distribution, respectively. vedge closely mimics
the group velocity at k = π/2. For J/U & 0.5, both speeds level off at values
much smaller than the free-particle tunneling 2J . (c, d) Impurity distribution for
J/U = 0.05 and 2, respectively. In the Mott phase the distribution is described
by a squared Bessel function, as predicted by the Heisenberg model, whereas
for large J/U it has a distinctly different shape.
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The probability distribution of the impurity is calculated as P (j, t) =

〈ψ(t)|b̂†j,↓b̂j,↓|ψ(t)〉/〈ψ(t)|ψ(t)〉. In Fig. 2.3(b) we plot the speed of propagation,

vσ, defined by taking the slope of σ(t), where σ(t) =
∑

j j
2P (j, t). We find that

for sufficiently large t, σ increases linearly, and this speed is well defined. In

the Mott phase we find excellent agreement with the Heisenberg model, which

predicts P (j, t) = [Jj(Jext)]
2, where Jj denotes the Bessel function of the first

kind [53] [see Fig. 2.3(c)]. The distribution deviates more and more from this

shape as J/U increases [Fig. 2.3(d)]. In addition to vσ, we calculate the speed

of propagation of the leading edge by fitting a Bessel function to the tail of the

wave packet. We plot this speed in Fig. 2.3(b), finding that it closely follows the

group velocity of the dispersion at k = π/2. This correspondence is consistent

with the idea that the speed of the edge is constrained by the maximum group

velocity (which is approximately the group velocity at k = π/2) [54]. Both vσ

and vedge grow linearly with J/U in the Mott regime and become fairly flat well

inside the superfluid regime, in agreement with the experimental and simula-

tion studies in Ref. [10]. We find a kink at the phase-transition point. We do not

know if this kink is an artifact of the mean-field theory. No such feature is seen

in the experiments. We find that the localized impurity state has less overlap

with the variational subspace at larger J/U . This becomes especially important

for J/U & 2.3 when polarons become unstable for some momenta. Beyond this

point the impurity dynamics are not well described by a single velocity.

2.4.2 Crossover to the particle-hole continuum

As illustrated in Fig. 2.2, for weaker interactions the correlations between the

impurity and the bath no longer decay. This indicates that the impurity and the
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hole are not bound. To investigate this physics we study the wave function

|k ; p〉 = b̂p,↑b̂
†
p−k,↓|MF〉 , (2.15)

where p is a variational parameter. This represents an uncorrelated impurity

and hole. It is a special case of Eq. (2.13). For a given k, we have a continuum

of energies Etwo(k, p) found by varying p. In Fig. 2.4 we plot this continuum

and our variational ground-state energy for U/J = 0.37. For small and large

values of k, the ground-state energy is below the continuum, representing a

stable polaron. At intermediate k, our variational approach finds the state at

the bottom of the continuum, which does not correspond to a polaron. If the

polaron exists at these momenta, its energy would be within the continuum. We

expect that due to Landau damping it would have a short lifetime [50]. We find

that at small and large k, the polaron dispersion Evar(k) is well approximated

by the free-particle form E(k) = E0 − 2Jeff cos(k), which Fig. 2.4 shows entering

the particle-hole continuum.

We denote the bottom of the particle-hole continuum as Emin
two (J/U, k). In

Fig. 2.5 we estimate the region of the stability of the polaron by plotting the

difference between the energies Emin
two and Evar. The unstable region is to the

left of the dark contour in Fig. 2.5, where these two energies are nearly equal.

The instability window starts from k ≈ 2π/3 at U/J ≈ 0.44 and grows as the

interaction is reduced.

To further illustrate this physics, in Fig. 2.6 we plot nh,0, the excess-hole

density at the impurity site. We again see two distinct regions: the polaronic

regime where nh,0 is finite, and a two-particle regime where nh,0 vanishes. The

crossover location coincides with the dark curve in Fig. 2.5. These correlations

could readily be measured in an experiment.
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Figure 2.4: Energy of states with one impurity and one excess hole for U/J =
0.37. Solid line denotes the variational ground state, Evar(k); shaded region de-
notes the independent particle-hole continuum; dashed line denotes the approx-
imate polaron dispersion E(k) = E0 − 2Jeff cos(k), where E0 and Jeff are chosen
so that E(0) = Evar(0) and E(π) = Evar(π). At small and large k, Evar(k) de-
scribes a stable polaron. For intermediate k, the polaron energy lies within the
particle-hole continuum. Thus we expect it to be short lived due to Landau
damping.

Throughout the two-particle regime, the lowest-energy continuum state has

p ≈ k/2, leading to the small-amplitude (∼ 1/N ) density oscillations of pe-

riod 4π/k in Fig. 2.2. We can analytically calculate this optimal p in the limit

U/J → 0. Here the Bogoliubov quasiparticle spectra reduce to the free-particle

spectrum, ε0(p) = 2J(1 − cos p), and the quasiparticle operators are simply the

particle and hole operators [Eqs. (2.7)–(2.10)]. Since cos p + cos(k − p) is max-

imized when p = k/2, it becomes energetically favorable to divide the total

momentum equally between the impurity and the hole.
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Figure 2.5: Contour plot of the energy difference between our variational state
in Eq. (2.13) and the bottom of the uncorrelated particle-hole continuum of
states from Eq. (2.15). Dotted lines show constant energy contours for Evar.
For U/J & 0.44, the variational ground state is lower in energy and describes a
stable polaron. The two energies coincide to the left of the dark contour. Thus at
weaker interactions there exists a growing range of momenta where the polaron
is unstable, and the ground state belongs to the particle-hole continuum.

Figure 2.6: Correlation-hole density at the impurity site. As the system crosses
over from the polaronic to the two-particle regime, the hole density rapidly falls
toward zero. These correlations can be measured in experiments.
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2.5 Two impurities and bipolarons

A recent experimental study observed two-magnon bound states in the Mott

regime [11]. Here the attraction arises from the fact that two flipped spins lower

energy by sitting next to one another in the Heisenberg model. The stability of

bipolarons in the superfluid phase is not obvious, though related studies have

found regimes of stable bipolarons in superfluids [45, 47]. Here we find that

bipolarons are stable for J/U . 0.15, but unstable for weaker interactions.

We study the following variational wave function for the case of zero total

momentum, which is a simple extension of our model in Eq. (2.13):

|ψ〉 =
∑
d≥0, j

[
A(d) +

∑
l

g(d, l) b̂j+l,↑

]
b̂†j,↓b̂

†
j+d,↓|MF〉 , (2.16)

where A(d) and g(d, l) are variational parameters that control how the two im-

purities bind with holes and with each other. In Fig. 2.7 we plot

P (d) =
∑
j

〈ψ| b̂†j+d,↓b̂†j,↓b̂j,↓b̂j+d,↓|ψ〉/〈ψ|ψ〉 (2.17)

for optimal parameter values, which gives the separation probability of the two

impurities.

For sufficiently strong interactions, the probability peaks at unity separation,

falling off rapidly for greater distances. This indicates that the two polarons are

bound. As J/U is raised, the distribution becomes flatter, so the average dis-

tance between the two polarons grows. For J/U & 0.15, the average separation

scales with the system size. We interpret this to mean that the polarons are

no longer bound, and we are studying scattering states. Note that the Mott-

superfluid transition occurs at J/U ≈ 0.086 in our model, and our model gives

stable polarons at all k for J/U . 2.3. Thus we have four regions: (i) Mott
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Figure 2.7: Separation probability of the two impurities, as predicted by the
variational wave function in Eq. (2.16) on a lattice with 40 sites. In the Mott
and the strongly interacting superfluid phase, the most probable separation of
the impurities is one site, and the probabilities fall roughly exponentially with
distance. For weaker interactions, the probabilities do not decay.

(where polarons and bipolarons are stable), (ii) superfluid with stable polarons

and bipolarons, (iii) superfluid with stable polarons but no bipolarons, and (iv)

superfluid where polarons are stable only for a narrow momentum range.

2.6 Summary and outlook

In this work we have studied spin impurities in a 1D Bose lattice gas through a

computationally tractable variational ansatz. This ansatz provides an intuitive

picture of phenomena seen in recent experiments and simulations. Our method

reproduces the correct analytic results at strong and weak coupling.

For the case of a single impurity, we find stable polarons for all momenta

when U/J & 0.44. The polaron becomes larger with decreasing U/J . A mov-

ing polaron is bigger than a static one, attaining maximum size for k ≈ 2π/3.

We find that the impurity-hole correlations oscillate with wavelength ≈ 4π/k.
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We calculate the impurity mobility from the polaronic dispersion. In the Mott

phase, it increases linearly with J/U , as predicted by the Heisenberg model,

whereas well inside the superfluid phase, it saturates at a value much smaller

than the free-particle hopping, as was experimentally observed in Ref. [10]. At

weaker interactions our model suggests that the polaron energy lies within the

particle-hole continuum for intermediate k. Here we expect the polaron to be

short lived due to Landau damping. For the two-impurity system with zero

total momentum, we find stable bipolarons for J/U . 0.15.

Future experiments can probe the transition from the polaronic to the two-

particle regime by studying impurity-hole correlations. As was illustrated in

Ref. [10], one can measure the density at the impurity site and compare it

with the average density. This crossover should also show up in momentum-

resolved radio-frequency spectroscopy or other techniques which probe the

single-particle spectral function. The spectrum should be bimodal, with one

peak coming from the polaron and the other from the particle-hole continuum.

This intuition is confirmed by explicit calculations in related systems [30]. The

techniques in Ref. [11] can be extended to study the stability of bipolarons in

the superfluid phase. On the theoretical side, it would be interesting to study

the system at higher dimensions and at filling factors different from unity [55],

as well as the effects of disorder on the polaron dynamics [56]. One of the most

intriguing results we find is a kink in the polaron spread velocity when one

crosses the Mott transition. It would be valuable to learn if this is an artifact or

a real physical feature.
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2.7 Appendix A: Eigenstates of the Hamiltonian in the Mott

phase from second-order perturbation theory

For completeness, in this appendix we calculate the polaron states in the Mott

limit to leading order in J/U [31–34]. The Bose-Hubbard Hamiltonian in Eq.

(2.1) can be expressed as Ĥ = Ĥ0 − (J/U)Ĥ1, where

Ĥ0 =
U

2

∑
l,σ,σ′

n̂l,σn̂l,σ′ , (2.18)

Ĥ1 = U
∑

(l1,l2),σ

b̂†l1,σ b̂l2,σ . (2.19)

We treat Ĥ1 as a perturbation. A chemical potential is unnecessary as we are

working with states of fixed particle number. The eigenstates of the Heisenberg

Hamiltonian [(Eq. (2.2)] are given by |keff〉 =
∑

j e
ikj |↓〉j , where |↓〉j is the state

where the impurity is localized at site j, and all other sites have one ↑ spin. We

write the eigenstates of Ĥ as |k〉 = |keff〉+
∑

α dα|α〉, where |α〉 denotes states of

the form

|β〉ij = b̂j,↑b̂
†
i,↑|↓〉i (i 6= j) , (2.20)

|γ〉ijk = b̂j,↑b̂
†
k,↑|↓〉i (i 6= j 6= k) , (2.21)
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which are parametrized by indices ij and ijk. From degenerate second-order

perturbation theory,

|k〉 = |keff〉+
J

U

∑
j

eikj
∑
α

|α〉 〈α|Ĥ1|↓〉j
〈α|Ĥ0|α〉 − j〈↓ |Ĥ0|↓〉j

= |keff〉+
J

U2

∑
j

eikj
∑
α

|α〉〈α|Ĥ1|↓〉j

=
∑
j

eikj
[
|↓〉j +

J

U

{
(1 + eik)|+〉j + (1 + e−ik)|−〉j

}]
+
√

2
J

U

∑
j

eikj
∑

l 6=j,j−1

(
|γ〉j(l+1)l + |γ〉jl(l+1)

)
, (2.22)

where |±〉j = b̂j±1,↑b̂
†
j,↑|↓〉j . The k dependence in the dispersion comes from the

matrix element of the Hamiltonian between |keff〉 and the states |±〉j which rep-

resent impurity hopping. The other correction states only contribute a constant

term.

2.8 Appendix B: Bogoliubov weak-coupling analysis

In this appendix we calculate the correlation-hole density around an impurity

within the Bogoliubov approximation [51, 52]. Using b̂0,σ = b̂†0,σ =
√
Nσ in the

Bose-Hubbard Hamiltonian [Eq. (2.5)] and retaining quadratic fluctuations, we

obtain the mean-field Hamiltonian:

Ĥ = H0 −
∑
p 6=0,σ

(
2J cos p+ µ̃− U NN

)
b̂†p,σ b̂p,σ

+
U

2

∑
p6=0,σ1,σ2

[√
nσ1nσ2 b̂†p,σ1(b̂p,σ2 + b̂†−p,σ2) + H.c.

]
, (2.23)

where nσ=Nσ/N , N=
∑

σN
σ, µ̃=µ− U/2, and H0 = −(2J + µ̃)N + U

2NN
2. The

constant H0 is minimized when

µ̃ = −2J + U(N/N ) . (2.24)
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Substituting this back into Eq. (2.23) yields

Ĥ = −1

2

U

N N2 +
∑
p 6=0,σ

ε0(p) b̂†p,σ b̂p,σ +
U

2

∑
p 6=0,σ1,σ2

[√
nσ1nσ2 b̂†p,σ1(b̂p,σ2 + b̂†−p,σ2)+H.c.

]
,

(2.25)

where ε0(p) = 2J(1−cos p). We wish to diagonalize this Hamiltonian to produce

Ĥ = E0 +
∑
p 6=0

(
εc(p) ĉ

†
pĉp + εd(p) d̂

†
pd̂p
)
, (2.26)

where the quasiparticle operators ĉp and d̂p are related to b̂p,σ by a Bogoliubov

transformation. A convenient way to find this transformation is to analyze the

Heisenberg equations of motion:

i∂tb̂p,σ = ε0(p) b̂p,σ+ U
√
nσ
∑
σ′

√
nσ′(b̂p,σ′ + b̂†−p,σ′), (2.27)

i∂tĉp = εc(p) ĉp , (2.28)

i∂td̂p = εd(p) d̂p . (2.29)

These can be written more succinctly as

i∂tB̂
+
p,σ = ε0(p)B̂−p,σ , (2.30)

i∂tB̂
−
p,σ = ε0(p)B̂+

p,σ + 2U
√
nσ
∑
σ′

√
nσ′B̂+

p,σ′ , (2.31)

i∂tĈ
±
p = εc(p)Ĉ

∓
p , (2.32)

i∂tD̂
±
p = εd(p)D̂

∓
p , (2.33)

where B̂±p,σ = 1√
2
(b̂p,σ ± b̂†−p,σ), Ĉ±p = 1√

2
(ĉp ± ĉ†−p), and D̂±p = 1√

2
(d̂p ± d̂†−p). We

define the transformation

B̂±p,σ = Γ±p,σĈ
±
p + ∆±p,σD̂

±
p . (2.34)

From bosonic commutation relations it follows that

Γ+
p,σΓ−p,σ + ∆+

p,σ∆−p,σ = 0 . (2.35)
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In addition, using Eqs. (2.32)–(2.34) in Eqs. (2.30) and (2.31) yields

Γ+
p,σ εc(p) = Γ−p,σ ε0(p) , (2.36)

Γ−p,σ εc(p) = Γ+
p,σ ε0(p) + 2U

√
nσ
∑
σ′

√
nσ′ Γ+

p,σ′ , (2.37)

and similar equations for ∆. These equations, along with Eq. (2.35), can be

solved to obtain (with fσ ≡ Nσ/N )

εc(p) =
√

(ε0(p))2 + 2 ε0(p) U (n↑ + n↓) , (2.38)

εd(p) = ε0(p) , (2.39)

Γ+
p,↑/↓ =

√
f ↑/↓ ε0(p)/εc(p) , (2.40)

Γ−p,↑/↓ =
√
f ↑/↓ εc(p)/ε0(p) , (2.41)

∆±p,↑/↓ = ∓
√
f ↓/↑ , (2.42)

In the limit n↓ → 0 and n↑ → 1, we can calculate the correlation-hole density

as [see Eq. (2.11)]

nh,j =
(
〈n̂j,↑〉〈n̂0,↓〉 − 〈n̂j,↑n̂0,↓〉

)
/n↓

=
1

N 2n↓

∑
p,q,s,t

[
〈b̂†p,↑b̂q,↑〉〈b̂†s,↓b̂t,↓〉 − 〈b̂†p,↑b̂q,↑b̂†s,↓b̂t,↓〉

]
ei(p−q)j . (2.43)

Replacing the zero-momenta operators by
√
Nσ and keeping the quadratic

terms, we find

nh,j = −
√
N↑N↓

N 2n↓

∑
p,q 6=0

〈(b̂p,↑ + b̂†−p,↑)(b̂q,↓ + b̂†−q,↓)〉 e−ipj

= −2
√
N↑N↓

N 2n↓

∑
p,q 6=0

〈B̂+
p,↑B̂

+
q,↓〉 e−ipj . (2.44)

Substituting Eq. (2.34) in the above equation and using the fact that ĉp|MF〉 =

d̂p|MF〉 = 0, we get

nh,j = −
√
N↑N↓

N 2n↓

∑
p 6=0

(
Γ+
p,↑Γ

+
p,↓ + ∆+

p,↑∆
+
p,↓
)

=
(
1/N

)∑
p 6=0

(
1− ε0(p)/εc(p)

)
cos pj . (2.45)
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of an impurity in a one-dimensional lattice,” New J. Phys. 15, 045018 (2013).

[22] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, “Quan-

tum simulation of antiferromagnetic spin chains in an optical lattice,” Na-

ture (London) 472, 307 (2011).

[23] A. Klein and D. Jaksch, “Simulating high-temperature superconductivity

model Hamiltonians with atoms in optical lattices,” Phys. Rev. A 73, 053613

(2006).

[24] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev.

Mod. Phys. 70, 1039 (1998).

[25] E. T. Whittaker and G. N. Watson, Advances in Polaron Physics (Springer-

Verlag, Berlin, 2010).

[26] R. P. Feynman, Statistical Mechanics (W. A. Benjamin, London, 1972).

[27] R. P. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97, 660 (1955).

69

http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/ 10.1103/PhysRevA.84.023617
http://dx.doi.org/ 10.1103/PhysRevA.84.023617
http://dx.doi.org/ 10.1103/PhysRevA.87.043622
http://dx.doi.org/10.1088/1367-2630/15/4/045018
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1103/PhysRevA.73.053613
http://dx.doi.org/10.1103/PhysRevA.73.053613
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRev.97.660


[28] F. M. Cucchietti and E. Timmermans, “Strong-coupling polarons in dilute

gas Bose-Einstein condensates,” Phys. Rev. Lett. 96, 210401 (2006).

[29] M. Bruderer, W. Bao, and D. Jaksch, “Self-trapping of impurities in Bose-

Einstein condensates: Strong attractive and repulsive coupling,” Europhys.

Lett. 82, 30004 (2008).

[30] S. P. Rath and R. Schmidt, “Field-theoretical study of the Bose polaron,”

Phys. Rev. A 88, 053632 (2013).

[31] J. J. Garcı́a-Ripoll and J. I. Cirac, “Spin dynamics for bosons in an optical

lattice,” New J. Phys. 5, 76 (2003).

[32] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press,

Oxford, 2004).

[33] A. B. Kuklov and B. V. Svistunov, “Counterflow superfluidity of two-

species ultracold atoms in a commensurate optical lattice,” Phys. Rev. Lett.

90, 100401 (2003).

[34] L.-M. Duan, E. Demler, and M. D. Lukin, “Controlling spin exchange in-

teractions of ultracold atoms in optical lattices,” Phys. Rev. Lett. 91, 090402

(2003).
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CHAPTER 3

CREATING PHOTONIC FRACTIONAL QUANTUM HALL STATES AND

BRAIDING ANYONS IN AN OPTICAL CAVITY

This chapter was adapted from “Coherent generation of photonic fractional quantum

Hall states in a cavity and the search for anyonic quasiparticles” by Shovan Dutta and

Erich J. Mueller, published in Physical Review A 97, 033825 (2018).

3.1 Abstract

We present and analyze a protocol in which polaritons in a noncoplanar optical

cavity form fractional quantum Hall states. We model the formation of these

states and present techniques for subsequently creating anyons and measuring

their fractional exchange statistics. In this protocol, we use a rapid adiabatic

passage scheme to sequentially add polaritons to the system, such that the sys-

tem is coherently driven from n- to (n+ 1)-particle Laughlin states. Quasiholes

are created by slowly moving local pinning potentials in from outside the cloud.

They are braided by dragging the pinning centers around one another, and the

resulting phases are measured interferometrically. The most technically chal-

lenging issue with implementing our procedure is that maintaining adiabaticity

and coherence requires that the two-particle interaction energy V0 be sufficiently

large compared to the single-polariton decay rate γ, V0/γ � 10N2 lnN , where

N is the number of particles in the target state. While this condition is very de-

manding for present-day experiments where V0/γ ∼ 50, our protocol presents a

significant advance over the existing protocols in the literature.
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3.2 Introduction

Fractional quantum Hall (FQH) states are the iconic examples of strongly cor-

related topological phases. They arise from a delicate interplay between inter-

actions and magnetic field in a two-dimensional (2D) electron gas [1–3]. Both

theory [4–6] and experiments [7–9] suggest that they possess “anyonic” quasi-

particle excitations with fractional statistics, which could provide the building

blocks for fault-tolerant quantum computation [10, 11]. In recent years, syn-

thetic quantum materials [12–19] have rapidly emerged as a promising plat-

form to engineer FQH states, especially bosonic Laughlin states [20–24]. Two

leading platforms are ultracold neutral atoms [21–42] and cavity photons [43–

53]. Unfortunately, as we describe below, technical issues have so far prevented

the realization of these aspirations. Here we describe a simple protocol which

overcomes many of the hurdles. It will allow experimentalists to coherently

produce particle-number-resolved ν = 1/2 Laughlin states in a high-finesse op-

tical cavity using techniques that have already been demonstrated [54–58]. We

additionally show how one can create quasiholes in a Laughlin state that are

bound to external laser potentials. We model a scheme for interferometrically

measuring the braiding phase when two such quasiholes are moved around

one another [59]. This procedure not only yields the quasiparticle exchange

statistics, but is also a prototype of the externally controlled braiding needed

for topological quantum computation.

Photonic systems offer unique features particularly suited for quantum in-

formation processing—fast dynamics, long coherence times, versatile optical in-

out coupling, and ease of transmission over communication channels [60–63].

These features are also useful for preparing interesting many-body states. How-
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ever, in conventional nonlinear media, photons interact too weakly with one

another to establish strong enough correlation to produce FQH states. Nonethe-

less, some nontrivial quantum states, such as a thermal Bose-Einstein conden-

sate, have been produced [64–68]. The strong-coupling limit can be reached

by resonantly coupling the light to matter and using the matter-matter in-

teractions to mediate the photon-photon interactions [18, 55, 69]. Such me-

diated interactions have been demonstrated in both optical and microwave

domains. Optical experiments have confined the light via macroscopic cavi-

ties [57, 70] or photonic structures [71–73]. The interactions have been medi-

ated by atoms [70, 71], quantum dots [72], semiconductor excitons [73, 74], or

Rydberg-dressed atoms [57, 75]. Microwave experiments typically use resonat-

ing circuits and superconducting qubits [76, 77].

In addition to strong interactions, creating FQH states requires a mag-

netic field. Generating effective magnetic fields for photons is nontrivial.

Nonetheless, by employing clever cavity designs to modify the photon disper-

sion [54, 78, 79], experiments have created synthetic gauge fields in “twisted”

optical cavities [56, 58], microwave cavity arrays [77, 80], radio-frequency cir-

cuits [81], and solid-state photonic devices [82–88]. These developments have

set the stage to explore FQH physics in a single optical cavity [56–58] or in a

lattice of coupled microwave resonators [77, 80].

As in Ref. [51], we consider a near-degenerate cavity setup, similar to the

one used to observe photonic Landau levels in Ref. [56] and shown schemati-

cally in Fig. 3.1. Because of the noncoplanar mirror geometry in such a twisted

cavity, the transverse light field obeys a 2D Schrödinger equation with an effec-

tive magnetic field (see Sec. 3.3). One can induce strong photon-photon inter-
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actions by loading 87Rb atoms into a transverse plane of the cavity and illumi-

nating them with a control beam that resonantly couples the cavity photons to

a long-lived highly excited atomic state [89]. Experiments have demonstrated

that the resulting Rydberg polaritons are both long lived [90] and strongly in-

teracting [57].

Initial theoretical proposals to construct FQH phases in single-cavity [47, 48]

and coupled-cavity [49, 50] setups employed a monochromatic drive to excite

Laughlin states via multiphoton resonances. These proposals produce states

with very small overlap with the desired Laughlin state, and the overlaps fall

off exponentially with the number of photons in the target state [48]. More so-

phisticated schemes have been proposed recently which use frequency-selective

incoherent pumps [51, 52, 91] or alternate flux insertions and coherent pump-

ing [53]. Unfortunately, even these complex approaches are lacking. For exam-

ple, the scheme in Ref. [51] yields at best a 70% overlap with theN = 3 Laughlin

state. Using such a scheme to produce states with more particles seems imprac-

tical.

Here we describe a simpler and more effective protocol whereby one can

reliably produce N -particle Laughlin states with high fidelity in a twisted op-

tical cavity. As we explain in Sec. 3.4, this is achieved by using rapid adia-

batic passage ideas to sequentially transfer the state of the cavity from n- to

(n + 1)-particle Laughlin states [Fig. 3.5(a)]. For adiabaticity, the duration of

each transfer, T , must be large compared to the inverse of the many-body level

splittings. These splittings are proportional to the two-particle interaction en-

ergy V0, and, for the Laughlin states, the splittings are nearly independent of

the particle number. Thus, one finds that the accumulated error scales as Ne−ξ,
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where ξ ∝ V0T . For our protocol to be successful, the experiment must also be

faster than the coherence time set by polariton loss from the cavity. Hence, the

key technical impediment to implementing our scheme, which is also present

in the earlier proposals [47, 48, 51], is engineering a sufficiently large ratio be-

tween the interaction strength and the single-polariton decay rate γ. In partic-

ular, for a high-fidelity generation of the N -particle Laughlin state, we require

V0/γ � 10N2 lnN . Since current experimental setups yield V0/γ ∼ 50 [92], only

the smallest N states may be reliably produced. While nontrivial, it is reason-

able to expect this figure of merit will increase in the next few years, enabling the

creation of higher N states. Despite this limitation, our protocol presents a sig-

nificant step forward, as the existing protocols either have low fidelity (∼ 0.01

for N = 2) [47, 48] or require prohibitively large values of V0/γ (∼ 3 × 104 for

N = 3) [51].

A central motivation for preparing a Laughlin state is to observe anyonic

statistics by creating quasiparticles and braiding them [47]. In Sec. 3.5 we show

that one can generate quasiholes by adiabatically bringing in localized repul-

sive potentials through the edge of the cloud. These potentials can be engi-

neered through the dynamical Stark shift from tightly focused lasers [93–95] (see

Fig. 3.1). The cavity geometry can be tuned to eliminate the excitation of sur-

face modes (Fig. 3.7). Subsequently, one can drag the pinning potentials around

one another to perform quasihole braiding [23], which we discuss in Sec. 3.6. We

find that both quasihole generation and braiding can be implemented with high

fidelity over much shorter time scales than the preparation of the Laughlin state.

In Sec. 3.7 we put forward an interferometric scheme to measure the braiding

phase and extract the fractional exchange statistics (Fig. 3.10). We conclude with

a summary and outlook in Sec. 3.8.
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Figure 3.1: Schematic of the proposed cavity experiment. The noncoplanar ar-
rangement of the mirrors gives rise to an effective magnetic field for the trans-
verse dynamics of the cavity photons (red beam). These photons are coupled to
atoms (white dots) loaded into a transverse plane (transparent disk) of the cav-
ity. As shown in the energy level diagram, the photons couple the ground state
|g〉 and an excited state |e〉 of the atoms with a collective Rabi frequency G. The
excited state has a single-photon detuning ∆e and lifetime 1/Γ and is coupled
to a metastable Rydberg level |r〉 by a control laser (blue beam) with Rabi fre-
quency Ωc. When the two-photon detuning δ2 is smaller than a linewidth, long-
lived Rydberg polaritons form which inherit the transverse photon dynamics
and interact strongly with one another. In Sec. 3.4 we describe how one can
drive these polaritons to form ν = 1/2 Laughlin states in the transverse plane.
An additional laser (green beam) can be used to produce a localized potential
for the polaritons via the ac Stark shift. As we show in Secs. 3.5 and 3.6, by
moving such potentials relative to the polariton cloud, one can create and braid
anyonic quasihole excitations in a Laughlin state.

While our analysis is focused on Rydberg polaritons in optical cavities,

nearly identical modeling applies to exciton-polaritons in semiconductors [16,

17, 51, 73, 74, 96]. Brief estimates of the energy scales suggest that our ideas are

readily transferable to that domain.

79



3.3 The physical system

3.3.1 Overview of polariton dynamics

We envision the “twisted” cavity setup of Ref. [56], shown schematically in

Fig. 3.1. The cavity is nearly degenerate; i.e., the transverse dynamics are much

slower than the longitudinal dynamics. In this limit, an effective equation can

be derived for the transverse field profile within the cavity. This equation is

identical to the Schrödinger equation for a 2D harmonically trapped charged

particle in a uniform magnetic field. In Ref. [97] they gave an intuitive deriva-

tion of this mapping by tracing the coordinates of a light ray as it repeatedly

intersects a transverse plane within the cavity. One thereby constructs a dy-

namical map which describes the stroboscopic evolution of the transverse po-

sition and wave vector of a light ray. The latter plays the role of momentum.

In the paraxial approximation, this map is linear and is equivalently generated

by a 2D quadratic Hamiltonian. Quantizing this Hamiltonian yields the de-

sired Schrödinger equation. In the case of a planar cavity with flat mirrors, the

dynamics map onto those of a free particle of mass mph = ~ω0/c
2 where ω0 is

the frequency of the longitudinal mode and c is the speed of light. The mirror

curvature confines the light in the transverse direction, leading to a harmonic

trapping potential. The deviation from a planar geometry rotates the light field

about the longitudinal axis, which gives rise to Coriolis and centrifugal forces

in the transverse plane. The former acts as a uniform magnetic field perpen-

dicular to the plane. Thus, the twisted cavity realizes a Fock-Darwin Hamil-

tonian [98, 99] describing massive, trapped particles in two dimensions experi-

encing a uniform magnetic field. The effective photon mass, trap frequency, and
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magnetic field strength can be controlled independently by adjusting the cavity

geometry.

Strong interactions can be introduced into the system by coupling the pho-

tons to an atomic ensemble in a Rydberg electromagnetically induced trans-

parency (EIT) configuration [75, 100], as discussed in detail in Ref. [89] and il-

lustrated in Fig. 3.1. A thin layer of laser-cooled atoms is loaded into the cavity

waist. The cavity photons couple the atomic ground state to an intermediate

excited state |e〉 which is in turn coupled to a metastable Rydberg level |r〉 by

a strong control laser. This light-matter coupling yields two “bright” and one

“dark” polariton modes [100, 101]. Near EIT resonance, the dark polariton mode

has a long lifetime and represents a superposition of a collective Rydberg exci-

tation and a cavity photon. The bright polariton modes, on the other hand,

are short lived. For strong coupling, the splitting between the dark and bright

modes is large compared to the energy scales of the transverse photon dynamics

and Rydberg-Rydberg interactions. Then the problem reduces to describing the

motion of dark polaritons in the cavity waist, which inherit the single-particle

dynamics of photons and the interactions of Rydberg atoms.

3.3.2 Single-particle Hamiltonian

Projecting the 2D photon Hamiltonian onto the dark-polariton manifold renor-

malizes the photon mass and trap frequency, yielding the single-particle Hamil-

tonian

Ĥ0 =

∫
d2r ψ̂†(~r)

[
(−i ~∇−MωBrϕ̂)2

2M
+

1

2
Mω2

T r
2

]
ψ̂(~r) , (3.1)
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where ψ̂(~r) denotes the bosonic polariton field operator, M and ωT are the ef-

fective polariton mass and trap frequency, ωB denotes half the cyclotron fre-

quency, and ϕ̂ is the unit vector in the azimuthal direction. Here we have ex-

plicitly used a symmetric-gauge vector potential to represent the uniform mag-

netic field and set ~ = 1. The cyclotron frequency 2ωB sets the energy gap

between Landau levels and is typically a few GHz [56]. This is much faster

than the motion of polaritons, so the dynamics are confined to the lowest Lan-

dau level. The polariton mass M is related to the photon mass mph and the

collective Rabi frequencies G and Ωc of the atomic transitions (see Fig. 3.1) via

M = mph/ cos2 θ, where θ ≡ tan−1(G/Ωc) [89]. For typical experimental param-

eters, mph ∼ 2× 10−5me [56] and θ ≈ 60◦ [57, 90], we get M ∼ 10−4me, where me

is the electron mass. Similarly, the trap frequency seen by polaritons is related

to that seen by photons via ωT = ωT,ph cos2 θ, where ωT,ph is calculated from the

cavity geometry [92, 97]. This frequency was varied from zero to several tens of

MHz in Ref. [56] by changing the mirror separation. As we will see in Sec. 3.5,

one needs a finite ωT in order to adiabatically produce quasiholes without excit-

ing edge modes.

3.3.3 Interaction Hamiltonian

Rydberg atoms interact through a strong dipole-dipole coupling of the form

V (r) = C6/r
6 [102]. This leads to strong polariton-polariton interactions which

are most simply modeled by a hard core of radius rb, known as the “blockade

radius” [89, 103]. For typical experimental conditions, rb is several micrometers

and can be varied using the scaling rb ∝ n11/6, where n is the principal quantum

number of the Rydberg state |r〉 [75, 104]. For mean polariton separations larger
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than rb, the interaction can be further approximated by a contact potential. In

current experiments this regime can be reached for a few tens of polaritons by

controlling the cavity waist radius w ≡
√

2/(MωB) which sets the average po-

lariton separation [92]. Under this approximation, we can write the interaction

Hamiltonian

Ĥint = g

∫
d2r ψ̂†(~r)ψ̂†(~r)ψ̂(~r)ψ̂(~r) , (3.2)

where g is the effective interaction strength which depends on C6 as well as

the EIT parameters Ωc, ∆e, and Γ, where Ωc denotes the Rabi frequency of the

control laser, ∆e is the detuning to the excited state |e〉, and Γ is the decay rate

of |e〉. The Rydberg-Rydberg interactions are generically inelastic, which can be

modeled by taking g complex. The imaginary part can, in principle, be made

arbitrarily small by increasing both Ωc and ∆e while keeping the ratio ∆e/Ωc ≈

0.25 [92]. Thus, we limit ourselves to real values of g in this paper.

3.3.4 Single-particle spectrum

Combining Eqs. (3.1) and (3.2) we find the many-body Hamiltonian

Ĥ = Ĥ0 + Ĥint. The single-particle spectrum in the absence of a trap con-

sists of degenerate Landau levels separated by the cyclotron frequency 2ωB.

The lowest Landau level (LLL) is spanned by angular momentum eigenstates

φm(~r) ∝ rmeimϕ exp (−r2/w2) with m = 0, 1, 2, . . . . The harmonic trap splits the

energies of these states and rescales the wave functions, yielding new eigen-

states φm(~r) ∝ zme−|z|
2/2 with energies εm = ωeff + mε, where z ≡ reiϕ/l,

l ≡ 1/
√
Mωeff, ωeff ≡

√
ω2
B + ω2

T , and ε ≡ ωeff − ωB. Note that |φm(~r)|2 is peaked

at r =
√
ml and has a width ∆r ∼ l. In the absence of interactions, the energy of

a many-body state in the LLL depends only on the total particle number N and
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total angular momentum L. A generic noninteracting eigenstate takes the form

of a Gaussian times a symmetric polynomial in the coordinates z1, z2, . . . , zN

representing the positions of the N particles. Interactions split this degeneracy.

3.3.5 Laughlin states

An exact N -particle eigenstate of the Hamiltonian is the ν = 1/2 Laughlin

state [22]

ΦN(z1, z2, . . . , zN) ∝
∏
j<k

(zj − zk)2 e−
∑
i |zi|2/2 , (3.3)

which is composed of single-particle states in the LLL with m = 0, 1, . . . , 2(N −

1). It has zero interaction energy since the wave function vanishes whenever

two particles coincide. Further, it is an angular momentum eigenstate with L =

N(N − 1) and has energy EN = Nωeff + N(N − 1)ε. As we will see below,

the Laughlin state is the lowest-energy N -particle state in the L = N(N − 1)

manifold. Therefore, one way to excite |ΦN〉 is to pump on the single-particle

mode with angular momentum N − 1 and frequency ωeff + (N − 1)ε, which

is the essence of the multiphoton resonance protocols proposed in Refs. [47,

48]. However, as discussed in Sec. 3.2, this approach produces an exponentially

small overlap with |ΦN〉 due to the coupling with other many-body states. Here

we circumvent this problem by employing a rapid adiabatic passage protocol

which drives the system from |Φ0〉 → |Φ1〉 → · · · → |ΦN〉 through a sequence of

frequency sweeps. Physically, the transition from |Φn〉 to |Φn+1〉 is implemented

by adding a particle with angular momentum m = 2n while maintaining the

strong correlation in Eq. (3.3).
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3.3.6 Projection to lowest Landau level

The efficiency of our drive mechanism is limited by the energy splittings be-

tween the Laughlin states and the neighboring many-body states. To quan-

tify this efficiency, we assume that the dynamics are confined to the LLL, as

in Refs. [47, 48, 51], and consider states within that manifold. To ensure that the

LLL is spectrally well resolved from the higher Landau levels, we need to take

ε � 2ωB/mmax, where the occupied single-particle states all have m ≤ mmax.

For Laughlin states |ΦN〉, mmax = 2(N − 1), so this requirement becomes

N � ωB/ε ≈ 2(ωB/ωT )2. For typical experiments, (ωB/ωT )2 & 104 [56], so

this requirement is not particularly limiting. Further, we assume that there is

no Landau level mixing from interactions. Typical interaction energies between

two particles in the LLL can be estimated from the zeroth Haldane pseudopo-

tential V0 = g〈φ0|δ(~̂r)|φ0〉 = g/(πl2) [48, 105]. Hence, our assumption is justified

provided V0 � 2ωB, which is indeed fulfilled in present-day experimental con-

ditions, where V0 is several MHz and ωB ∼ 1 GHz [92].

We project the dynamics onto the LLL by substituting ψ̂(~r) =
∑∞

m=0 φm(~r)âm

into Eqs. (3.1) and (3.2), where âm annihilates a particle in the state |φm〉. Thus,

we obtain the restricted Hamiltonian

ĤLLL = ωeffN̂ + εL̂+ V0

∞∑
s=0

2−(s+1)Â†sÂs , (3.4)

where N̂ ≡ ∑∞
m=0 â

†
mâm and L̂ ≡ ∑∞

m=0mâ
†
mâm measure the total par-

ticle number N and total angular momentum L, respectively, and Âs ≡∑s
m=0

√
s!/[m!(s−m)!] âmâs−m annihilates two particles with net angular mo-

mentum s.
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3.3.7 Many-body spectrum

The eigenstates of ĤLLL can be labeled by N and L. Figure 3.2(a) shows the

spectrum in the N = 3 manifold. The lowest-energy state with L = N(N − 1) is

the Laughlin state |ΦN〉. The lowest-energy eigenstates with L > N(N − 1) rep-

resent quasihole and edge excitations of the Laughlin state and are degenerate

with |ΦN〉 for ε = 0 (no trap) [51]. Each of these states is separated from the ex-

cited states with the same L by an energy gap ∆N ∼ V0 (see Fig. 3.2). As we will

see in the next section, it is this gap which sets the maximum speed at which

one can drive the system from |Φn〉 to |Φn+1〉. Any state with L < N(N − 1) also

has an interaction energy Eint ≥ ∆N . As the trap frequency is increased from

zero, the eigenstate energies are simply increased by εL. Consequently, there is

a range of ε for which the Laughlin state is the unique N -particle ground state

and it costs energy to excite edge modes. As we describe in Sec. 3.5, this energy

cost will aid the adiabatic generation of quasiholes by suppressing unwanted

edge excitations.

3.3.8 Polariton loss

A number of processes limit the polariton lifetime. First, the cavity has a finite

finesse and a photon will eventually escape. Second, the atomic Rydberg states

have finite lifetime, reflecting the fact that the atom can decay, emitting a photon

into a noncavity mode. Third, as already discussed, the interactions between

Rydberg atoms can have inelastic components and cause polariton loss. As we

discussed in Sec. 3.3.3, this latter process can be made negligible by carefully

choosing parameters. In current experiments, the first two processes yield a net

86



Figure 3.2: (a) Spectrum of three polaritons in a twisted optical cavity, described
by the Hamiltonian in Eq. (3.4), which illustrates the general features of the N -
body spectrum. The ground state, highlighted by the circled blue dot, has total
angular momentum L = N(N−1) = 6 and corresponds to the ν = 1/2 Laughlin
state |ΦN〉. At fixed L, the excitation gap from this state is ∆N , which arises
from polariton-polariton interactions. The lowest-energy excitation with higher
angular momentum has energy ε, whereas that with lower angular momentum
has energy ∆N − Nε, where ε is related to the harmonic confinement and the
effective magnetic field. The square- and diamond-shaped dots represent the
excited states |Φe

N〉 and |Φg
N〉 defined in Sec. 3.4. (b) Number dependence of the

excitation gap ∆N . For N & 5, it saturates at 0.6V0, where V0 is the interaction
energy of two particles in the lowest Landau level with zero relative angular
momentum (zeroth Haldane pseudopotential).
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polariton decay rate γ ∼ 0.1 MHz [92].

Our protocol to create Laughlin states and braid quasiparticles relies on co-

herent evolution, and losing even a single polariton would be deleterious. Thus,

the entire experiment must be conducted on microsecond time scales.

3.4 Laughlin state preparation

3.4.1 Overview

Our protocol for creating the N -particle Laughlin state |ΦN〉 is based on a se-

ries of coherent optical drives which transfer the system from |Φn〉 to |Φn+1〉

via rapid adiabatic passage [106]. Thus, the final state |ΦN〉 is built up by se-

quentially injecting photons near the outer rim of the cloud. The idea of adding

photons sequentially was also used in Ref. [53].

In Sec. 3.3.5 we explained that successive Laughlin states differ in their total

angular momentum by Ln+1−Ln = 2n. Thus, in our protocol, we illuminate the

cavity in state |Φn〉 with a laser that couples strongly to the mode with m = 2n

and sweep the detuning of the drive from negative to positive. If such a sweep

is performed sufficiently slowly, the system will be adiabatically transferred to

the state |Φn+1〉. Our goal is to find the fastest possible sweep rate. We find

that adiabaticity requires that the entire process take place over a time TL &

40(N/V0) lnN . In order to have negligible loss during this time, TL � 2/Nγ,

where γ is the single-polariton decay rate.
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3.4.2 Sweep protocol

A coherent drive is expressed by the Hamiltonian

Ĥdr =

∫
d2rλ(~r, t)ψ̂†(~r) + H.c. =

∞∑
m=0

λm(t)â†m + H.c., (3.5)

where λ(~r, t) denotes the optical drive field and λm(t) ≡
∫
d2rλ(~r, t)φ∗m(~r),

whereby we have projected Ĥdr onto the LLL (see Sec. 3.3.4). Thus, λm(t) repre-

sents the field component with a phase winding eimϕ. The transition from |Φn〉

to |Φn+1〉 requires an optical drive with λm 6= 0 only for m = 2n. Such helically

phased laser beams are readily available [107, 108].

Thus, we consider a drive which couples |Φn〉 to |Φn+1〉,

Ĥ
(n)
dr = Λn(t) exp

[
−i
∫ t

dt′[ωn + δn(t′)]

]
â†2n + H.c., (3.6)

where ωn is the resonant frequency, ωn ≡ En+1 − En = ωeff + 2nε (see Sec. 3.3.5),

δn(t) denotes the detuning which is swept from negative to positive values (or

vice versa), and Λn(t) is the amplitude which is controlled by the laser intensity

and can be used to vary the Rabi frequency Ωn(t) = Λn(t)〈Φn+1|â†2n|Φn〉. This

setup is similar to the two-state Landau-Zener problem [109, 110], where the

amplitude is constant and the detuning is swept over a finite range −δmax to

+δmax at a constant rate ν ≡ ∂tδn(t). In the Landau-Zener problem, the system

will transition to the state |Φn+1〉 provided δmax � |Ωn| &
√
ν [111]. In our case,

the transition probability will be modified because the coupling is not restricted

to the two Laughlin states. In particular, the drive in Eq. (3.6) couples any pair of

states which differ in particle number by 1 and total angular momentum by 2n.

We also somewhat improve the transition probability by sculpting the profiles

Λn(t) and δn(t) [112–115].
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Figure 3.3: Spectrum of states coupled during our driving protocol. The solid
blue arrow shows the desired transition from the n-particle Laughlin state |Φn〉
to the (n + 1)-particle Laughlin state |Φn+1〉 with a resonant frequency ωn.
Dashed red arrows show possible undesired transitions to the low-lying excited
states |Φe

n+1〉 and |Φg
n+2〉. These transitions are off resonant by the many-body

gaps ∆n+1 and ∆n+2.

The leading correction to the Landau-Zener problem comes from the in-

coupled states which are closest to resonance. As sketched in Fig. 3.3, these

unwanted states are denoted by |Φe
n+1〉 and |Φg

n+2〉 which are the lowest-energy

excited states with quantum numbers N = n + 1, L = n(n + 1) and N = n + 2,

L = n(n + 3). The drive in Eq. (3.6) couples |Φn〉 to |Φe
n+1〉 with Rabi frequency

Ωe
n = Λn〈Φe

n+1|â†2n|Φn〉. Similarly, it couples |Φn+1〉 to |Φg
n+2〉 with Rabi fre-

quency Ωg
n+1 = Λn〈Φg

n+2|â†2n|Φn+1〉. The energy splittings of these transitions

are ωen = ωn + ∆n+1 and ωgn+1 = ωn + ∆n+2, where ∆n is the bulk excitation

gap shown in Fig. 3.2. To suppress these undesired excitations, we must have

δmax . ∆n+1,∆n+2 ∼ V0.

As we discussed earlier, the desired transition from |Φn〉 to |Φn+1〉 occurs

with near-unity probability only if δmax � |Ωn| &
√
ν. Thus, we have a bound

on the sweep rate, ν � ∆2
n+1,∆

2
n+2. Figure 3.2(b) shows that ∆n varies weakly
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Figure 3.4: Matrix elements of the drive between the coupled many-body states.
The operator â2n annihilates a particle in the angular momentum mode m = 2n.

with n, saturating at 0.6V0 for n & 5. Hence, we can choose the same detuning

range and sweep rate for each transfer. Further, as illustrated in Fig. 3.4, |Ωn| ∝

|〈Φn+1|â†2n|Φn〉| is roughly independent of n and therefore roughly the same laser

intensity can be used for each transition. We also see that the undesired matrix

elements fall off with n. Thus, we do not expect coupling to these states to be a

problem even when n is large.

As argued in Refs. [112–114], the adiabaticity requirements are somewhat

relaxed if one takes smooth profiles for the laser intensity Λn(t) and detuning

δn(t). Thus, we take

Λn(t) =
Ω(t− (4n+ 2)τ)

|〈Φn|â2n|Φn+1〉|
, δn(t) = δ(t− (4n+ 2)τ), (3.7)

where Ω(t) ≡ cΩ

τ
e−

t2

τ2 and δ(t) ≡ cδ
τ

t

τ
e−

t2

3τ2 . (3.8)

These profiles are characterized by the parameters cΩ, cδ, and τ . The first two

parameters set the amplitudes of the Rabi frequency and the detuning, and

τ sets the time scale of the frequency sweep. The Rabi frequency Ωn is only
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significant in the interval t = 4nτ to t = 4(n + 1)τ , during which the sys-

tem is transferred from |Φn〉 to |Φn+1〉. The factor of 4 is chosen so that each

sweep is well separated from the others. In the limit cΩ � cδ and τ � cδ/V0,

the sweep reduces to the original Landau-Zener problem with Rabi frequency

cΩ/τ and sweep rate ν = cδ/τ
2. Then the transition probability is given by

P ≈ 1 − exp(−πc2
Ω/cδ) [109, 110]. Generically, we find P ≈ 1 provided

cΩ . cδ . c2
Ω and τ � cδ/V0. Hence, the drive protocol is optimized by tak-

ing cΩ and cδ of order unity and τ sufficiently large compared to 1/V0.

Figure 3.5(a) shows the creation of the N = 4 Laughlin state with cΩ = 4,

cδ = 5.33, and τ = 12.5/V0. For P ≈ 1, the error 1 − P in a given sweep is

roughly independent of n and falls off exponentially as V0τ is increased. Hence,

the cumulative error afterN sweeps, for large V0τ , scales asNe−ξ where ξ ∝ V0τ .

This feature is apparent in Fig. 3.5(b), where we plot the cumulative error as a

function of V0τ for different values of N . As a rough estimate, we find this error

is less than 1% for τ & (10/V0) lnN . Thus, one can prepare |ΦN〉 with such high

fidelity in a total time TL & 40(N/V0) lnN .

In the Supplemental Material [116], we show animations of the polariton

density during our driving protocol. If the sweeps are adiabatic, the density is

uniform and the radius of the Laughlin puddle grows as
√
n as more photons

are injected into the system. For nonadiabatic sweeps, we see the development

of vortices arising from the coupling to other many-body states.
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Figure 3.5: (a) Overlap of the system wave function |Ψ(t)〉 with each N -particle
Laughlin state |ΦN〉 as a function of time during our driving protocol, described
by Eqs. (3.6)–(3.8). Each subsequent plateau corresponds to increasing N by 1.
The duration of each sweep is 4τ . As before, V0 is the two-particle interaction
energy. (b) Cumulative error in the final state preparation as a function of τ for
three different particle numbers, with cΩ = 4, cδ = 5.33.
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3.4.3 Constraint from polariton loss

We require that Nloss, the expected number of polaritons lost during the prepa-

ration of |ΦN〉, be small compared to 1. We can estimate Nloss by noting that

the system approximately spends an interval TL/N in a state with n polaritons,

where n varies from zero to N − 1. For a single-polariton decay rate γ, the net

loss rate from an n-polariton state is nγ. Hence,

Nloss ≈ TL/N

N−1∑
n=0

nγ ≈ NγTL/2 . (3.9)

Thus, our protocol can be used to prepare the N -particle Laughlin state pro-

videdNloss � 1, or V0/γ � 20N2 lnN , where we have taken TL = 40(N/V0) lnN .

3.5 Quasihole generation

3.5.1 Overview

A quasiparticle or quasihole is a collective excitation with particle like proper-

ties. For example, a quasihole at location z0 in the Laughlin state |ΦN〉 is de-

scribed by the wavefunction Φo
N({zj}) ∝

∏N
i=1(zi − z0)ΦN({zj}) [4]. This state

has all the properties of the Laughlin state, except there is a density depletion

near z0. Integrating this depletion over space yields the surprising result that

exactly half a particle has been removed from this region. The wave function

Φo
N({zj}) is readily generalized to the case of multiple quasiholes. Thus, a state

with two quasiholes at ±z0 is described by the wave function

Φoo
N ({zj}) ∝

N∏
i=1

(zi − z0)(zi + z0)ΦN({zj}) . (3.10)
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Figure 3.6: Polariton density ρ in the Laughlin state |ΦN=3〉 (left) and in a two-
quasihole state |Φoo

N=3〉 (right).

As shown in Fig. 3.6, the particle density in |Φoo
N 〉 nearly vanishes within a cir-

cle of radius ∼ l centered at ±z0, thus forming holes in an otherwise uniform-

density background of |ΦN〉. Past calculations have shown that exchanging the

two defects yields a Berry phase of φs = π/2 in the thermodynamic limit [4–

6, 22]. Thus, the quasiholes can be considered as quantum particles with frac-

tional statistics. Here we show how to produce these defects by introducing

additional laser potentials.

To produce a quasihole, we apply a localized repulsive potential just outside

the Laughlin cloud and bring it radially inward through the edge. If the poten-

tial is strong enough and the radial sweep is sufficiently adiabatic, then we find

that the final state will contain a quasihole bound to the potential. This proce-

dure is more efficient than increasing the height of a potential barrier at a fixed

location, as proposed in Ref. [22] for atomic systems. Experiments have demon-

strated that such local potentials can be generated optically [93, 94, 117, 118],

e.g., by illuminating the atoms with a laser that Stark-shifts the intermediate

state in the Rydberg transitions. This illumination can be tightly focused and
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moved spatially. By sweeping two such potentials through opposite sides of

the Laughlin cloud, one can create a quasihole at each end, which can then be

braided around one another.

3.5.2 Modeling

We model the potentials by Dirac delta functions of strength α applied at posi-

tions ±~r0(t), where α is a constant and ~r0(t) is swept radially inward along the

x axis. This model is good as long as the spatial extent of the actual potential is

smaller than the scaled magnetic length l. The potential energy is then described

by the Hamiltonian

Û(t) = α

∫
d2r [δ(~r−~r0(t)) + δ(~r+~r0(t))]ψ̂†(~r)ψ̂(~r) . (3.11)

Projecting into the LLL, we find

ÛLLL(t) = U0e
−(z0(t))2

∞∑
s=0

[z0(t)]2sQ̂2s , (3.12)

where z0 ≡ r0/l, Q̂s ≡
∑s

m=0 â
†
s−mâm/

√
m!(s−m)!, and U0 ≡ 2α/(πl2). Hence,

the Hamiltonian conserves the particle number N but changes the total angular

momentum L through the operator Q̂s.

The potentials must be strong enough to fully deplete the density at ±z0.

If the sweep is adiabatic, the system will always be in an eigenstate of

ĤLLL + ÛLLL(t), where ĤLLL is the unperturbed Hamiltonian given by Eq. (3.4).

For U0 sufficiently large, the ground state belongs to the null space of ÛLLL.

This space is heavily degenerate and spanned by wavefunctions of the form∏N
i=1(zi − z0)(zi + z0)f({zj}), where f is a symmetric polynomial times a Gaus-

sian. The two-quasihole state |Φoo
N 〉 in Eq. (3.10) is the lowest-energy eigenstate
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of this form in the absence of a trap (ε = 0). However, for ε = 0, the ground-

state manifold is degenerate, consisting of all f({zj}) = ΦN({zj})χ({zj}) for

arbitrary symmetric polynomials χ. The harmonic trap splits the energies of

different angular momentum states, thus lifting the degeneracy. For small ε,

the ground state |Ψg〉 can be found by applying degenerate perturbation theory,

which yields 1 − |〈Φoo
N |Ψg〉|2 ∼ ε2/∆2

N , where ∆N is the many-body interaction

splitting shown in Fig. 3.2. Thus, |Φoo
N 〉 represents the approximate ground state.

We find numerically that the overlap |〈Φoo
N |Ψg〉|2 remains near unity as long as

ε� U0 and ε . ∆N/N .

Thus, we consider a sweep where the instantaneous ground state of the sys-

tem evolves from |ΦN〉 when the potentials are outside the cloud to approxi-

mately |Φoo
N 〉when they are fully inside. To produce quasiholes, the sweep must

be sufficiently slow that the system resides in the instantaneous ground state at

all times. Similar to the analysis in Sec. 3.4, we numerically integrate the time-

dependent Schrödinger equation to evaluate the fidelity of this process. Owing

to the presence of edge modes, we find that the most sensitive part of the process

is when the potential moves through the edge of the cloud atR ∼ 2
√
N − 1 l [22].

In particular, if the motion from r0 = R + l to r0 = R − l is adiabatic, then the

entire sweep is adiabatic. For simplicity, we consider linear sweeps in which r0

is reduced at a constant rate.

The maximum allowed sweep rate |∂t(r0/l)| can be estimated by requiring

that the rate be smaller than the energy gap ∆E between the ground state and

the first excited state. When the potentials are near the edge of the cloud, the

system is largely unperturbed; then ∆E is roughly the minimum of ε and ∆N −

Nε (see Fig. 3.2). The former corresponds to the lowest-energy surface waves
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which increase the total angular momentum by 1 unit but do not result in any

density increases. The latter corresponds to bulk excitations which increase the

density and decrease the total angular momentum. To prevent exciting these

modes, one must have |∂t(r0/l)| . ε,∆N − Nε. Thus, we need a small but

finite trap frequency such that 0 < ε < ∆N/N . This energy gap is maximized

for ε = ∆N/(N + 1). However, the potentials modify the excitation spectrum

as they enter the cloud. We numerically find that adiabaticity throughout the

sweep requires |∂t(r0/l)| . ε . ∆N/(2N).

As a measure of adiabaticity, we plot the final overlap |〈Φoo
N |Ψf〉|2 for N =

3 in Fig. 3.7(a) as a function of the sweep rate for different values of ε, with

U0 � ε. We see that the overlap approaches 1 for |∂t(r0/l)| . ε . ∆N/(2N). We

show animations of the polariton density during the sweep in the Supplemental

Material [116]. For nonadiabatic sweeps, the potentials excite surface modes

and shape deformations in the density profile.

For smaller U0, the ground state is not well approximated by |Φoo
N 〉. This fea-

ture is illustrated in Fig. 3.7(b), which shows the overlap following an adiabatic

evolution. As expected, the overlap is near unity if U0 � ε.

We note that a strong attractive potential (U0 < 0) will also produce quasi-

holes. This is because the total energy is conserved and for |U0| � ε, V0, the

dynamics get projected onto the zero-energy subspace of the applied potential,

regardless of the sign of U0.

We can calculate the time required to generate the two-quasihole state, Th,

by noting that r0 is being swept over a distance d & 2l at a rate |∂t(r0/l)| .

∆N/(2N). Hence, Th & 4N/∆N . We found earlier that ∆N saturates at 3V0/5 for
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Figure 3.7: (a) Fidelity of the two-quasihole state preparation with a strong im-
purity potential (U0 = 20V0) as a function of the sweep rate |∂t(r0/l)| for different
trap frequencies parametrized by ε. Here, r0 is the radial distance of each pin-
ning potential from the center and l is the scaled magnetic length. Dashed verti-
cal lines show where |∂t(r0/l)| = ε for each curve. The final overlap approaches
unity for |∂t(r0/l)| . ε provided ε . εth ≡ ∆N/(2N) = V0/8 (for N = 3), where
∆N is the many-body interaction splitting shown in Fig. 3.2. To avoid visual
distraction, the curve for ε/εth = 4 is only shown for |∂t(r0/l)| > 0.1V0. (b) Fi-
delity of the two-quasihole state preparation as a function of the strength U0 of
the applied potential. Here, |∂t(r0/l)| = ε/2 = εth/2 (adiabatic sweep).

99



N & 5 and ∆2 = V0, where V0 is the zeroth Haldane pseudopotential [Fig. 3.2(b)].

Thus, the minimum quasihole preparation time will vary from 4N/V0 for small

N to (20/3)N/V0 for N & 5. This bound is much smaller than the time required

to prepare the N -particle Laughlin state, TL & 40(N/V0) lnN (see Sec. 3.4).

3.6 Quasihole braiding

3.6.1 Overview

In the previous section, we showed how one can create a pair of quasiholes

at opposite ends of a Laughlin state, each bound to a local external potential.

The same potentials can be dragged around one another to braid the two quasi-

holes [23]. One must move the potentials slowly enough to ensure that the

quasiholes remain bound to the potentials throughout the process. The adi-

abaticity condition also differs for clockwise and counterclockwise motion, as

the effective magnetic field breaks time-reversal symmetry. Below we investi-

gate the conditions for an adiabatic braiding.

As we explained in the last section, the ground state |Ψg〉 in the presence

of the applied potentials approximates the desired two-quasihole state |Φoo
N 〉

in Eq. (3.10). We consider braiding these quasiholes by rotating the two po-

tentials on a circle by an angle π. This rotation can be modeled by taking

~r0(t) = r0(cosϕ0(t), sinϕ0(t)) in Eq. (3.11), where ϕ0(t) varies from zero to ±π.

For an infinitely slow braiding, the system follows the instantaneous ground

state |Ψg(t)〉, which is simply the rotated version of the initial state |Ψg〉. Hence,

in this case, the two quasiholes move with the potentials. However, for a finite
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rotation speed, the overlap with the ground state is no longer unity. Then the

“braiding error” can be calculated as η ≡ 1 − |〈Ψg|Ψf〉|2, where |Ψf〉 is the final

state of the system. Since polaritons are lost in the experiment at a finite rate,

our goal is to minimize the braiding duration Tb while keeping η below a cutoff

ηc.

3.6.2 Modeling

For simplicity, we only consider rotations where ϕ0(t) changes at a constant

rate ωb. Then we can transform to the corotating frame where the sys-

tem evolves (within the LLL) under a time-independent Hamiltonian Ĥrot =

ĤLLL + ÛLLL(0)− ωbL̂, where ĤLLL and ÛLLL are defined in Eqs. (3.4) and (3.12).

Hence, the braiding is equivalent to introducing a perturbation δĤ = −ωbL̂ for

a duration Tb = π/|ωb|. The error η is set by the dimensionless parameters ωb/V0,

ε/V0, r0/l, and U0/V0.

Figure 3.8 shows the error as a function of ωb and r0 for ε = 0 and U0/V0 � 1.

If r0 is near the edge of the cloud, the braiding can excite surface modes, result-

ing in braiding error. Similarly, there appear to be bulk resonances at particular

radii and rotation frequencies. As more clearly illustrated by the line cuts in

Fig. 3.9, this structure results in a threshold behavior, where η ≈ 0 when |ωb|/V0

is sufficiently small. The threshold for positive ωb (counterclockwise rotations)

is roughly independent of ε, while that for negative ωb drops, and becomes

sharper, as ε grows. The thresholds also move to lower values as one decreases

r0. Generally, the braiding is more adiabatic for rotations in the direction of

the Lorentz force, which is counterclockwise in our case. In the Supplemental
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Figure 3.8: Contour plot showing the braiding error η when two strong impurity
potentials (U0 = 100V0), each binding a quasihole at ±r0, are rotated by π at a
constant angular speed ωb. Here, N = 3 and ε = 0 (no trap). The vertical
band centered around r0/l ≈ 2.5 corresponds to edge excitations. Other peaks
correspond to bulk resonances. As before, l denotes the scaled magnetic length.
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Figure 3.9: Braiding error η vs rotation rate ωb at different trap frequencies for
N = 3, U0/V0 = 100, and r0/l = 1.5. Note that for adiabatic quasihole genera-
tion, one must have ε . εth ≡ ∆N/(2N) = 0.125V0 [Figs. 3.7 and 3.2(b)].
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Material [116], we show videos of the excitations created in the nonadiabatic

regime. For |ωb|/V0 � 1, the quasiholes do not have time to move, so the sys-

tem remains in the initial state and η → 0. This limit is clearly not suitable for

quasihole braiding.

The threshold frequency for ωb > 0 and N = 3 is approximately 0.1V0. Thus,

one can perform an adiabatic braiding of two quasiholes in a three-particle

Laughlin state in a time Tb & 10π/V0 with vanishingly small error. This duration

is much smaller than the N = 3 Laughlin state preparation time TL & 130/V0

but comparable to the quasihole generation time Th & 16/V0. One can further

reduce Tb by moving the potentials in a more smooth manner [119].

3.7 Measuring anyonic statistics

3.7.1 Overview

During an adiabatic braiding of two quasiholes, the many-body wave function

picks up a geometric (or Berry) phase φg, in addition to a dynamical phase φd

associated with the time evolution. The geometric phase can be further decom-

posed into two pieces, φg = 2φ1 + φs, where φ1 corresponds to the phase which

would be acquired if one had a single quasihole and moved it through the same

path. One can interpret φ1 as the Aharonov-Bohm phase resulting from an ef-

fective magnetic field felt by a quasihole. The remainder, φs, is interpreted as a

statistical phase which originates from exchanging the two quasiholes. Equiv-

alently, φs can be understood as encoding how the presence of one quasihole

influences the magnetic field which the other experiences. Past theoretical stud-
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ies have shown that φs = ±π/2 in the thermodynamic limit (depending on the

direction of rotation) [4–6, 22]. Here we examine how these “anyonic” statis-

tics manifest for finite particle numbers and show how one can measure φs in

experiments.

3.7.2 Extracting statistical phase

In the next section we describe an interferometric protocol for measuring the

total many-body phase φ = φg + φd. Given such a protocol, it is straightforward

to extract φs: First, by repeating the experiment multiple times with different

sweep rates, one can distinguish between φd and φg. Second, φs can be extracted

from φg by comparing two experiments. In the first experiment, illustrated in

Fig. 3.10(a), one rotates two quasiholes by π. In the second experiment, illus-

trated in Fig. 3.10(b), a single quasihole is rotated by 2π. The latter yields the

same Aharonov-Bohm phase 2φ1 but no statistical phase. This approach is sim-

ilar to the ones suggested in Refs. [22, 47]. Figure 3.10(c) shows the value of φs

which would thereby be extracted.

If the two quasiholes are too close together, they interact and it is not ap-

propriate to interpret φs as being due to statistics. Similarly, if the quasiholes

are moved outside of the bulk region, their properties are modified. Thus, in

the small clouds we study, one only expects φs = π/2 over a finite range of r0

(radial position of each quasihole). As N increases, so should the bulk region.

This trend is clear in Fig. 3.10(c). To calculate the curves in this figure, we took

advantage of a simple relationship between the geometric phase and the total

angular momentum [120, 121], which yields φs/π = N(N − 1) + 〈L̂〉oo − 2〈L̂〉o.

104



Figure 3.10: (a,b) Polariton density in the x–y plane for the two experiments
needed to extract the statistical phase φs associated with exchanging two quasi-
holes. As in Fig. 3.6, brighter colors represent higher density and the dark disks
correspond to quasiholes bound to potentials. Here N = 4. In (a) two quasi-
holes are exchanged while in (b) one quasihole is moved in a circle. (c) Statisti-
cal phase inferred from subtracting the geometric phases that would be found in
these two experiments. In the thermodynamic limit, with well-separated quasi-
holes, one expects φs = π/2. Note that r0 denotes the radial distance of each
quasihole from the center and l is the scaled magnetic length.
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Here 〈L̂〉o and 〈L̂〉oo are the expectation of L̂ in the single-quasihole and two-

quasihole states, respectively.

3.7.3 Measuring total braiding phase

Our approach to measuring the total many-body phase φ requires being able

to create a reference state |R′〉 which is unaffected by the sweep protocols that

we use to fill the cavity with polaritons. That is, if we put the system in state

|R′〉, then apply the manipulations in Secs. 3.4, 3.5, and 3.6, it will still be in state

|R′〉. One way to generate this reference is to drive an atom into a Rydberg state

|r′〉 with a large blockade radius. Then |R′〉 will represent a collective Rydberg

excitation. Clearly, |r′〉 should be distinct from the state |r〉 used to produce

polaritons. Blockade physics will then prevent any further excitations during

our protocol [57, 75].

To measure φ, one first uses a π/2 pulse to prepare the system in the super-

position |0〉 + |R′〉, where |0〉 denotes all atoms being in the ground state. One

then follows the procedures in Secs. 3.4 to 3.6 to create the desired Laughlin

state, generate quasiholes, and braid them. Then the process is repeated back-

wards, removing the quasiholes and coherently converting the Laughlin state

to the vacuum. During this cycle, |R′〉 is unaffected and |0〉 gains a total phase

φ = φd + φg, i.e., |0〉+ |R′〉 → eiφ|0〉+ |R′〉. Finally, a second π/2 pulse is applied

to recombine the states |0〉 and |R′〉, and the phase φ is read out by measuring

the ground-state occupation. This approach is related to the one proposed in

Ref. [59] for measuring topological invariants and is similar to quantum com-

puting protocols for measuring expectation values [122].
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In order to maintain coherence, the entire experiment must be performed on

a time scale that is short compared to the polariton lifetime and the lifetime of

the Rydberg state |r′〉, which are typically a few tens of microseconds [92].

3.8 Summary and outlook

The rapidly growing field of many-body cavity quantum electrodynamics

presents new opportunities to realize novel quantum states in a driven dissi-

pative environment. In particular, with strong light-matter coupling and syn-

thetic gauge fields, experiments now have the necessary ingredients to prepare

fractional quantum Hall states of polaritons [56–58, 77, 80]. Here we have devel-

oped a protocol by which one can create the simplest of such states, the ν = 1/2

Laughlin states, in a twisted optical cavity (Fig. 3.1). We further explained how

to generate quasihole excitations and directly measure their fractional exchange

statistics.

In our protocol, one sequentially drives the system between the n- and (n +

1)-particle Laughlin states, |Φn〉 → |Φn+1〉. This transition requires injecting a

single photon with angular momentum 2n. We showed how the transition can

be achieved by illuminating the cavity mirrors with an appropriately tuned laser

and sweeping its frequency. We find that one can create a very high-fidelity N -

particle Laughlin state in a time T ∝ N lnN (Fig. 3.5). This can be contrasted

with previous proposals for which the fidelity was exponentially small inN [47–

50].

We have also shown how one can adiabatically produce and braid quasi-

holes in |ΦN〉 by moving local pinning potentials (Figs. 3.7–3.9) and extract their
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anyonic statistics via interferometry (Fig. 3.10). Our results will facilitate ongo-

ing experiments aiming to observe fractional quantum Hall physics in photonic

systems [56–58].

High-fidelity preparation of Laughlin states requires a separation of energy

scales between the two-particle interaction energy V0 and the single-polariton

decay rate γ. In our protocol, this condition arises from the need to maintain

both adiabaticity and coherence, and takes the form V0/γ � 10N2 lnN . While

this condition is very demanding in current experiments, where V0/γ ≈ 50, this

figure of merit is continually improving. Note that the bound 10N2 lnN is still

much smaller than in Ref. [51], where one needs V0/γ & 3× 104 for N = 3.

Directly measuring the exchange statistics of two quasiholes in the bosonic

ν = 1/2 Laughlin state would be extremely impactful and would be a step to-

wards more complicated braiding protocols. For example, at ν = 1, bosons in

the lowest Landau level form a paired Pfaffian state in which the quasiholes be-

have like Majorana fermions. Exchanging two of them rotates the system among

a set of degenerate levels. At ν = 3/2, the exchange statistics are sufficiently rich

that one can perform arbitrary unitary gates by braiding the particles [11, 23, 24].

One fascinating feature of using optical cavities as a platform for many-body

physics is that the underlying system is coupled to a highly controllable envi-

ronment, which can be used to manipulate the system [51, 52, 91]. For example,

one can implement a feedback stabilization mechanism where the photons emit-

ted from the cavity are filtered by their angular momenta [51, 123] and the lost

angular momentum is replenished by an appropriate drive. Despite such ob-

vious potential, it is not yet clear how to best utilize the environment. Future

studies can look deeper into this resource.
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CHAPTER 4

CONVENTION FOR BOGOLIUBOV QUASIPARTICLE OPERATORS

The goal of this chapter is to clarify the convention of the Bogoliubov quasiparti-

cle modes which arise in the excitation spectrum of a Fermi superfluid. This will

be important in the next three chapters where we will be using the Bogoliubov–

de Gennes (BdG) formalism to study soliton dynamics and exotic superfluidity

in Fermi gases. For a full exposition of the BdG formalism, we refer the reader

to de Gennes’s classic book 1.

There are at least two competing conventions in the literature for defining

the Bogoliubov operators for spin-1/2 fermions: in one, the quasiparticle spec-

trum is symmetric for positive and negative energies, and there is only one type

of Bogoliubov mode γ̂j . In the other, the spectrum has only positive energies,

but there are two types of Bogoliubov modes, γ̂j and ζ̂j . We follow the first con-

vention in Chapters 5 and 6, and the second in Chapter 7. Here we summarize

both conventions and discuss how they relate to one another.

We consider a system of spin-1/2 fermions with short-ranged attractive in-

teractions in one dimension. The formalism can be readily generalized to higher

dimensions by replacing x by ~r. The system is described by the Hamiltonian

Ĥ =

∫
dx
[ ∑

σ=↑,↓
Ψ̂†σ(x)(Ĥ0 − µσ)Ψ̂σ(x) + g1DΨ̂†↑(x)Ψ̂†↓(x)Ψ̂↓(x)Ψ̂↑(x)

]
, (4.1)

where Ψ̂σ(x) denote the fermion field operators, Ĥ0 is the single-particle Hamil-

tonian, µ↑,↓ ≡ µ∓h are the chemical potentials of the two spins, and g1D denotes

the coupling constant. Attractive interactions (g1D < 0) lead to Cooper pairing,

which gives rise to the superfluid order parameter ∆0(x) ≡ g1D〈Ψ̂↓(x)Ψ̂↑(x)〉. Ig-

1P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).
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noring quadratic fluctuations about ∆0(x) yields the mean-field Hamiltonian

ĤMF =

∫
dx

(Ψ̂†↑(x) Ψ̂↓(x)
)Ĥ0 − µ↑ ∆0(x)

∆∗0(x) −Ĥ0 + µ↓


 Ψ̂↑(x)

Ψ̂†↓(x)

− g−1
1D

∣∣∆0(x)
∣∣2


+Tr
(
Ĥ0 − µ− h

)
. (4.2)

This Hamiltonian can be diagonalized by solving the BdG equationsĤ0 − µ ∆0(x)

∆∗0(x) −Ĥ0 + µ


 uj(x)

vj(x)

 = εj

 uj(x)

vj(x)

 , (4.3)

which has a symmetric spectrum: if (uj(x) vj(x))T is an eigenvector with eigen-

value εj , then (−v∗j (x) u∗j(x))T is an eigenvector with eigenvalue−εj . The eigen-

vectors form an orthonormal set, i.e.,
∫
dx(u∗j(x)uj′(x) + v∗j (x)vj′(x)) = δjj′ .

4.1 First convention

Define the Bogoliubov operators γ̂j as Ψ̂↑(x)

Ψ̂†↓(x)

 =
∑
j

 uj(x)

vj(x)

 γ̂j , (4.4)

where the sum is over both positive and negative energies. The orthonormality

of the eigenvectors ensures that the modes γ̂j are fermionic, i.e., {γ̂j, γ̂†j′} = δjj′ .

Substituting Eq. (4.4) into Eq. (4.2), we find

ĤMF =
∑
j

(εj + h)γ̂†j γ̂j + Tr
(
Ĥ0 − µ− h

)
− g−1

1D

∫
dx
∣∣∆0(x)

∣∣2. (4.5)

The occupation of the modes is given by 〈γ̂†j γ̂j〉 = nF(εj + h), where nF denotes

the Fermi function. Thus, at zero temperature, all quasiparticle modes with
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energy εj < −h are occupied, and all other modes are empty. In particular, for

h ≡ µ↓ − µ↑ = 0 (no spin imbalance), all negative energy modes are occupied

and positive energy modes are empty. When µ↓ > µ↑ (h > 0), one has to remove

quasiparticles from the modes with energy between 0 and −h, resulting in a net

excess of ↓-spins. Similarly, if µ↑ > µ↓, one populates the modes between 0 and

|h|, resulting in a net excess of ↑-spins.

4.2 Second convention

One arrives at the second convention by noting that Eq. (4.4) can be written as Ψ̂↑(x)

Ψ̂†↓(x)

 =
∑
εj>0

 uj(x)

vj(x)

 γ̂j +
∑
εj<0

 uj(x)

vj(x)

 γ̂j

=
∑
εj>0

 uj(x)

vj(x)

 γ̂j +
∑
εj>0

−v∗j (x)

u∗j(x)

 ζ̂†j

=
∑
εj>0

uj(x) −v∗j (x)

vj(x) u∗j(x)


 γ̂j

ζ̂†j

 , (4.6)

where we have used the fact that for each state (uj vj)
T with energy εj , there is

a state (−v∗j u∗j)
T with energy−εj , and defined new fermionic operators ζ̂j ≡ γ̂†j

for εj < 0. The operators γ̂j and ζ̂j in Eq. (4.6) represent the Bogoliubov modes

in this other convention. Substituting Eq. (4.6) into Eq. (4.2), we obtain

ĤMF =
∑
εj>0

[
(εj+h)γ̂†j γ̂j+(εj−h) ζ̂†j ζ̂j−(εj−h)

]
+Tr

(
Ĥ0−µ−h

)
−g−1

1D

∫
dx
∣∣∆0(x)

∣∣2 .
The occupations of the modes are given by 〈γ̂†j γ̂j〉 = nF(εj + h) and

〈ζ̂†j ζ̂j〉 = nF(εj − h). At zero temperature, only the γ̂ modes with εj < −h and
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the ζ̂ modes with εj < h are occupied. However εj > 0, so there are no nega-

tive energy modes, which means in the balanced case (h = 0), all Bogoliubov

modes are empty. Excess ↓-spins (h > 0) are incorporated by filling up only the

ζ̂ modes with 0 < εj < h, whereas excess ↑-spins (h < 0) are incorporated by

filling up only the γ̂ modes with 0 < εj < |h|.

Equivalence

Although the two conventions yield different descriptions of a state, they are

formally equivalent. This can be checked, e.g., by calculating the mean-field

energy E = 〈ĤMF〉. In the second convention, the energy is given by

〈ĤMF〉 =
∑
εj>0

[
(εj + h)nF(εj + h) + (εj − h) nF(εj − h)− (εj − h)

]
+ Tr

(
Ĥ0 − µ− h

)
− g−1

1D

∫
dx
∣∣∆0(x)

∣∣2
=
∑
εj>0

[
(εj + h)nF(εj + h) + (εj − h) nF(−εj + h)

]
+ Tr

(
Ĥ0 − µ− h

)
− g−1

1D

∫
dx
∣∣∆0(x)

∣∣2
=
∑
j

(εj + h)nF(εj + h) + Tr
(
Ĥ0 − µ− h

)
− g−1

1D

∫
dx
∣∣∆0(x)

∣∣2 , (4.7)

which is the same as the energy in the first convention.
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CHAPTER 5

DYNAMICS OF A SOLITON TRAIN IN A FERMI SUPERFLUID

This chapter was adapted from “Collective Modes of a Soliton Train in a Fermi Super-

fluid” by Shovan Dutta and Erich J. Mueller, published in Physical Review Letters 118,

260402 (2017).

5.1 Abstract

We characterize the collective modes of a soliton train in a quasi-one-

dimensional Fermi superfluid, using a mean-field formalism. In addition to the

expected Goldstone and Higgs modes, we find novel long-lived gapped modes

associated with oscillations of the soliton cores. The soliton train has an instabil-

ity that depends strongly on the interaction strength and the spacing of solitons.

It can be stabilized by filling each soliton with an unpaired fermion, thus form-

ing a commensurate Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We find

that such a state is always dynamically stable, which paves the way for realizing

long-lived FFLO states in experiments via phase imprinting.

5.2 Introduction

A unifying theme of contemporary physics is understanding emergent dynam-

ics of many-particle systems. One motif is the appearance of persistent non-

linear structures, such as solitons [1]. Solitons arise naturally in diverse phys-

ical systems, including water waves [2–5], plasmas [6, 7], optical fibers [8–14],
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conducting polymers [15–22], superconductors [23–28], Bose-Einstein conden-

sates [29–48], DNA dynamics [49–54], quantum field theory [55–62], and early-

Universe cosmology [63–68]. They are technologically important, with appli-

cations in telecommunications [69–76], information processing [28, 77–86], and

matter-wave interferometry [87–96]. Moreover, cold-atom experiments can now

engineer matter-wave solitons in atomic superfluids and directly observe their

motion [31–48, 97–99]. Understanding the behavior of these collective objects

is vital to the larger problem of forming a cohesive theory of nonequilibrium

dynamics [100]. In particular, the next generation of Fermi gas experiments

will be creating clouds with many of these nonlinear defects [99]. While past

theoretical studies have shed light on the behavior of individual [101–116] or

pairs of solitons [117–119], the behavior and even stability of soliton trains are

not understood. Here, we study the linearized dynamics of a soliton train in a

one-dimensional (1D) Fermi gas, finding a rich set of collective modes. We char-

acterize these modes, finding distinct differences from Bose superfluids, which

may generalize to nonlinear excitations of other systems.

We consider a two-component Fermi gas in an elongated trap with tight ra-

dial confinement so that the dynamics is effectively 1D [120]. The strong radial

confinement suppresses the snake instability by which solitons decay into vor-

tices and sound waves in three dimensions [31–34, 99, 108–114, 121–130]. To

avoid the idiosyncracies of strictly 1D systems, we envision a weakly coupled

array of such tubes, which have long-range superfluid order. Past experiments

have studied fermionic superfluids in such geometries [131, 132]. Using phase-

imprinting techniques [33–37, 97–99, 133–138], one can generate a train of soli-

tons in the superfluid. The collective modes of the soliton train would show

up as pronounced peaks in spectroscopic measurements of the pairing suscep-
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tibility or in the density response of the system [139–143]. Here, we extract the

collective modes by linearizing the self-consistent Bogoliubov–de Gennes (BdG)

equations governing the fermion fields.

5.3 Conclusions

The soliton train has two gapless Goldstone modes, which originate from the

spontaneous breaking of gauge- and translational symmetry: a “phonon” mode

describing phase twists and an “elastic” mode describing oscillations in the

spacing between the domain walls. The elastic mode is only well defined for

wave vectors smaller than the inverse separation of the solitons, but we find

a second gapped branch of oscillations, which persists to large wave vectors

[Fig. 5.2(a)]. This branch is the remnant of the “Higgs” mode in a uniform su-

perfluid [144–148].

In addition, we find a twofold degenerate gapped mode which, at small

wave vectors, describes oscillations in the width and grayness of each soliton

[Figs. 5.2(d)–5.2(e)]. To our knowledge, this “core” mode hasn’t appeared before

in the literature. It lies outside the particle-hole continua and should therefore

be long lived, and hence, easier to detect in experiments than those embedded

in a continuum.

However, we also find that the soliton train has two kinds of instabilities to-

ward a uniform superfluid state: in one, pairs of neighboring solitons approach

and annihilate each other [Fig. 5.2(f)], whereas in the other, the order parame-

ter moves off into the complex plane [Fig. 5.2(g)]. Both instabilities grow at the

same rate, which depends on the degree of overlap between adjacent solitons.
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This overlap can be reduced by creating solitons farther apart or by increas-

ing the attractive interaction strength to produce sharper solitons [Figs. 5.3(a)–

5.3(b)]. Using either approach, one can make the instability rate much smaller

compared to the frequency of the “core” modes, thus allowing them to be re-

solved.

One can also stabilize the train by filling each soliton with unpaired

fermions, i.e., by polarizing the Fermi gas. Such a state constitutes a realization

of the long-sought-after Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [149–

161], whose experimental evidence in solid state [162] and cold gas [131, 132]

systems has so far been indirect. We find that the instability rate falls with in-

creasing polarization, vanishing for the “commensurate FFLO” (C-FFLO) phase

with one excess fermion per soliton [Fig. 5.3(c)]. Thus, a C-FFLO phase is al-

ways dynamically stable, even when energetics favor a different state (Fig. 5.4).

This means one can directly engineer stable FFLO states by phase imprinting,

as opposed to searching for the one that minimizes the free energy. This en-

larged parameter space will facilitate more direct probes of the exotic state. In

the Supplemental Material [163], we briefly outline an experimental protocol for

creating such states, which uses a radio-frequency sweep to selectively transfer

atoms in one spin state to a third noninteracting spin state. A detailed analysis

of the protocol can be found in [164].

Our results are based on a mean-field BdG formalism. Such a mean-field

treatment gives a reasonably accurate description of quasi-1D Fermi gases for

moderate to weak interactions, becoming quantitative in the weak-coupling

limit [140, 141, 155–161, 165]. Further, past theoretical work has shown that the

1D BdG equations accurately describe the equilibrium properties of an array of
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tubes [23, 24, 140].

5.4 Model

We start with the many-body Hamiltonian

Ĥ =

∫
dx

(∑
σ=↑,↓

Ψ̂†σĤ
(0)
σ Ψ̂σ + g1DΨ̂†↑Ψ̂

†
↓Ψ̂↓Ψ̂↑

)
, (5.1)

where Ψ̂σ ≡ Ψ̂σ(x, t) denotes the fermion field operators in the Heisenberg pic-

ture, and g1D is the 1D coupling constant whose relationship to the 3D scattering

length is well studied [154, 166–168]. The single-particle Hamiltonian is Ĥ (0)
↑,↓ =

−∂2
x/2− εF± h, where εF is the Fermi energy, and h is an effective magnetic field

which controls the polarization. We have set ~ = m = 1, where m is the mass

of each fermion. Attractive interactions (g1D < 0) lead to Cooper pairing, which

we encode in the superfluid order parameter ∆(x, t) = g1D〈Ψ̂↓(x, t)Ψ̂↑(x, t)〉. Ig-

noring quadratic fluctuations about ∆ yields mean-field equations of motion

for Ψ̂ ≡ (Ψ̂↑ Ψ̂†↓)
T . The many-body state is formed by occupying fermionic

quasiparticle modes γ̂sj , defined by Ψ̂ =
∑

s,j e
iskFx(U s

j (x, t) V s
j (x, t))T γ̂sj , where

kF is the Fermi momentum, (U, V ) are coherence factors, and s = ± breaks

modes into right moving and left moving. For weak interactions, only the

modes near the Fermi points contribute significantly to pairing. Thus, we write

(−∂2
x/2− εF)[e±ikFx(U±j ,V

±
j )] ≈ e±ikFx[∓ikF∂x(U

±
j ,V

±
j )] (the Andreev approxima-

tion [169]), obtaining [163]

i∂t

U±j

V ±j

 =

∓ikF∂x + h ∆(x, t)

∆∗(x, t) ±ikF∂x + h


U±j

V ±j

 , (5.2)

where ∆(x, t) = g1D

∑
s,j

〈γ̂s†j γ̂sj 〉U s
j V

s∗
j . (5.3)
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Figure 5.1: (a) Stationary soliton train profile of the order parameter with wave
vector k0 for different values of the sharpness parameter k1. Solid: k1 = 0.65,
dashed: k1 = 0.999. The sharpness is set by the soliton spacing, interaction
strength, and spin imbalance. (b) BdG single-particle spectrum of the soliton
train in the extended zone, for k1 = 0.65. The arrows show three types of
particle-hole excitations, which give rise to disconnected continua in the col-
lective excitation spectrum [gray regions in Fig. 5.2(a)].

For a real stationary solution ∆(x, t) = ∆0(x), the coherence factors are of

the form (U+
j ,V

+
j ) = (uj(x), vj(x)) e−i(εj+h)t and (U−j ,V

−
j ) = (u∗j(x), v∗j (x))e−i(εj+h)t,

where εj represents the quasiparticle spectrum.

Prior studies have found [19–25] stationary soliton train solutions of the

form ∆0(x) = ∆1k1 sn(∆1x/kF, k1), with ∆1 ≡ 2kFk0K(k1)/π, where 2π/k0

is the period of the train, sn is a Jacobi elliptic function [170], K is the

complete elliptic integral of the first kind, and k1 ∈ (0, 1) is a param-

eter controlling the sharpness of solitons, which is set by imposing self-

consistency [Eq. (5.3)]. The quasiparticle spectrum has a continuum of free

states for |ε| > ε+ and a band of midgap states for |ε| < ε−, where

ε± = ∆1(1± k1)/2 (Fig. 5.1). The midgap band describes Andreev bound states

localized at the soliton cores.

To find the collective modes, we linearize small fluctuations about the sta-

tionary solution. Thus, we write ∆ = ∆0(x) + δ∆(x, t), U+
j = (uj(x) +
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δu+
j (x, t))e−i(εj+h)t, U−j = (u∗j(x) + δu−j (x, t))e−i(εj+h)t, and similar expressions

for V ±j in Eqs. (5.2) and (5.3), yielding a set of coupled equations relating δu±j ,

δv±j , and δ∆. Next, we decompose the fluctuations into frequency components

and use the completeness of the stationary wave functions to eliminate δu±j

and δv±j , thus arriving at an integral equation for δ∆. In particular, we write

δ∆ = Re(δa(x)eiΩt)+ i Im(δp(x)eiΩt) where δa and δp describe the amplitude and

phase fluctuations, respectively, and find (full derivation in Supplemental Ma-

terial [163])

δp,a(x) = −g1D

∫
dx′M±(x, x′; Ω)δp,a(x

′) , (5.4)

where, at zero temperature,

M±=
∑′

j,j′

2(εj +εj′)

(εj+εj′)2 − Ω2
(u∗juj′± v∗j vj′)(u′ju′∗j′± v′jv′∗j′ ). (5.5)

Here, Ω ∈ C, the prime on the summation stands for εj > h, and we have

used the notation (u, v) ≡ (u(x), v(x)) and (u′, v′) ≡ (u(x′), v(x′)). The collective

modes represent nontrivial solutions to Eq. (5.4).

Periodicity of the soliton train leads to a Brillouin zone structure for the col-

lective modes; i.e., one can write δp,a(x) = eiqx
∑

nC
±
n e

ink0x, where −k0/2 < q ≤

k0/2 and n ∈ Z. However, the stationary solution has an additional symmetry

∆0(x+π/k0) = −∆0(x), which causes the even and odd Fourier modes to decou-

ple in Eq. (5.4), effectively doubling the Brillouin zone [141]. Thus, we consider

only odd Fourier components, with −k0 < q ≤ k0. Substituting the Fourier ex-

pansion into Eq. (5.4) yields a matrix equation C±n = −g1D
∑

mM
±
nm(q,Ω)C±m,

where

M±
nm =

k0

2π

∫ π/k0

−π/k0
dx

∫
dx′e−i(q+nk0)x+i(q+mk0)x′M±. (5.6)

We find the collective-mode spectrum by solving det (I + g1DM
±(q,Ω)) = 0.

Note that M±(q,Ω) has branch cuts on the real-Ω axis, which originate from
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particle-hole excitations. Thus, while considering real frequencies (ω), we set

Ω→ ω + i0+. We find that Ω is either real or imaginary for all collective modes.

The matrices M± are related to the pairing susceptibilities χ±(q, ω), which

describe the linear response to a pairing field, as χ± = −g1DTr
[
(I +

g1DM
±)−1M±] (see Supplemental Material [163] for a derivation). The spectral

densities, Imχ±, contain isolated poles corresponding to collective modes, and

broad particle-hole continua.

5.5 Results

The collective excitation spectrum is fully characterized by two dimensionless

quantities: ns, the number of unpaired fermions per soliton, and k1, which de-

scribes the sharpness of the solitons. They are set by the parameters k0/kF, kFa1D,

and h/εF, a1D being the 1D scattering length (a1D = −2/g1D [154, 166–168]). To

a good approximation, the dependence on k0/kF and kFa1D appears through the

combination w ≡ (k0/kF) exp(πkFa1D/2), which measures the width of the An-

dreev bound states in units of the soliton spacing. For h = 0 and w . 2.5,

k1 ≈ 1− 8e−4π/w [163].

Figure 5.2(a) shows the collective-mode spectrum for ns = 0, k0/kF = 0.05,

and kFa1D = 2.6 in the extended-zone scheme. Its structure is representative of

the ns = 0 case. The two-particle continuum has three separate regions, corre-

sponding to particle-hole excitation between different bands of the quasiparticle

spectrum [Fig. 5.1(b)].

We find two gapless Goldstone modes. The Goldstone phase mode is de-
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Figure 5.2: Collective-mode spectrum of (a) a soliton train in a Fermi super-
fluid with no spin imbalance, for k0/kF = 0.05 and kFa1D = 2.6, (b) a uniform
Fermi superfluid, (c) a soliton train in a Bose-Einstein condensate, modeled by
the Gross-Pitaevskii equation. There are two gapless Goldstone modes in (a): a
“phonon” mode (dot-dashed, green) and an “elastic” mode (solid, black), which
describe phase twists and elastic deformations of the order parameter, respec-
tively. The “phonon” mode is the analog of the Anderson-Bogoliubov mode of
a uniform superfluid in (b). A second gapped branch of amplitude oscillations
(solid, black) forms the remnant of the “Higgs” mode in (b). Both “elastic” and
“Higgs” modes in (a) reside on an edge of the two-particle continua, shaded in
gray, which originate from three types of particle-hole excitations, as shown in
Fig. 5.1(b). Additionally, we find novel twofold degenerate gapped modes in
(a) (dashed, blue) which, for small q, describe width and grayness oscillations
of each soliton, as illustrated in (d) and (e). The soliton train also has instabil-
ities toward a uniform superfluid state, which show up as twofold degenerate
unstable modes. The dotted (red) curve in (a) gives the growth rate η of these
modes. The most unstable mode consists of pairs of solitons annihilating one
another (f), or the order parameter moving off into the complex plane (g). In
contrast, a bosonic soliton train only has two gapless Goldstone modes (c).
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scribed by δp(x) ∝ ∆0(x)eiqx and ω = kFq. It is the analog of the Anderson-

Bogoliubov phonon mode in a uniform Fermi superfluid [171–173]. The Gold-

stone amplitude mode represents elastic deformations of ∆ and has a second

gapped branch extending to large wave vectors, which forms the analog of

the “Higgs” mode in a uniform Fermi superfluid [144–148]. Both branches

are expressed by δa(x) ∝ u q
2
(x)v q

2
(x) and ω = 2ε( q

2
), where ε(k) is the single-

particle dispersion. Like the “Higgs” mode, both branches sit on the threshold

for particle-hole excitations and will therefore be damped [144–146, 174–181]. In

contrast, the excitation spectrum of a soliton train in a Bose superfluid, modeled

by the Gross-Pitaevskii equation, is comprised only of two undamped gapless

modes [Fig. 5.2(c)]. They have a similar dispersion to the fermionic case for

small q, but each mode contains both amplitude and phase variations [163].

In Fig. 5.2(a), we also show a gapped mode that is not present in either a Bose

superfluid or a uniform Fermi superfluid (dashed, blue curve). This mode is

twofold degenerate, with a phase- and an amplitude sector. For small q, they de-

scribe oscillations in the grayness and width of each soliton [Figs. 5.2(d)–5.2(e)].

In particular, at q = 0, these sectors are expressed by δp(x) ∝ cn(∆1x/kF, k1),

δa(x) ∝ sn(∆1x/kF, k1)dn(∆1x/kF, k1) and have an energy ω = ε+ − ε−. Surpris-

ingly, we find δa(x)∝ δ′p(x) ∀q. Being outside the continua, these “core” modes

should be long lived and hence, suitable for experimental detection. One can ex-

cite the amplitude “core” mode by a fast ramp to a different interaction strength

[see Fig. 5.1(a)].

The balanced soliton train (ns = 0) has dynamical instabilities toward a uni-

form superfluid state, which show up as two degenerate solutions to Eq. (5.4)

with an imaginary frequency. The unstable amplitude mode is associated with
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(a) (b) (c)

k0/kF kFa1D ns

Figure 5.3: Maximum instability rate vs (a) inverse soliton separation, with ns =
0, kFa1D = 2.6, (b) interaction strength, with ns = 0, k0/kF = 0.05, and (c) spin
imbalance, with k0/kF = 0.05, kFa1D = 2.6. By making the rate sufficiently small,
one can investigate the stable collective modes.

pairs of solitons approaching one another and annihilating, whereas the un-

stable phase mode involves the order parameter moving off into the complex

plane [Figs. 5.2(f)–5.2(g)]. The maximum instability occurs at q = k0, where

δa(x) ∝ dn2(∆1x/kF, k1), δp(x) = constant, and the fluctuations grow at a rate

ηmax = 2(ε+ε−)1/2. For a given soliton spacing, ηmax is highest at weak interac-

tions, approaching kFk0. One can lower ηmax by creating solitons farther apart

or increasing the interaction strength [Figs. 5.3(a)–5.3(b)]. We have verified the

instability by direct simulations of the BdG equations without the Andreev ap-

proximation. We find a lower bound on the soliton lifetime τmin ∼ 8/kFk0,

which is saturated at weak interactions. For 6Li atoms, with εF = 1.2 µK (as

in [131, 132]) and k0/kF = 0.05, τmin ≈ 0.5 ms. The instability becomes unnotice-

able for kFa1D . 2, where adjacent solitons collide elastically, in agreement with

previous findings on two-soliton collisions [117, 118]. We present the simula-

tions in the Supplemental Material [163], along with collective-mode spectra at

different interactions.

An alternate way to stabilize the soliton train is by filling solitons with un-

paired fermions [114]. As we increase ns from 0, the instability rate falls, be-
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Figure 5.4: Phase diagram obtained by comparing mean-field energies of homo-
geneous phases, and soliton train states with k0/kF = 0.05. Solid regions show
the lowest-energy states. The C-FFLO phase exists and is dynamically stable
throughout the hatched region. The balanced soliton train exists above a mini-
mum interaction strength (w . 4). To see where the other soliton train solutions
exist, see the Supplemental Material [163].

coming zero at ns = 1 for the C-FFLO phase [Fig. 5.3(c)]. The stability of the

C-FFLO phase originates from the absence of zero-energy particle-hole excita-

tions, as the chemical potentials lie within gaps in the single-particle spectrum.

For ns > 1, one again has instabilities (see Supplemental Material [163] for more

details).

Past studies on FFLO have focused on the phase that minimizes the free en-

ergy, which occurs at specific values of k0 within a limited region of the phase di-

agram [154–161]. Low-energy collective excitations of energetically stable FFLO

states have been explored using different theoretical techniques [141–143, 182–

186], and methods for detecting such states have been proposed [140]. However,

we find that a C-FFLO phase is always dynamically stable, even when there are

lower-energy states available. To see this, we compare the energies of compet-

ing states [163] to arrive at a phase diagram, shown in Fig. 5.4. Despite its large
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region of stability, the C-FFLO phase has the lowest energy in a relatively small

region. Moreover, the optimal value of k0/kF varies continuously with h, a fea-

ture not apparent in Fig. 5.4, which is concerned with a fixed value of k0/kF.

The metastability in this system implies that energetic considerations are of less

importance than how the cloud is prepared. In particular, one can engineer

long-lived FFLO states by phase imprinting. In Ref. [164] we propose a sim-

ple protocol for this engineering, briefly outlined in the Supplemental Material

[163].

5.6 Outlook

Our results carry over to other physical systems where solitons arise in a BdG

formalism. This includes quasi-1D superconductors in a magnetic field [23–25],

an electron-phonon model of conducting polymers [18–22], and Gross-Neveu

models in quantum field theory [60–62]. The gapped modes describing width-

and grayness oscillations of solitons could be more generic features associated

with mesoscale structures; e.g., we find such modes in soliton trains described

by a nonlinear Klein-Gordon equation, which also have unstable modes [163].

Although defined by pairing oscillations, these modes should be visible in many

different spectroscopic channels. For example, the techniques demonstrated

in [97, 98] for observing the oscillation of a single soliton are well suited for

probing the “elastic” modes. The instabilities can be studied using techniques

from [99, 187]. The “core” modes may be accessible through radio-frequency

or modulation spectroscopy [140, 142, 188, 189]. The dynamical stability of the

C-FFLO phase should pave the way to its realization via phase imprinting [163].

Other techniques might also be feasible; e.g., in Bose-Einstein condensates, soli-
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ton trains spontaneously form in rapid quenches of interaction strength [38–

41] or temperature [42], or when two condensates collide [43, 44]. These pro-

cesses could have analogs in Fermi superfluids. There exist theoretical methods

complementary to BdG, such as effective field theories [115, 116, 190, 191] and

density-functional theories [113, 117], which could be extended to study soliton

trains at strong interactions and finite temperatures. Our analysis provides a

useful benchmark for such future investigations.
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5.7 Supplemental Material

5.7.1 Experimental protocol for creating soliton train states

Protocol for creating balanced soliton trains

To produce a balanced soliton train, one traps equal mixtures of ↑- and ↓-

fermions (e.g., two hyperfine states of 6Li or 40K atoms) in an array of weakly-

coupled 1D tubes (Fig. 5.5). As demonstrated experimentally in [131, 132], a

superfluid is formed when the atoms are cooled near a Feshbach resonance. Fol-

lowing the strategy used in 3D gases [97–99, 133, 134], one can create solitons
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Figure 5.5: Schematic experimental setup for producing balanced soliton trains
in an array of weakly coupled tubes. First, uniform superfluids are prepared
in each tube by cooling attractively interacting fermions near a Feshbach reso-
nance. Then solitons are imprinted by shining off-resonant lasers in alternate
regions labeled ‘−’ to reverse the sign of the local order parameter.

in these superfluids by phase imprinting, whereby one shines an off-resonant

laser on selected portions of a superfluid for a short duration to rotate the phase

of the local order parameter by a given amount. To generate soliton trains, one

can imprint a π phase in alternate regions of each tube, as shown in Fig. 5.5.

Protocol for creating C-FFLO states

To produce a C-FFLO phase, we advocate starting with balanced soliton trains

in an array of weakly-coupled tubes. As we detail in [164], one can then use

radio waves to selectively break up pairs in the soliton cores, transferring spin-

↑ atoms at those locations to a third spin state |φ〉, which does not interact with

the ↑- and ↓-spin states, thus leaving behind a C-FFLO state with unpaired ↓-

spins. For example, in 40K one could use |↑〉 = |9/2,−7/2〉, |↓〉 = |9/2,−9/2〉,
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and |φ〉 = |9/2,−5/2〉, where the two numbers denote the total atomic spin

F and its projection mF [192]. Unwanted bulk excitations can be eliminated

by Pauli blocking if one starts with an appropriate density of |φ〉-atoms. Even

without Pauli blocking, our approach gives relatively few bulk excitations at

strong enough interactions.

Within our convention for Bogoliubov operators (see Sec. 4.1), the quasipar-

ticle spectrum of a soliton train is symmetric for positive and negative energies,

with delocalized bulk modes for |ε| > ε+, and midgap modes bound to soliton

cores for |ε| < ε− [Fig. 5.1(b) in the main text]. All negative energy modes are

occupied in a balanced soliton train. The C-FFLO state with excess ↓-spins is

formed by removing all quasiparticles from the midgap modes. Our key idea is

to use a Rapid Adiabatic Passage protocol which vacates the midgap modes by a

radio-frequency sweep, while a preformed Fermi sea of |φ〉-atoms prevents any

bulk excitation. Adiabaticity requires that the sweep is sufficiently slow. How-

ever, the finite lifetime of the soliton train sets an upper bound on the sweep

rate. Fortunately, when the interactions are sufficiently strong there is a separa-

tion of scales.

5.7.2 Stationary soliton train solution

Here we summarize the properties of the stationary soliton train solution that

are relevant for examining the collective modes. For further details of deriva-

tion, we refer the reader to Refs. [19–25, 170].

We first derive the stationary BdG equations, starting from the many-body
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Hamiltonian in Heisenberg picture,

Ĥ =

∫
dx
[∑

σ=↑,↓
Ψ̂†σ(x, t)Ĥ(0)

σ Ψ̂σ(x, t) + g1DΨ̂†↑(x, t)Ψ̂
†
↓(x, t)Ψ̂↓(x, t)Ψ̂↑(x, t)

]
,

(5.7)

where Ĥ(0)
↑,↓ ≡ −∂2

x/2− εF± h. We encode superfluid pairing in the order param-

eter ∆(x, t) = g1D〈Ψ̂↓(x, t)Ψ̂↑(x, t)〉, and ignore quadratic fluctuations about ∆,

yielding the mean-field Hamiltonian

ĤMF =

∫
dx

[ ∑
σ=↑,↓

Ψ̂†σ(x, t)Ĥ(0)
σ Ψ̂σ(x, t) + ∆(x, t)Ψ̂†↑(x, t)Ψ̂

†
↓(x, t)

+ ∆∗(x, t)Ψ̂↓(x, t)Ψ̂↑(x, t)− g−1
1D |∆(x, t)|2

]
. (5.8)

The Heisenberg equations of motion for the field operators, i∂tΨ̂σ = [ĤMF, Ψ̂σ],

can be expressed as

i∂tΨ̂(x, t) =

−∂2
x/2− εF + h ∆(x, t)

∆∗(x, t) ∂2
x/2 + εF + h

 Ψ̂(x, t) , (5.9)

where Ψ̂ ≡ (Ψ̂↑ Ψ̂†↓)
T . In the Andreev approximation, we write Ψ̂(x, t)

as a sum over right-moving and left-moving fermionic quasiparticle modes,

Ψ̂(x, t) =
∑

s=±,j e
iskFx(U s

j (x, t) V s
j (x, t))T γ̂sj where

(
∂2
x/2− εF

)[(U±j (x, t)

V ±j (x, t)

)
e±ikFx

]
≈
[
∓ ikF∂x

(
U±j (x, t)

V ±j (x, t)

)]
e±ikFx , (5.10)

and 〈γ̂s†j γ̂s
′
j′ 〉 = δss′δjj′〈γ̂s†j γ̂sj 〉 . (5.11)

Substituting this expansion into Eq. (5.9) and in the definition of the order pa-

rameter, we find the BdG equations

i∂t

U±j (x, t)

V ±j (x, t)

=

∓ikF∂x + h ∆(x, t)

∆∗(x, t) ±ikF∂x + h


U±j (x, t)

V ±j (x, t)

 , (5.12)

with ∆(x, t) = g1D

∑
s=±,j

〈γ̂s†j γ̂sj 〉U s
j (x, t)V s∗

j (x, t) . (5.13)
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For a stationary solution ∆(x, t) = ∆0(x) with quasiparticle energies

ε±j , 〈γ̂±†j γ̂±j 〉 = nF(ε±j + h) where nF is the Fermi distribution, and

(U±j (x, t),V ±j (x, t))= (u±j (x), v±j (x))e−i(ε
±
j +h)t. Using these expressions in

Eq. (5.13), we find∓ikF∂x ∆0(x)

∆∗0(x) ±ikF∂x


 u±j (x)

v±j (x)

 = ε±j

 u±j (x)

v±j (x)

 , (5.14)

with ∆0(x) = g1D

∑
s=±,j

nF(εsj + h)usj(x)vs∗j (x) . (5.15)

For real ∆0(x), the right- and left-moving branches are related by a complex

conjugation: (u−, v−) = (u+, v+)∗ and ε− = ε+. Thus we can only consider the

right-moving branch, drop the superscript ‘+’, and write−ikF∂x ∆0(x)

∆0(x) +ikF∂x


 uj(x)

vj(x)

 = εj

 uj(x)

vj(x)

 , (5.16)

with ∆0(x) = 2g1D

∑
j
nF(εj + h)Re

[
uj(x)v∗j (x)

]
. (5.17)

Past studies have shown that a periodic solution to Eq. (5.17) has the soliton

train profile ∆0(x) = ∆1k1sn(∆1x/kF, k1), where ∆1 = 2kFk0K(k1)/π. Here 2π/k0

denotes the period,K denotes the complete elliptic integral of the first kind, and

k1 ∈ (0, 1) parametrizes the sharpness of the solitons.

Since ∆0(x) is periodic, each quasiparticle wavefunction (u(x), v(x)) in

Eq. (5.17) can be labeled by a quasimomentum k, with −k0/2 < k < k0/2 rep-

resenting the first Brillouin zone. In addition, the solutions have the following

properties: (i) (−vk, uk) is a wavefunction with energy −εk, and (ii) (v∗k, u
∗
k) is

another wavefunction with energy εk, i.e., (u−k, v−k) = (v∗k, u
∗
k) and ε−k = εk.

Therefore, the quasiparticle spectrum ε(k) is symmetric about both ε and k axes.
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For k ≥ 0 and ε ≥ 0, it is given by (in the extended zone representation)

k

k0

=
1

π

ε

ε+
Re

[√
ε2− − ε2
ε2+ − ε2

Π

(
ε2+ − ε2−
ε2+ − ε2

,

√
1− ε2−

ε2+

)]
, (5.18)

where ε± ≡ 1
2
(1±k1)∆1, and Π denotes the complete elliptic integral of the third

kind. Figure 1(b) of the main article shows the spectrum for k1 = 0.65. It has

a band of Andreev bound states with |ε| ≤ ε−, and continua of free states with

|ε| ≥ ε+. The dispersion is linear as k → 0 and k → ∞, with ε ≈ kFk for k � k0.

Interestingly, there is no gap in the spectrum at k = n(k0/2) with n = ±2,±3, . . . .

This is because ∆0(x) presents a reflectionless potential (a 1-gap Lamé potential)

to the Bogoliubov quasiparticles (see [21, 25, 170, 193–195] for more details).

Hereafter we’ll use ‘tilde’ (˜) to denote nondimensionalized quantities, with

energies rescaled by kFk0, and momenta rescaled by k0, e.g., ε̃± ≡ ε±/(kFk0),

k̃ ≡ k/k0. The density of states is given by

ρ̃(ε̃) ≡ 1

π

dk̃

dε̃
=

1

π
Re
{ |ε̃2 − ε̃2g|

[(ε̃2 − ε̃2−)(ε̃2 − ε̃2+)]1/2

}
, (5.19)

where ε2g ≡ ε2+ E
(√

1− ε2−
ε2+

)/
K

(√
1− ε2−

ε2+

)
. (5.20)

Here E denotes the complete elliptic integral of the second kind. Note that the

density of states diverges as ε → ε±, as expected for band edges in 1D. The

energy scale εg satisfies the inequality ε− < εg < ε+.

The quasiparticle wavefunctions can be expressed in terms of a “spectral

parameter” ak ∈ [−α, α] where α ≡ ε̃−1
+ K(ε−/ε+). The continuum of free states

with ε ≥ ε+ and k ≥ k0/2 is described by uk(x)

vk(x)

 =
eikx

2
√
L(ε̃2k − ε̃2g)


∑

n even

−i∑n odd

 eink0x

sinh(nα + ak/2)
, (5.21)
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where the momentum k and energy εk are parametrized as

k̃ = (i/π)
[
π ζ(iak̃|π, iα)−iak̃ ζ(π|π, iα)

]
and ε̃k̃ =

√
(ε̃2+ + ε̃2−)/3− ℘(iak̃|π, iα) .

(5.22)

Here ζ and ℘ denote Weierstrass elliptic functions with half-periods π and iα,

and L in Eq. (5.21) denotes the length of the system. As k varies from k0/2 to∞,

ak decreases monotonically from α to 0, and εk grows from ε+ to∞. Similarly,

the bound states with 0 ≤ k ≤ k0/2 and 0 ≤ ε ≤ ε− are described by uk(x)

vk(x)

 =
eikx

2
√
L(ε̃2g − ε̃2k)


∑

n even

−i∑n odd

 eink0x

cosh(nα + ak/2)
, (5.23)

with

k̃ = (i/π)
[
π ζ(π + iak̃|π, iα)− (π + iak̃)ζ(π|π, iα)

]
, (5.24)

ε̃k̃ =
√

(ε̃2+ + ε̃2−)/3− ℘(π + iak̃|π, iα) . (5.25)

As k is varied from 0 to k0/2, ak increases monotonically from 0 to α, and εk

grows from 0 to ε−.

Note that the spectrum and the wavefunctions are completely specified (in

rescaled coordinates) by the sharpness parameter k1. This parameter is in turn

set by k0, kF, h, and a1D at zero temperature through the self-consistency condi-

tion in Eq. (5.17). To see this, we use nF(ε) = Θ(−ε) at zero temperature, Θ being

the unit-step function, and write the self-consistency condition in terms of the

quasiparticle states with ε, k ≥ 0 as

∆0(x) = −4g1D

∑
k≥0

Θ(εk − h)Re [uk(x)v∗k(x)] . (5.26)

Using properties of elliptic functions, one can show that Re [uk(x)v∗k(x)] =

∆0(x)εk/
[
2L(ε2k − ε2g)

]
∀k ≥ 0 [25]. Substituting this result and the relation
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g1D = −2/a1D [166, 167] into Eq. (5.26), we get, in the limit L→∞,

2

πa1D

∫ kc

0

dk
Θ
(
εk − h

)
εk

ε2k − ε2g
= 1. (5.27)

Here we have introduced an ultraviolet cutoff kc because the integral has a loga-

rithmic divergence at high energies, as the dispersion is linear at large k. This is

an artifact of the Andreev approximation, and not present in the full model. We

choose the cutoff by requiring that a uniform (BCS-type) solution to Eq. (5.17)

match the known solution in the full model, as was done in Refs. [21, 25]. This

procedure yields kc/kF as a function of kFa1D (see Sec. 5.7.3). We find kc ≈ 2kF

throughout the weakly-interacting regime (kFa1D & 1). We have verified that

the soliton train profiles obtained using this cutoff closely match the numeri-

cally obtained profiles in the full model. Further, barring the weak dependence

of k1 on kc, the collective modes are insensitive to the choice of the cutoff. We

can rewrite Eq. (5.27) as∫ k̃c

0

dk̃
Θ(ε̃k̃ − h̃) ε̃k̃
ε̃2
k̃
− ε̃2g

=
π

2
kFa1D , or

∫ ε̃c

h̃

ε̃ ρ̃(ε̃)dε̃

ε̃2 − ε̃2m
=

1

2
kFa1D , (5.28)

where ε̃c ≡ ε̃k̃c . Substituting the expression for ρ̃(ε̃) from Eq. (5.20), and evaluat-

ing the integral, we get

Re

{
ln

[
(ε̃2c − ε̃2−)1/2 + (ε̃2c − ε̃2+)1/2

(ε̃2− − h̃2)1/2 + (ε̃2+ − h̃2)1/2

]}
=
π

2
kFa1D . (5.29)

Equation (5.29) determines k1 for given values of k0/kF, kFa1D, and |h|/(kFk0) at

zero temperature.

The collective modes are characterized by k1 and ns, where ns denotes the

number of unpaired fermions per soliton. To see how ns depends on k0, kF, a1D,
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and h, we first write the expressions for the densities of up- and down-spins:

〈Ψ̂†↑(x)Ψ̂↑(x)〉 = 2
∑

j
nF(εj + h)|uj(x)|2 =

∑
j
nF(εj + h)

(
|uj(x)|2 + |vj(x)|2

)
,

(5.30)

〈Ψ̂†↓(x)Ψ̂↓(x)〉 = 2
∑

j
nF(−εj − h)|vj(x)|2 =

∑
j
nF(−εj − h)

(
|uj(x)|2 + |vj(x)|2

)
.

(5.31)

In the last step of the above equations, we have made use of the symmetry

(u−k, v−k) = (v∗k, u
∗
k) and ε−k = εk. Thus, at zero temperature, the density of

unpaired fermions is given by

δn(x) =
∑

−|h|<εj<|h|

|uj(x)|2 + |vj(x)|2 =
∑

0≤εk<|h|

2
(
|uk(x)|2 + |vk(x)|2

)
. (5.32)

Here we have used ( − vk(x), uk(x)) and (u∗k(x),−v∗k(x)) for the two states with

energy −εk. From Eqs. (5.21) and (5.23), we see that δn(x+ π/k0) = δn(x). Thus

one can find ns by simply integrating δn(x) over all x, then dividing by the num-

ber of solitons Ns = L/(π/k0) = k0L/π. However,
∫
dx (|uk(x)|2 + |vk(x)|2) = 1

from normalization. Hence,

ns =
2π

k0L

∑
0≤εk<|h|

1
L→∞−−−−→ 2kh

k0

∣∣∣∣
εkh=h

=
2h̃

πε̃+
Re

[√
ε̃2− − h̃2

ε̃2+ − h̃2
Π

(
ε̃2+ − ε̃2−
ε̃2+ − h̃2

,

√
1− ε̃2−

ε̃2+

)]
,

(5.33)

where we have used Eq. (5.18) for the dispersion. Note that ε̃± = (1 ±

k1)K(k1)/π. Thus Eq. (5.33) yields ns for given values of |h|/(kFk0) and k1 at

zero temperature. When h = 0, ns = 0, and we get a balanced soliton train,

whereas for ε̃− < |h|/(kFk0) < ε̃+, ns = 1, and we get a commensurate FFLO

(C-FFLO) state.

Equations (5.29) and (5.33) determine k1 and ns for given values of k0/kF,

kFa1D, and |h|/(kFk0). In general, there can be zero, one, or multiple solutions,

as the left-hand side of Eq. (5.29) is a non-monotonic function of k1. Figure 5.6

149



|h
|/

(k
F
k
0
)

kFa1D

Figure 5.6: Stationary soliton train solutions in different regions of the kFa1D –
|h|/(kFk0) plane for k0/kF = 0.05. The solutions are obtained by imposing the
self-consistency condition in Eq. (5.29). The states are classified in terms of ns,
the number of unpaired fermions per soliton [Eq. (5.33)]. Solid (green), verti-
cally hatched (black), and oblique hatched (red) regions contain, respectively, a
solution with ns = 1, ns > 1, and 0 < ns < 1. Overlapping regions contain mul-
tiple solutions. Figure 5.4 in the main article is similar, but shows only stable
solutions for |h| > 0.

shows regions in the kFa1D – |h|/(kFk0) plane where different types of solutions

exist for k0/kF = 0.05. As k0/kF is decreased (increased), the regions remain

structurally similar, but translate to weaker (stronger) interactions. In particular,

the balanced soliton train with a given period exists only above a minimum

interaction strength, given by k0/kF . 4e−
π
2
kFa1D . Conversely, the C-FFLO phase

exists for all values of k0/kF and kFa1D, although for very weak interactions, it is

confined to a small interval of |h|/(kFk0) near 1/2. We also note that the C-FFLO

state for a given k0/kF and kFa1D does not vary with h, as Eqs. (5.29) and (5.33)

become independent of h for ε̃− < |h|/(kFk0) < ε̃+.
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5.7.3 High-energy cutoff in the Andreev approximation

In this section we find an expression for the cutoff kc in Eq. (5.27) by requir-

ing that a uniform superfluid solution to Eq. (5.17), ∆0(x) = ∆BCS, match the

corresponding solution in the full model (at h = 0).

At zero temperature, the stationary BdG equations in the full model, with

∆0(x) = ∆BCS ∈ R, are given by−∂2
x/2− εF ∆BCS

∆BCS ∂2
x/2 + εF


 uj(x)

vj(x)

 = εj

 uj(x)

vj(x)

 , (5.34)

with ∆0(x) = g1D

∑
j
Θ(−εj)uj(x)v∗j (x) . (5.35)

The Hamiltonian has plane wave eigenfunctions

(
u±k (x), v±k (x)

)
=

eikx√
2L

((
1 +

ξk
ε±k

)1/2

,±
(

1− ξk
ε±k

)1/2
)
, (5.36)

with energies ε±k = ±
√
ξ2
k + ∆2

BCS , (5.37)

where ξk ≡ k2/2 − εF. Using these expressions in the self-consistency condition

in Eq. (5.35), we obtain

∆BCS = −g1D

2L

∑
k

∆BCS(
ξ2
k + ∆2

BCS

)1/2
, or

∫ ∞
0

dk̄[
(k̄2 − 1)2 + (∆BCS/εF)2

]1/2 =
π

2
kFa1D ,

(5.38)

where k̄ ≡ k/kF, and we have taken the limit L→∞. Evaluating the integral in

Eq. (5.38) yields

1

[1 + (∆BCS/εF)2]1/4
F

(
π

∣∣∣∣12 +
1

2[1 + (∆BCS/εF)2]1/2

)
= πkFa1D , (5.39)

where F denotes the incomplete elliptic integral of the first kind. Inverting this

equation gives ∆BCS/εF as a function of kFa1D. In the weakly-interacting regime

(kFa1D & 1), ∆BCS decays exponentially with kFa1D as ∆BCS ≈ 8εF e
−π

2
kFa1D .
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Next we solve Eq. (5.17) with ∆0(x) = ∆BCS and h = 0 at zero temperature to

determine the cutoff kc:−ikF∂x ∆BCS

∆BCS +ikF∂x


 uj(x)

vj(x)

 = εj

 uj(x)

vj(x)

 , (5.40)

with ∆0(x) = 2g1D

∑′

j
Θ(−εj)Re

[
uj(x)v∗j (x)

]
, (5.41)

where the prime on the sum stands for the cutoff. We can again solve the system

in terms of plane waves

(
u±k (x), v±k (x)

)
=

eikx√
2L

((
1 +

kFk

ε±k

)1/2

,±
(

1− kFk

ε±k

)1/2
)
, (5.42)

where ε±k = ±
√

(kFk)2 + ∆2
BCS . (5.43)

Substituting these expressions in Eq. (5.41), we get

∆BCS = −g1D

L

∑′

k

∆BCS[
(kFk)2 + ∆2

BCS

]1/2 , or
∫ kc

kF

0

dk̄[
k̄2 + (∆BCS/2εF)2

]1/2 =
π

2
kFa1D ,

(5.44)

in the limit L→∞. Evaluating the integral yields

kc = (∆BCS/kF) sinh(πkFa1D/2) . (5.45)

Combining Eqs. (5.39) and (5.45), we obtain kc/kF as a function of kFa1D. For

kFa1D & 1, kc ≈ 2kF.

5.7.4 Energy of stationary states and phase diagram

Here we calculate the mean-field energy of stationary states in the Andreev ap-

proximation, which will let us compare the energies of the phases in Fig. 5.6, as

well as uniform states with ∆0(x) = constant, to arrive at a phase diagram.
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We rewrite the mean-field Hamiltonian in the Eq. (5.8) for a stationary state

∆(x, t) = ∆0(x) ∈ R as

ĤMF =

∫
dx

[(
Ψ̂†↑(x, t) Ψ̂↓(x, t)

)−∂2
x/2− εF + h ∆0(x)

∆0(x) ∂2
x/2 + εF + h


 Ψ̂↑(x, t)

Ψ̂†↓(x, t)


−Ψ̂↓(x, t)

(
∂2
x

2
+ εF + h

)
Ψ̂†↓(x, t)− Ψ̂†↓(x, t)

(
∂2
x

2
+ εF + h

)
Ψ̂↓(x, t)−

[∆0(x)]2

g1D

]
.

(5.46)

In the Andreev approximation, we diagonalize the Hamiltonian by the Bogoli-

ubov transformation (see Sec. 5.7.2)(
Ψ̂↑(x, t)

Ψ̂†↓(x, t)

)
=
∑′

j

[(
uj(x)

vj(x)

)
eikFx−iεjt γ̂+

j +

(
u∗j(x)

v∗j (x)

)
e−ikFx−iεjt γ̂−j

]
, (5.47)

where the wavefunctions (uj(x) vj(x))T satisfy Eq. (5.17), and the prime on

the sum indicates we only include modes with energies below the high-energy

cutoff. Next we use 〈γ̂s†j γ̂s
′
j′ 〉 = nF(εj + h)δjj′δss′ and

(
∂2
x/2− εF

)[( uj(x)

vj(x)

)
eikFx

]
≈
[
− ikF∂x

(
uj(x)

vj(x)

)]
eikFx (5.48)

in Eq. (5.46) to obtain the mean-field energy E ≡ 〈ĤMF〉 as

E =
∑′

j

[∫
dx
(
ikF vj(x)∂xv

∗
j (x)− ikF v

∗
j (x)∂xvj(x)− 2h|vj(x)|2

)
+ 2(εj + h)nF(εj + h)

]
− g−1

1D

∫
dx [∆0(x)]2 . (5.49)

The above expression can be simplified by noting that corresponding to a state

(uj(x) vj(x))T with energy εj , there is a state (− u∗j(x) v∗j (x))T with energy −εj
(see Sec. 5.7.2). Therefore the terms involving derivatives in Eq. (5.49) vanish

when summed over all states. Further, (v∗j (x) u∗j(x))T is also a state with energy

εj , which lets us write

2
∑′

j

∫
dx |vj(x)|2 = 2

∑′

j

∫
dx |uj(x)|2 =

∑′

j

∫
dx
(
|uj(x)|2+|vj(x)|2

)
=
∑′

j
1 .

(5.50)
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Using these results in Eq. (5.49), we find

E =
∑′

j

[
2(εj + h)nF(εj + h)− h

]
− g−1

1D

∫
dx [∆0(x)]2 . (5.51)

One can show that E is an even function of h, using the identity nF(−ε) =

1 − nF(ε) and the fact that the spectrum is symmetric for positive and negative

energies. Thus we can write

E =
∑′

j

[
2(|h| − εj)nF(|h| − εj)− |h|

]
− g−1

1D

∫
dx [∆0(x)]2 . (5.52)

In the limit of zero temperature and large system size (L→∞), Eq. (5.52) gives

an energy density

E ≡ E

L
= −2

∫ εkc

|h|
ερ(ε)dε− |h|

π

∫
εk<|h|

dk − g−1
1D

L

∫
dx [∆0(x)]2 , (5.53)

where ρ(ε) represents the density of states, and we have assumed that ∆0(x) is

either uniform or periodic, such that the spectrum can be labeled by quasimo-

menta k, with εk ≥ 0 ∀ k.

Next we apply Eq. (5.53) to calculate energy densities of different stationary

states. We start with the Normal state where ∆0(x) = 0. The spectrum is given

by εk = kF|k| (see Eq. (5.43)). Hence ρ(ε) ≡ (1/π)|dk/dε| = 1/(πkF). Using these

expressions in Eq. (5.53) yields an energy density

EN = − 1

πkF

(
k2

Fk
2
c + h2

)
= − 1

πkF

[
∆2

BCS sinh2
(π

2
kFa1D

)
+ h2

]
, (5.54)

or ĒN ≡
EN

kFεF
= − 1

2π

[
(∆BCS/εF)2 sinh2

(π
2
kFa1D

)
+ (h/εF)2

]
, (5.55)

where we have used Eq. (5.45) for kc, and defined a rescaled energy density

Ē ≡ E/(kFεF). The parameter ∆BCS/εF is a function of kFa1D as given in Eq. (5.39).

Note that the dependence of ĒN on the interaction strength kFa1D is a conse-

quence of the finite cutoff kc in the Andreev approximation. In the full model,
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the normal state has an energy density ĒFull
N = −(2/3π)

[
(1 + h/εF)3/2 + (1 −

h/εF)3/2
]

= −(1/6π)[8 + 3(h/εF)2] − O((h/εF)4) for |h| ≤ εF. Thus we see that

the introduction of the cutoff in the Andreev approximation renormalizes the

energy of the Normal state, such that ĒFull = Ē + Λ, where the shift Λ depends

on kFa1D. We find that for kFa1D & 1 and |h| � εF, the energy of a uniform super-

fluid experiences the same renormalization, and Λ is irrelevant for comparing

the energies of different states with one another. Therefore we will drop this

term in the following.

For a uniform superfluid phase with ∆0(x) = ∆u ≥ 0, the spectrum is given

by εk =
√

(kFk)2 + ∆2
u. Thus,

ρ(ε) ≡ 1

π

∣∣∣∣dkdε
∣∣∣∣ =

1

πkF

ε√
ε2 −∆2

u

Θ(ε−∆u) . (5.56)

Substituting this result in Eq. (5.53) and using g1D = −2/a1D, we find

Eu = − 2

πkF

∫ √(kFkc)2+∆2
u

Max(|h|,∆u)

ε2dε√
ε2 −∆2

u

− |h|
π

∫
√

(kFk)2+∆2
u<|h|

dk +
∆2
ua1D

2
(5.57)

= − 1

πkF

{
kFkc

√
(kFkc)2 + ∆2

u + ∆2
u sinh−1(kFkc/∆u)

+
[
|h|
√
h2 −∆2

u −∆2
u cosh−1(|h|/∆u)

]
Θ(|h| −∆u)

}
+ ∆2

ua1D/2 ,

(5.58)

where kFkc = ∆BCS sinh(πkFa1D/2) from Eq. (5.45). The stationary states corre-

spond to local extrema of Eu, i.e., dEu/d∆u = 0. For |h| < (1 − e−πkFa1D)∆BCS/2,

there is a maximum at ∆u = 0 (the Normal state) and a minimum at ∆u =

∆BCS (the “BCS” state). For |h| > (1 − e−πkFa1D)∆BCS/2, the Normal state

turns into a minimum, and a new maximum appears at ∆u = [h2 − (∆BCS −

|h|]2 tanh2(πkFa1D/2))1/2, which represents the unstable Sarma phase. As |h| is

increased, the Sarma maximum approaches the BCS minimum, and the two an-

nihilate at |h| = ∆BCS. For larger values of |h|, only the Normal phase min-
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imum survives. The energy of the “BCS” state can be obtained by setting

∆u = ∆BCS > |h| in Eq. (5.58), yielding

EBCS = − 1

2πkF
∆2

BCS sinh(πkFa1D) , or ĒBCS = − 1

4πε2F
∆2

BCS sinh(πkFa1D) . (5.59)

Note that ∆BCS/εF only depends on kFa1D [Eq. (5.39)], so ĒBCS is independent

of h. Comparing Eqs. (5.54) and (5.59) we find that EN < EBCS for h2 > (1 −

e−πkFa1D)∆2
BCS/2.

For a soliton train phase with period 2π/k0 and sharpness parameter k1 (see

Sec. 5.7.2),

∆0(x) = [2kFk0k1K(k1)/π] sn
(
2K(k1)k0x/π, k1

)
. (5.60)

The quasiparticle spectrum and the density of states are given in Eqs. (5.18) and

(5.20). In terms of rescaled quantities we defined earlier, the energy density in

Eq. (5.53) can be expressed as

ĒST = −4
k2

0

k2
F

{∫ ε̃c

|h̃|
ε̃ ρ̃(ε̃)dε̃+

1

π
k̃|h̃||h̃| −

kFa1D

8π
k0

∫ π/k0

−π/k0
dx [∆̃0(x)]2

}
. (5.61)

Here ĒST ≡ EST/(kFεF), k̃ ≡ k/k0, (ε̃, h̃, ∆̃0(x)) ≡ (ε, h,∆0(x))/(kFk0), ε̃c ≡ ε̃k̃c ,

and k|h| denotes the non-negative quasimomentum such that εk|h| = |h|. From

Eq. (5.18) we see that

k̃|h| =
|h̃|
πε̃+

Re

[√
ε̃2− − h̃2

ε̃2+ − h̃2
Π

(
ε̃2+ − ε̃2−
ε̃2+ − h̃2

,

√
1− ε̃2−

ε̃2+

)]
, (5.62)

where ε̃± ≡ (1± k1)K(k1)/π. Using ρ̃(ε̃) from Eq. (5.20) we find∫ ε̃c

|h̃|
ε̃ ρ̃(ε̃)dε̃ =

1

2π
Re

{(
ε̃2+ + ε̃2− − 2ε̃2g

)
ln

(
(ε̃2c − ε̃2−)

1
2 + (ε̃2c − ε̃2+)

1
2

(ε̃2− − h̃2)
1
2 + (ε̃2+ − h̃2)

1
2

)

+
[
(ε̃2c − ε̃2−)(ε̃2c − ε̃2+)

] 1
2 + (ε̃2− − h̃2)

1
2 (ε̃2+ − h̃2)

1
2

}
, (5.63)

where ε̃2g ≡ ε̃2+E
(
(1 − ε̃2−/ε̃

2
+)

1
2

)
/K
(
(1 − ε̃2−/ε̃

2
+)

1
2

)
. Finally, integrating over

[∆0(x)]2 we find

k0

∫ π/k0

−π/k0
dx [∆̃0(x)]2 =

8

π
K(k1)

[
K(k1)− E(k1)

]
. (5.64)
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Substituting Eqs. (5.62), (5.63), and (5.64) into Eq. (5.61) yields the energy density

of a soliton train phase. The stationary states with a given soliton spacing (k0/kF)

are obtained by extremizing ĒST with respect to k1, or equivalently, by solving

Eq. (5.29) (see Fig. 5.6). For the C-FFLO phase with ε̃− < |h̃| < ε̃+, the expression

for ĒST simplifies to

ĒC-FFLO = Ē0 − (k0/πkF)(|h|/εF) , (5.65)

where Ē0 is independent of h [as is k1, see Eq. (5.29)],

Ē0 =
2

π

k2
0

k2
F

{(
2ε̃2g − ε̃2+ − ε̃2−

)
ln

(
(ε̃2c − ε̃2−)

1
2 + (ε̃2c − ε̃2+)

1
2

(ε̃2+ − ε̃2−)
1
2

)
−
[
(ε̃2c − ε̃2−)(ε̃2c − ε̃2+)

] 1
2

+
2

π
kFa1DK(k1)

[
K(k1)− E(k1)

]}
. (5.66)

For a given value of k0/kF, both the balanced soliton train (ns = 0) and the

C-FFLO phase (ns = 1) represent local minima of ĒST(k1), whereas the phase

with ns > 1 represents a maximum lying between the C-FFLO and the Nor-

mal phase minima, thus forming an analog of the unstable Sarma phase. The

incommensurate FFLO phases with 0 < ns < 1 come in both varieties (maxi-

mum/minimum). By comparing the energies of these phases with the uniform

states [Eqs. (5.55), (5.59), and (5.61)], we arrive at the phase diagram shown in

Fig. 4 of the main article.

If k0/kF is allowed to vary, only the “BCS,” Normal, and C-FFLO phases

remain as local energy minima in the higher-dimensional space. A direct com-

parison of their energies reveal that the ground state changes from “BCS” for

|h| < (2/π)∆BCS to C-FFLO for |h| > (2/π)∆BCS via a second-order phase tran-

sition [21, 25]. As |h| is increased further, more nodes are introduced in the

C-FFLO ground state to host the excess fermions. In an exact Bethe Ansatz cal-

culation, the ground state eventually changes from FFLO to a fully polarized
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state for |h| & εF [196]. However, in the Andreev approximation, which is valid

for |h| � εF, a fully polarized state is never the ground state. It has an energy

EP = −
[
∆BCS sinh(πkFa1D/2) + |h|

]2
/(2πkF) ≥ EN .

5.7.5 Integral equations for collective modes

Here we derive a pair of integral equations describing the collective modes of

the order parameter in the Andreev approximation [Eqs. (5.4) and (5.5) in the

main article] by linearizing the dynamics about the stationary solution.

We start from the time-dependent BdG equations (see Sec. 5.7.2)

i∂t

U±j (x, t)

V ±j (x, t)

 =

∓ikF∂x + h ∆(x, t)

∆∗(x, t) ±ikF∂x + h


U±j (x, t)

V ±j (x, t)

 , (5.67)

with ∆(x, t) = g1D

∑′

s=±,j

nF(εj + h)U s
j (x, t)V s∗

j (x, t) , (5.68)

where the prime on the summation imposes the high-energy cutoff. We

substitute ∆(x, t) = ∆0(x) + δ∆(x, t) and (U±j (x, t), V ±j (x, t)) = (u±j (x) +

δu±j (x, t), v±j (x) + δv±j (x, t))e−i(εj+h)t into Eqs. (5.67) and (5.68), and retain terms

which are linear in the fluctuations, yielding

i∂t

δu±j (x, t)

δv±j (x, t)

=

∓ikF∂x − εj ∆0(x)

∆0(x) ±ikF∂x − εj


δu±j (x, t)

δv±j (x, t)

+

 δ∆(x, t)v±j (x)

δ∆∗(x, t)u±j (x)

 ,

(5.69)

and δ∆(x, t) = g1D

∑′

s=±,j

nF(εj + h)
[
usj(x)δvs∗j (x, t) + vs∗j (x)δusj(x, t)

]
. (5.70)

Next we decouple the fluctuations into frequency components by writing

δ∆(x, t) = e−ηt
[
δ∆+(x)eiωt + δ∆−(x)e−iωt

]
, δusj(x, t) = e−ηt

[
δusj,+(x)eiωt +
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δusj,−(x)e−iωt
]
, and δvsj (x, t) = e−ηt

[
δvsj,+(x)eiωt + δvsj,−(x)e−iωt

]
where η, ω ∈ R.

Using these expressions in Eqs. (5.69) and (5.70), we find−iskF∂x−εj±ω+ iη ∆0(x)

∆0(x) iskF∂x−εj±ω+ iη


δusj,±(x)

δvsj,±(x)

+

δ∆±(x)vsj (x)

δ∆∗∓(x)usj(x)

= 0 ,

(5.71)

and δ∆±(x) = g1D

∑′

s=±,j

nF(εj + h)
(
usj(x)δvs∗j,∓(x) + vs∗j (x)δusj,±(x)

)
. (5.72)

We then use the completeness of the stationary wavefunctions to express

δusj,±(x) and δvsj,±(x) in terms of δ∆±(x) from Eq. (5.71). Specifically, we write

(δusj,±(x), δvsj,±(x)) =
∑

j′ c
s
jj′,±(u

s
j′(x), vsj′(x)), and use Eq. (5.15) to obtain

∑
j′

csjj′,±(εj′ − εj ± ω + iη)

 usj′(x)

vsj′(x)

+

 δ∆±(x)vsj (x)

δ∆∗∓(x)usj(x)

 = 0 , (5.73)

or csjj′,± =
1

εj − εj′ ∓ ω − iη

∫
dx
(
vsj (x)us∗j′ (x)δ∆±(x) + usj(x)vs∗j′ (x)δ∆∗∓(x)

)
,

(5.74)

for s = ±. We have taken the inner product with (us∗j′ (x) vs∗j′ (x)) from the left

on Eq. (5.73), and used the orthonormality of the stationary wavefunctions to

arrive at Eq. (5.74). Substituting the expression for csjj′,± into the self-consistency

condition in Eq. (5.72) yields a pair of coupled homogeneous integral equations

for δ∆±(x),

δ∆±(x) = g1D

∑
s=±

∑′

j

∑
j′

nF(εj + h)
(
usj v

s∗
j′ c

s∗
jj′,∓ + vs∗j u

s
j′ c

s
jj′,±

)
(5.75)

=

∫
dx′
[
g1D

∑′

s=±,j

∑
j′

nF(εj + h)

(
usj v

s∗
j′ u

′s∗
j v′sj′

εj − εj′ ± ω + iη
+

vs∗j u
s
j′ v
′s
j u
′s∗
j′

εj − εj′ ∓ ω − iη

)]
δ∆±(x′)

+

∫
dx′
[
g1D

∑′

s=±,j

∑
j′

nF(εj + h)

(
usj v

s∗
j′ v

′s∗
j u′sj′

εj − εj′ ± ω + iη
+

vs∗j u
s
j′ u
′s
j v
′s∗
j′

εj − εj′ ∓ ω − iη

)]
δ∆∗∓(x′) ,

(5.76)
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with the notation (u, v) ≡ (u(x), v(x)) and (u′, v′) ≡ (u(x′), v(x′)). Next we

use two symmetries of the stationary wavefunctions: (i) if (usj(x) vsj (x))T is

an eigenstate with energy εj , then (vs∗j (x) us∗j (x))T is also an eigenstate with

energy εj , and (ii) (u−j (x), v−j (x)) = (u+
j (x), v+

j (x))∗ (see Sec. 5.7.2). These two

symmetries let us write Eq. (5.76) as

δ∆+(x) =

∫
dx′
[
M1(x, x′; Ω)δ∆+(x′) +M2(x, x′; Ω)δ∆∗−(x′)

]
, (5.77)

and δ∆∗−(x) =

∫
dx′
[
M2(x, x′; Ω)δ∆+(x′) +M1(x, x′; Ω)δ∆∗−(x′)

]
, (5.78)

where Ω ≡ ω + iη, and

M1(x, x′; Ω) = g1D

∑′

j

∑
j′

nF(εj + h)
2(εj − εj′)

(εj − εj′)2 − Ω2

(
u∗jvj′u

′
jv
′∗
j′ + v∗juj′v

′
ju
′∗
j′
)
,

(5.79)

M2(x, x′; Ω) = g1D

∑′

j

∑
j′

nF(εj + h)
2(εj − εj′)

(εj − εj′)2 − Ω2

(
u∗jvj′v

′
ju
′∗
j′ + v∗juj′u

′
jv
′∗
j′
)
.

(5.80)

Here all the wavefunctions refer to the right-moving branch. We can express

Eqs. (5.77) and (5.78) in a simpler form by defining δp,a(x) ≡ δ∆+(x) ∓ δ∆∗−(x).

Note that the fluctuation of the order parameter is given by

δ∆(x, t) = e−ηt
[
δ∆+(x)eiωt + δ∆−(x)e−iωt

]
= Re(δa(x)eiΩt) + i Im(δp(x)eiΩt) .

(5.81)

Since ∆0(x) is real, δp(x) and δa(x) describe the phase- and amplitude-

fluctuations of the order parameter, respectively. From Eqs. (5.77) and (5.78)

we see that the phase and amplitude fluctuations decouple, with

δp,a(x) = −g1D

∫
dx′M±(x, x′; Ω)δp,a(x

′) , where M± ≡ −g−1
1D (M1 ∓M2) .

(5.82)
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Using Eqs. (5.79) and (5.80) we find

M±(x, x′; Ω) = −
∑′

j

∑
j′

nF(εj + h)
2(εj − εj′)

(εj − εj′)2 − Ω2

(
u∗jvj′ ∓ v∗juj′

)(
u′jv

′∗
j′ ∓ v′ju′∗j′

)
,

=
∑′

j

∑
j′

nF(h− εj)
2(εj + εj′)

(εj + εj′)2 − Ω2

(
u∗juj′ ± v∗j vj′

)(
u′ju

′∗
j′ ± v′jv′∗j′

)
.

(5.83)

In Eq. (5.83) we have used the symmetry that for any eigenstate (uj(x) vj(x))T

with energy εj , there is a corresponding eigenstate (−vj(x) uj(x))T with energy

−εj (see Sec. 5.7.2). At zero temperature, nF(h− εj) = Θ(εj − h). Then Eq. (5.83)

reduces to

M±(x, x′; Ω) =
∑′

j

∑
j′

2(εj + εj′)

(εj + εj′)2 − Ω2

(
u∗juj′ ± v∗j vj′

)(
u′ju

′∗
j′ ± v′jv′∗j′

)
, (5.84)

where the prime on the j-summation now stands for the condition h ≤ εj < εc,

εc being the high-energy cutoff. Eqs. (5.82) and (5.84) describe the collective

modes of the order parameter about any stationary solution in the Andreev ap-

proximation. In particular, they apply to both a soliton train state and a uniform

state.

5.7.6 Goldstone and “Higgs” modes

A soliton train spontaneously breaks both gauge- and translational-symmetries.

Therefore, it has two gapless Goldstone modes: a phase mode described by

δp(x) ∝ ∆0(x) and an amplitude mode described by δa(x) ∝ ∆′0(x) at zero en-

ergy. On the other hand, a uniform state breaks only gauge symmetry, and

has only one Goldstone mode described by δp(x) ∝ 1 at zero energy. Below

we show that more generally, δp(x) ∝ ∆0(x)eiqx is a collective mode with dis-
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persion ω(q) = kFq, describing Anderson-Bogoliubov phonons traveling at the

Fermi velocity.

We let R represent the right-hand side of Eq. (5.82). For δp(x) = ∆0(x)eiqx

and Ω = kFq, with Eq. (5.83),

R =−g1D

∑′

j

∑
j′

(
u∗juj′+v

∗
j vj′
)2nF(h− εj) (εj + εj′)

(εj + εj′)2−(kFq)2

∫
dx′
(
u′ju

′∗
j′+v

′
jv
′∗
j′
)
∆0(x′)eiqx

′
.

(5.85)

However, using the BdG equations [Eq. (5.17)] we can write∫
dx′
(
u′ju

′∗
j′ + v′jv

′∗
j′
)
∆0(x′)eiqx

′

=

∫
dx′u′∗j′

(
εjv
′
j − ikF∂x′v

′
j

)
eiqx

′
+ v′j

(
εj′u

′∗
j′ − ikF∂x′u

′∗
j′
)
eiqx

′

= (εj + εj′ − kFq)

∫
dx′u′∗j′v

′
j e

iqx′ − ikF

∫
dx′∂x′

(
u′∗j′v

′
j e

iqx′
)

= (εj + εj′ − kFq)

∫
dx′u′∗j′v

′
j e

iqx′ , (5.86)

where we have used periodic boundary conditions. Similarly, we find∫
dx′
(
u′ju

′∗
j′ + v′jv

′∗
j′
)
∆0(x′)eiqx

′
= (εj + εj′ + kFq)

∫
dx′v′∗j′u

′
j e

iqx′ . (5.87)

Using Eqs. (5.86) and (5.87) in Eq. (5.85), we get

R = −g1D

∑′

j
nF(h− εj)

∑
j′

∫
dx′
(
u∗juj′ + v∗j vj′

)(
u′∗j′v

′
j + v′∗j′u

′
j

)
eiqx

′
. (5.88)

Next we substitute the completeness relations
∑

j′ uj′u
′∗
j′ = vj′v

′∗
j′ = δ(x − x′)

and
∑

j′ uj′v
′∗
j′ = 0 in Eq. (5.88), and use the self-consistency of the stationary

solution [Eq. (5.17)] to obtain

R = −g1D

∑′

j
nF(h− εj)

(
u∗jvj + v∗juj

)
eiqx = ∆0(x)eiqx. (5.89)

This result shows that the proposed collective mode indeed satisfies the integral

equation [Eq. (5.82)]. Note that in applying completeness, we use the fact that
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Figure 5.7: Goldstone and “Higgs” modes of a fermionic soliton train with
sharpness parameter k1 = 0.999: (a) Goldstone phase mode with wave-vector
q = k0/4, (b) Goldstone amplitude mode with q = k0/4, (c) “Higgs” mode with
q = k0.

the sum over j′ in Eq. (5.88) is unrestricted, i.e., it includes states beyond the

high-energy cutoff. This is important for obtaining the correct Goldstone modes.

Similarly, we can show that δa(x) ∝ ∆′0(x) represents a zero-energy collective

mode for any non-uniform state. More generally, we find from numerics on the

soliton train and the uniform state that δa(x) ∝ uq/2(x)vq/2(x) describes a collec-

tive mode with dispersion ω(q) = 2ε(q/2), where ε(k) denotes the single-particle

spectrum. For the uniform state, this mode describes sinusoidal oscillations of

the order-parameter amplitude, also known as the Higgs mode. From Eq. (5.43)

we see that the “Higgs” mode has dispersion ω(q) = 2
√

(kFq/2)2 + ∆2
BCS. For

the soliton train, the mode has two branches: a gapless branch with q < k0, and

a gapped branch with q > k0. The gapless branch represents a Goldstone am-

plitude mode, approaching δa(x) ∝ ∆′0(x) as q → 0, whereas the gapped branch

represents the remnant of the “Higgs” mode. The dispersion can be found us-

ing the single-particle spectrum given in Eq. (5.18). In particular, the dispersion

is linear as q → 0, with a group velocity dω/dq = kF(ε+ε−/ε
2
g), where ε± and

εg are defined in Sec. 5.7.2. Figure 5.7 shows the fluctuations described by the

Goldstone and “Higgs” modes of a soliton train.
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5.7.7 Matrix equations for collective mode spectrum

Here we derive matrix equations describing the collective modes of a soliton

train at zero temperature. We utilize features of the stationary solution outlined

in Sec. 5.7.2 to find simplified expressions suited for numerics.

The collective modes have a Brillouin zone structure as ∆0(x) is periodic.

Further, the Brillouin zone has size 2k0 because of the additional symmetry

∆0(x + π/k0) = −∆0(x) [141]. Thus we can write δp,a(x) = eiqx
∑

nC
±
n e

ink0x,

where n varies over odd integers, and −k0 ≤ q ≤ k0. Substituting this Fourier

expansion into Eq. (5.82), we get

C±n = −g1D

∑
m
M±

nm(q,Ω)C±m , (5.90)

where M±
nm(q,Ω) ≡ k0

2π

∫ π/k0

−π/k0
dx

∫
dx′e−i(q+nk0)xei(q+mk0)x′M±(x, x′; Ω) . (5.91)

The collective modes represent non-trivial solutions to Eq. (5.90). Therefore the

task is to compute the matrices M±
nm(q,Ω). Using the zero-temperature expres-

sion forM±(x, x′; Ω) [Eq. (5.84)] in Eq. (5.91), we find

M±
nm(q,Ω) =

k0

π

∑′

j

∑
j′

εj + εj′

(εj +εj′)2 − Ω2

∫ π/k0

−π/k0
dxe−i(q+nk0)x

(
uj′u

∗
j ± vj′v∗j

)
×
∫
dx′ei(q+mk0)x′

(
u′∗j′u

′
j ± v′∗j′v′j

)
(5.92)

=
k0

π

∑′

k

∑
k′

[
εk + εk′

(εk + εk′)2 − Ω2
I

(1)
kk′ +

εk − εk′
(εk − εk′)2 − Ω2

I
(2)
kk′

]
, (5.93)

where

I
(1)
kk′ ≡

∫ π/k0

−π/k0
dxe−i(q+nk0)x

(
uk′u

∗
k ± vk′v∗k

) ∫
dx′ei(q+mk0)x′

(
u′∗k′u

′
k ± v′∗k′v′k

)
, (5.94)

I
(2)
kk′ ≡

∫ π/k0

−π/k0
dxe−i(q+nk0)x

(
uk′v

∗
k ∓ vk′u∗k

) ∫
dx′ei(q+mk0)x′

(
u′∗k′v

′
k ∓ v′∗k′u′k

)
. (5.95)

Here we have relabeled the sums over j and j′ in terms of quasimomenta k and

k′ with εk, εk′ ≥ 0, and used the symmetry that a negative energy state with
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quasimomentum k has energy −εk and wavefunction (− vk(x) uk(x))T . As

before, the prime on the k sum in Eq. (5.93) stands for h ≤ εk < εc, and we

consider h ≥ 0 without loss of generality. Next we use the symmetry ε−k = εk

and (u−k(x), v−k(x)) = (v∗k(x), u∗k(x)) ∀k in Eqs. (5.93) and (5.95) to obtain

M±
nm(q,Ω) =

k0

π

∑′

k

∑
k′

[
εk + εk′

(εk + εk′)2 − Ω2
I

(1)
kk′ +

εk − εk′
(εk − εk′)2 − Ω2

I
(2)
k′k

]
. (5.96)

Combining Eqs. (5.93) and (5.96), we can write

M±
nm(q,Ω) =

k0

π

∑ 1©

k,k′

εk + εk′

(εk + εk′)2 − Ω2
I

(1)
kk′ +

k0

π

∑ 2©

k,k′

εk − εk′
(εk − εk′)2 − Ω2

I
(2)
kk′ ,

(5.97)

where 1© stands for the condition εk ∈ [h, εc), and 2© stands for the condition

εk ∈ [h, εc) ∧ εk′ /∈ [h, εc).

Next we note from Eqs. (5.94) and (5.95) that both I(1)
kk′ and I(2)

kk′ vanish unless

k′ = k + q + rk0 where r is an integer, in which case I(1)
kk′ = (2π/k0L)

(
ξk
′,k
±,n
)∗
ξk
′,k
±,m,

and I
(2)
kk′ = (2π/k0L)

(
χk
′,k
±,n
)∗
χk
′,k
±,m, where

ξk1,k2±,m ≡
k0L

2π

∫ π/k0

−π/k0
dxei(q+mk0)x

(
u∗k1(x)uk2(x)± v∗k1(x)vk2(x)

)
, (5.98)

and χk1,k2±,m ≡
k0L

2π

∫ π/k0

−π/k0
dxei(q+mk0)x

(
u∗k1(x)vk2(x)∓ v∗k1(x)uk2(x)

)
. (5.99)

Using this result in Eq. (5.97), we obtain

M±
nm(q,Ω) =

2

L

[∑ 1©

r,k

εk+q+rk0+ εk
(εk+q+rk0+ εk)2 − Ω2

(
ξk+q+rk0,k
±,n

)∗
ξk+q+rk0,k
±,m

−
∑ 2©

r,k

εk+q+rk0− εk
(εk+q+rk0− εk)2 − Ω2

(
χk+q+rk0,k
±,n

)∗
χk+q+rk0,k
±,m

]
, (5.100)

where r varies over integers, 1© stands for εk ∈ [h, εc) as before, and now 2©
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stands for εk ∈ [h, εc) ∧ εk+q+rk0 /∈ [h, εc). Taking the limit L→∞, we find

−g1DM
±
nm(q,Ω) =

1

πkFa1D

∑
r

[ ∫
1©
dk̃

ε̃k̃+q̃+r+ ε̃k̃

(ε̃k̃+q̃+r+ ε̃k̃)
2 − Ω̃2

(
ξk̃+q̃+r,k̃
±,n

)∗
ξk̃+q̃+r,k̃
±,m

−
∫

2©
dk̃

ε̃k̃+q̃+r− ε̃k̃
(ε̃k̃+q̃+r− ε̃k̃)2 − Ω̃2

(
χk̃+q̃+r,k̃
±,n

)∗
χk̃+q̃+r,k̃
±,m

]
.

(5.101)

Here we have expressed the integrals in rescaled coordinates (see Sec. 5.7.2) and

used the relation g1D = −2/a1D [166, 167].

Fortunately, the ξ∗ξ and χ∗χ terms in Eq. (5.101) can be computed in closed

form for the stationary wavefunctions in Eqs. (5.21) and (5.23). First we note that

uk(x) has only even Fourier components if k is positive and only odd Fourier

components if k is negative. For vk(x), its the other way around. Therefore,

Eq. (5.98) implies that ξk+q+rk0,k
±,m will be non-zero only if k and k+q+rk0 have the

same sign when r and m have the same parity, and opposite sign when r and m

have opposite parity. For χk+q+rk0,k
±,m , the conditions are reversed. A corollary of

this result is that M±
nm = 0 unless n and m have the same parity, which validates

our premise of choosing both n and m to be odd. When the terms in Eq. (5.101)

are non-zero, their computation involves evaluating the sums

S±(α; z1, z2) ≡
∑
n even

1

sinh(nα+z1) sinh(nα+z2)
±
∑
n odd

1

sinh(nα+z1) sinh(nα+z2)
,

(5.102)

where α ∈ R and z1, z2 ∈ C. These sums can be calculated in terms of the

q-digamma function ψq(z) as [197]

S+(α; z1, z2) =
4(z2 − z1) + ψe2α( z1

α
)− ψe2α( z2

α
) + ψe2α(1− z2

α
)− ψe2α(1− z1

α
)

α sinh(z1 − z2)
,

(5.103)

S−(α; z1, z2) = 2S+(2α; z1, z2)− S+(α; z1, z2) , (5.104)
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with the understanding that for z1 = z2 one has to take the limit z1 → z2 in

Eq. (5.103). When the ξ∗ξ and χ∗χ terms in Eq. (5.101) are non-zero, they are

both real and given by the expression

S±
(
α; (m− r)α+ 1

2
ak̄+φk̄,

1
2
ak̃+φk̃

)
S±
(
α; (n− r)α+ 1

2
ak̄+φk̄,

1
2
ak̃ + φk̃

)
16
(
ε̃2g − ε̃2k̄

) (
ε̃2g − ε̃2k̃

) ,

(5.105)

where k̄ = k̃+ q̃+r, φk̃ = (iπ/2)Θ(1/2−|k̃|), and ε̃g, ε̃k̃, ak̃ are given in Eqs. (5.20),

(5.22) and (5.25). From Eqs. (5.101) and (5.105) we see that M±
nm = M±

mn, and

M±(q,Ω∗) = [M±(q,Ω)]∗. For computation purposes, it is most convenient to

convert the integrals in Eq. (5.101) into integrals over the spectral parameter ak̃,

using the relation dk̃ =
(
ε̃2g − ε̃2k̃

)
dak̃.

The expression in Eq. (5.105) can be further simplified using properties of

the q-digamma function, so that the complexity of computing the matrix grows

as O(nmax), where n,m take on values from −nmax to nmax in steps of 2. To speed

up computation, we also truncate the infinite sums over r in Eq. (5.101) to finite

sums from−rmax to rmax. We find that the sums converge rapidly for rmax & nmax.

To evaluate M±(q,Ω) for real Ω, we include a small imaginary part to avoid

branch cut singularities arising from the particle-hole continua.

5.7.8 Relation between collective modes and pair susceptibility

Here we find a simple relation between the matrix derived in Sec. 5.7.7 and the

pairing susceptibility. To calculate the susceptibility, we find the linear response

to a small external pairing field, δĤ =
∫
dxf(x, t)Ψ̂†↑(x, t)Ψ̂

†
↓(x, t) + H.c. In the

time-dependent BdG dynamics (see Sec. 5.7.5), this pairing field changes ∆(x, t)

to ∆(x, t) + f(x, t) in Eq. (5.67) and δ∆(x, t) to δ∆(x, t) + f(x, t) in Eq. (5.69). We
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assume the drive to be at frequency ω ∈ R, i.e.,

f(x, t) = f+(x)eiωt + f−(x)e−iωt ≡ Re(fa(x)eiωt) + i Im(fp(x)eiωt) . (5.106)

In steady-state the order-parameter fluctuations oscillate at the same frequency

ω. Hence we set η = 0 or Ω = ω in the remaining steps in Sec. 5.7.5. The inclusion

of the driving terms changes δ∆±(x) to δ∆±(x) + f±(x) in Eqs. (5.71), (5.73), and

(5.74), and δ∆±(x′) to δ∆±(x′) + f±(x′) in the right-hand sides of Eqs. (5.76),

(5.77), and (5.78). The phase and amplitude modes still decouple. However,

they are now governed by an inhomogeneous integral equation,

δp,a(x) = −g1D

∫
dx′M±(x, x′;ω)

[
δp,a(x

′) + fp,a(x
′)
]
. (5.107)

Expanding δp,a(x) and fp,a(x) into Fourier components as δp,a(x) =

eiqx
∑

nC
±
n e

ink0x and fp,a(x) = eiqx
∑

n F
±
n e

ink0x, and substituting into Eq. (5.107)

yield

C±n = −g1D

∑
m
M±

nm(q, ω)
(
C±m + F±m

)
, (5.108)

where the matricesM±(q, ω) were studied in detail in Sec. 5.7.7. From Eq. (5.108)

we can write C±n =
∑

mX
±
nm(q, ω)C±m, where X±(q, ω) represent the susceptibil-

ity matrices, given by

X±(q, ω) = −g1D (I + g1DM
±(q, ω))−1M±(q, ω) . (5.109)

We define scalar susceptibilities χ±(q, ω) ≡ Tr X±(q, ω). In terms of the eigen-

values λ±j of the matrices −g1DM
±(q, ω), we can write χ± =

∑
j λ
±
j /(1− λ±j ).

From Eq. (5.90) we see that the collective modes with real Ω represent zeros

of the eigenvalues of I + g1DM
±(q, ω). Thus they show up as isolated poles of

χ±(q, ω). The branch cuts of M±(q, ω), which originate from particle-hole exci-

tations, show up as broad diffuse spectra in Imχ±(q, ω).
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An alternative derivation involves writing the susceptibility as

X =

 δ∆(x,t)
δf(x′,t′)

δ∆(x,t)
δf∗(x′,t′)

δ∆∗(x,t)
δf(x′,t′)

δ∆∗(x,t)
δf∗(x′,t′)


=− g1D

 δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δf(x′,t′)

δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δf∗(x′,t′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δf(x′,t′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δf∗(x′,t′)


0

− g1D

∫
dx′′dt′′

 δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δ∆(x′′,t′′)

δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δ∆∗(x′′,t′′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δ∆(x′′,t′′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δ∆∗(x′′,t′′)


 δ∆(x′′,t′′)

δf(x′,t′)
δ∆(x′′,t′′)
δf∗(x′,t′)

δ∆∗(x′′,t′′)
δf(x′,t′)

δ∆∗(x′′,t′′)
δf∗(x′,t′)

 ,

(5.110)

where the first term on the right is the response neglecting self-consistency and

the second term gives the correction from self-consistency. We define

M≡

 δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δf(x′,t′)

δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δf∗(x′,t′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δf(x′,t′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δf∗(x′,t′)


0

=

 δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δ∆(x′,t′)

δ〈Ψ̂↓(x,t)Ψ̂↑(x,t)〉
δ∆∗(x′,t′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δ∆(x′,t′)

δ〈Ψ̂†↑(x,t)Ψ̂
†
↓(x,t)〉

δ∆∗(x′,t′)

 .

(5.111)

In the Fourier domain Eq. (5.110) has the same form as Eq. (5.109). A straightfor-

ward application of linear response theory [198] confirms that in the Andreev

approximation, Eq. (5.111) reduces to M =

M1 M2

M2 M1

, where M1 and M2

are defined in Eqs. (5.79) and (5.80).

5.7.9 Spectra at different interactions and spin imbalance

In this section we present additional figures showing the variation of the col-

lective mode spectrum of a soliton train with spin imbalance and interaction

strength.

Figure 5.8 shows how the spectrum changes as the number of unpaired
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Figure 5.8: Collective excitation spectra of a fermionic soliton train at differ-
ent spin imbalance in the extended zone representation, for k0/kF = 0.05 and
kFa1D = 2.65. Gray regions show particle-hole continua, dot-dashed (green)
curves show the Goldstone phase (phonon) mode, while dashed (blue) curves
represent the doubly-degenerate “core” modes. The Goldstone amplitude
(“elastic”) mode with q ≤ k0, as well as the “Higgs” mode with q ≥ k0, are
shown by solid (black) lines. The dotted (red) curves give the growth rate η of
the two-fold degenerate unstable modes. For ns > 1, the unstable modes are
connected via a cusp to a new branch of stable modes, shown as wide-dashed
(red) curves.

fermions per soliton (ns) is varied. As ns is increased from 0, the instability

rate falls toward zero, and vanishes for the C-FFLO phase with ns = 1. Since a

change in ns comes about from altering the chemical potentials, it also affects the

allowed particle-hole excitations, so the two-particle continua are modified. In

the limit ns → 1, the degenerate “core” modes merge with the neighboring con-

tinuum, and the Goldstone amplitude mode becomes undamped. For ns ≥ 1,

the “core” modes (dashed, blue lines in Fig. 5.8) are confined to wave-vectors
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Figure 5.9: Collective excitation spectra of a fermionic soliton train at different
interaction strengths in the extended zone representation, for k0/kF = 0.05 and
ns = 0. Conventions for the curves/regions are the same as in Fig. 5.8.

q ≤ k0. This is different from the ns < 1 case, when the “core” modes extend

to arbitrarily large q. As described in the main article, the amplitude and phase

branches of the “core” modes are related as δa(x) ∝ δ′p(x) ∀ q. At q = 0, they

are described by δp(x) ∝ cn(∆1x/kF, k1) and ω = ∆1k1. For ns ≥ 1, the end-

point of the “core” spectrum at q = k0 also has a simple form: there we find

δp(x) ∝ dn(∆1x/kF, k1) and ω = ∆1 [Note that ∆1 ≡ 2kFk0K(k1)/π]. The state

with ns > 1 is an analog of the unstable Sarma phase (see Sec. 5.7.4). It has zero-

energy particle-hole excitations, and we again find dynamical instabilities. As

before, there are two degenerate unstable modes which reduce to δp(x) ∝ ∆0(x)

and δa(x) ∝ ∆′0(x) at q = 0, shown as dotted red lines in Fig. 5.8. However, the

maximum instability occurs at a wave-vector q < k0, and the unstable modes are

connected, via a cusp at q = q0 ≤ k0, to a doubly degenerate stable mode which

extends to large wave-vectors, shown as dashed red lines. As ns is increased,

the maximum instability rate grows, and q0 moves toward k0. In addition, more

of the low-energy “Higgs” modes become undamped. A soliton train solution

exists as long as ns < nmax
s = [1 + (4 ε̃2c − 1)e−πkFa1D ]1/2. In the limit ns → nmax

s , the

soliton train reduces to a sinusoid of vanishingly small amplitude.
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Figure 5.9 shows the variation in the spectrum with interaction strength.

Stronger interactions (smaller kFa1D) increase the band-gap between the bound

states and free states in the single-particle spectrum (see Fig. 1 of the main ar-

ticle), which leads to a larger separation of energy scales in the collective mode

spectrum. In particular, the “Higgs” mode and the “core” modes move to higher

frequencies, while the Goldstone amplitude mode moves to a lower frequency.

Stronger interactions also produce sharp, well-separated solitons, thus reducing

the instability rate. In the next section, we present simulations of the full time-

dynamics of a two-soliton system without the Andreev apprximation, which

show that the instabilities become unnoticeable for kFa1D . 2.

5.7.10 Simulation of the full dynamics of a two-soliton system

We simulate the full BdG dynamics [Eq. (5.9)] of two solitons on a ring with-

out the Andreev approximation, using a split-step algorithm. We start from

the stationary solution ∆0(x), with two domain walls located at x = ±π/(2k0),

and apply a small perturbation δĤ =
∫
dxf(x, t)Ψ̂†↑(x, t)Ψ̂

†
↓(x, t) + H.c. where

f(x, t) = −(0.01/k0)|∆′0(x)|e−5tkFk0Θ(t). The perturbation is short-lived com-

pared to the dynamical timescales. However, it causes the two solitons to start

moving toward each other. Figure 5.10 shows the ensuing dynamics for dif-

ferent interaction strengths and spin imbalance. The dark bands represent the

location of the domain walls [where ∆(x, t) = 0] as a function of time. For weak

interactions and no spin imbalance, the system has dynamical instabilities: the

solitons approach one another and annihilate, then repeatedly reform and an-

nihilate. At stronger interactions, it takes longer for the solitons to merge, dur-

ing which they exhibit a rich oscillatory motion. For very strong interactions
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Figure 5.10: Full dynamics of two solitons with periodic boundary conditions,
for k0/kF = 0.05. The absolute magnitude of ∆ is proportional to the brightness,
so dark bands represent the location of domain walls. The color wheels on the
right show how the phase of ∆ is encoded. Upper row: no spin imbalance,
with (a) kFa1D = 2.75, (b) kFa1D = 2.4, and (c) kFa1D = 2. Lower row: with spin
imbalance, and (d) kFa1D = 2.75, (e) kFa1D = 2.4, and (f) kFa1D = 2.

(kFa1D . 2 for k0/kF = 0.05), we no longer see a merging of the solitons. In-

stead, they collide elastically off one another, and the domain walls undergo

slow oscillations. This increase in stability with interaction strength is in agree-

ment with the variation of the collective-mode spectrum of a soliton train in

Fig. 5.9. Figures 5.10(d)-(f) show the dynamics in the presence of spin imbal-

ance, such that the chemical potential difference |h| is larger then the energy

of the Andreev bound states, but smaller than the energy of all free quasipar-

ticle states. This situation corresponds to the C-FFLO state of a soliton train,
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which we found earlier to be dynamically stable (see Fig. 5.8). Similarly we find

here that the domain walls undergo stable oscillations. The oscillation timescale

corresponds to the frequency of the “elastic” modes in Fig 5.8, which become

slower at stronger interactions. The initial response to the perturbation is larger

for stronger interactions.

5.7.11 Soliton train in the Gross-Pitaevskii equation

Here we find the collective modes of a soliton train in a 1D Bose superfluid

modeled by the Gross-Pitaevskii (GP) equation. We first set up the equations

for a general stationary state, then consider the special case of a soliton train.

The GP equation describes the dynamics of the macroscopic wavefunction

of the superfluid, ψ(x, t), as

i∂tψ(x, t) =
(
− ∂2

x/2− µ+ g |ψ(x, t)|2
)
ψ(x, t) , (5.112)

where µ denotes the chemical potential, and g is the coupling constant. Thus, a

stationary state ψ0(x) ∈ R satisfies

{
− ∂2

x/2− µ+ g [ψ0(x)]2
}
ψ0(x) = 0 . (5.113)

To find the collective modes, we linearize Eq. (5.112) for small fluctuations

δψ(x, t) about ψ0(x), obtaining

i∂tδψ(x, t) = (−∂2
x/2− µ)δψ(x, t) + g [ψ0(x)]2(2δψ(x, t) + δψ∗(x, t)) . (5.114)

Next we decompose δψ into amplitude and phase fluctuations, δψ(x, t) =

Re
(
δψa(x)eiΩt

)
+ i Im

(
δψp(x)eiΩt

)
where δψa(x), δψp(x),Ω ∈ C. Comparing real
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and imaginary parts in Eq. (5.114), we find

−Ωδψp(x) =
{
− ∂2

x/2− µ+ g [ψ0(x)]2
}
δψa(x) , (5.115)

and − Ωδψa(x) =
{
− ∂2

x/2− µ+ 3g [ψ0(x)]2
}
δψp(x) . (5.116)

Equations (5.115) and (5.116) describe the collective modes. Note that the am-

plitude and phase modes are coupled, unlike the fermionic case [Eq. (5.82)]. We

also see that Ω2 is an eigenvalue of a Hermitian operator. Thus Ω2 must be real,

which means Ω is either real or imaginary. For a soliton train phase (as well

as a uniform state), we find Ω is real for all collective modes, i.e., there is no

dynamical instability.

A soliton train solution to Eq. (5.113) with period 2π/k0 exists for 0 < κ < 1,

where κ ≡ k2
0/(2µ) is a measure of the ratio of kinetic energy to interaction

energy. The soliton train profile is given by

ψ0(x) =
√

2κn0 [2k1K(k1)/π] sn
(
2K(k1)k0x/π, k1

)
, (5.117)

where n0 ≡ µ/g, and k1 is a sharpness parameter set by the equation 2(1 +

k2
1)1/2K(k1) = π/

√
κ. For κ → 0, k1 → 1, and ψ0(x) describes an array of sharp

domain walls separating uniform regions with ψ0 = ±√n0. Conversely, for

κ → 1, k1 → 0, and ψ0(x) reduces to a sinusoid of vanishing amplitude. Note

that ψ0(x) in Eq. (5.117) has the same spatial variation as a soliton train in a

Fermi superfluid [Eq. (5.60)].

To obtain the collective mode spectrum, we write δψp,a(x) = eiqx
∑

nA
p,a
n eink0x

in Eqs. (5.115) and (5.116), and use

[ψ0(x)]2 = 2κn0

{(
2K(k1)

π

)2(
1− E(k1)

K(k1)

)
−4

∞∑
n=1

n cos(2nk0x)

sinh
[
nπK

(√
1− k2

1

)
/K(k1)

]}
(5.118)
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to yield a matrix equation for the coefficientsAp,an . The eigenvalues of this matrix

give the frequencies of collective oscillations. The collective modes are charac-

terized by the parameter κ. Figure 5.2(c) in the main article shows the spec-

trum for κ = 0.7. The spectrum only contains two gapless Goldstone modes

which arise from the spontaneous breaking of gauge and translational symme-

try. In contrast, the fermionic soliton train has a much richer spectrum [Figs. 5.8

and 5.9]. In the limit κ → 0 (sharp well-separated solitons) and q → 0, the

mode with unbounded spectrum is described by (δψp(x), δψa(x)) ∝ (ψ0(x), 0)

and Ω =
√
µq, whereas the mode with bounded spectrum is described by

(δψp(x), δψa(x)) ∝ (0, ψ′0(x)) and Ω ≈ 0. In other words, the two modes become

pure phase (“phonon”) and pure amplitude (“elastic”) modes, respectively. In

the opposite limit κ → 1, the phase and amplitude oscillations are strongly

mixed. For q → 0, both modes are given by (δψp(x), δψa(x)) ∝ (ψ0(x), iψ′0(x))

and Ω =
√

2µq.

5.7.12 Soliton train in a nonlinear Klein-Gordon equation

Here we study the collective modes of an “order parameter” φ(x, t) governed

by the nonlinear Klein-Gordon equation

−(∂2
t /2)φ(x, t) = v2

(
− ∂2

x/2− µ+ g |φ(x, t)|2
)
φ(x, t) , (5.119)

where µ, g, and v are phenamenological parameters playing the role of chemical

potential, interaction strength, and speed of sound, respectively. The motivation

for studying such an equation is twofold. First, it presents a simple “fermionic

analog” of the GP equation [Eq. (5.112)]. The stationary solutions of the GP

equation and Eq. (5.119) are identical. However, Eq. (5.119) is second-order in
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time, which causes phase and amplitude collective modes to decouple, as is the

case in a Fermi superfluid [Eq. (5.82)]. Further, Eq. (5.119) reproduces several

features of the collective modes in a Fermi superfluid, in particular, analogs of

Goldstone and “Higgs” modes, as well as soliton “core” modes and dynamical

instabilities. This similarity suggests that the features could arise more gener-

ically in mesoscopic nonlinear systems, which might allow their broad charac-

terization in terms of effective coarse-grained models.

To study the collective modes, we linearize Eq. (5.119) about a stationary

solution φ0(x) ∈ R, yielding

[
∂2
t /(2v

2)− ∂2
x/2− µ

]
δφ(x, t) + g [φ0(x)]2

(
2δφ(x, t) + δφ∗(x, t)

)
= 0 . (5.120)

Substituting δφ(x, t) = Re
(
δφa(x)eiΩt

)
+ i Im

(
δφp(x)eiΩt

)
and comparing real

and imaginary parts, we find

(Ω/v)2 δφp(x) = 2
{
− ∂2

x/2− µ+ g [φ0(x)]2
}
δφp(x) , (5.121)

and (Ω/v)2 δφa(x) = 2
{
− ∂2

x/2− µ+ 3g [φ0(x)]2
}
δφa(x) . (5.122)

Thus the amplitude and phase oscillations decouple, and Ω2 is given by an

eigenvalue of a Hermitian operator. Thus, Ω must be either real or imaginary

for any collective mode.

For a uniform stationary solution, φ0(x) =
√
µ/g, there is a Goldstone phase

mode arising from the spontaneous breaking of gauge symmetry, described by

δφp(x) ∝ eiqx and Ω = vq. It is similar to the Anderson-Bogoliubov phonon

mode of a uniform Fermi superfluid. There is also an amplitude mode described

by δφa(x) ∝ eiqx and Ω = v(q2 + 4µ)1/2, which is analogous to the “Higgs” mode

in a uniform Fermi superfluid (see Sec. 5.7.6).

A stationary soliton train has the same profile as in Eq. (5.117), φ0(x) =
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Figure 5.11: Collective mode spectra of a soliton train described by a nonlinear
Klein-Gordon equation [Eq. (5.119)] for different values of κ ≡ k2

0/(2µ). There
are three stable modes: a Goldstone phase mode, a Higgs-like amplitude mode,
and a “core” mode describing width oscillations of solitons. These are repre-
sented by dot-dashed (green), solid (black), and dashed (blue) curves, respec-
tively. The dotted curves give the growth rate of two unstable modes: a gapless
Goldstone amplitude mode (shown in black), and a “core” mode describing
grayness oscillations of solitons (shown in blue).

√
2κn0 k1ν sn(νk0x, k1) where ν ≡ 2K(k1)/π, κ ≡ k2

0/(2µ), and n0 ≡
√
µ/g. Its

collective modes are characterized by κ. Figure 5.11 shows the spectrum for

different values of κ in the extended zone scheme. Comparing with Figs. 5.8

and 5.9, we find a number of similarities, as well as some differences, with

the spectrum in a Fermi superfluid. Like a fermionic soliton train, we find

a Goldstone phase mode with an unbounded spectrum, which in the limit

q → 0, is given by δφp(x) ∝ φ0(x). However, the Goldstone amplitude

mode here is unstable with imaginary frequency. At q = 0, the mode de-

scribes a uniform translation, δφa(x) ∝ φ′0(x), whereas at q = k0, it describes

a fluctuation δφa(x) ∝ 1 − ε− sn2(νk0x, k1) growing at a rate η = Γ−, where

ε± ≡
[
1 ± (1 − 3κ2k2

1ν
4)1/2

]
/(κν2) and Γ± ≡ vk0

[
1 ± 2(1 − 3κ2k2

1ν
4)1/2

]
1/2/
√
κ.

This instability is similar to the one we had found in the fermionic soliton train,

where neighboring solitons approach and annihilate one another [see Fig. 5.2(f)

in the main article]. There we also had an instability where the entire soliton
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train moves off into the complex plane. Such an instability is only present here

in the limit κ → 1. In general, the maximum instability comes from a gapped

unstable phase mode at q = k0, where a fluctuation δφp(x) ∝ dn(νk0x, k1) grows

at a rate ηmax = vk0(1/κ − k2
1ν

2)1/2. In the limit κ → 1, dn(νk0x, k1) → 1

and ηmax = vk0. At q = 0, the unstable phase mode describes a fluctuation

δφp(x) ∝ cn(νk0x, k1) growing at a rate ηmax = vk0(1/κ − ν2)1/2. This fluctua-

tion, in fact, has the same functional form as the “core” mode which described

grayness oscillations of each soliton in the fermionic soliton train [Fig. 5.2(e) in

the main article]. Thus, the phase branch of the “core” modes has turned into

an unstable mode. In contrast, the amplitude branch, describing oscillations in

the soliton widths, is still present, but only for q ≤ k0. At q = 0, it is given by

δφa(x) ∝ sn(νk0x, k1)dn(νk0x, k1) and Ω =
√

3k1ν, whereas at q = k0, it is given

by δφa(x) ∝ sn(νk0x, k1)cn(νk0x, k1) and Ω =
√

3ν. In addition, we have the

analog of the “Higgs” mode for q ≥ k0. At q = k0, it describes an amplitude

oscillation similar to the one in a fermionic soliton train shown in Fig. 5.7(c),

given by δφa(x) ∝ 1− ε+ sn2(νk0x, k1) and Ω = Γ+. Since κ measures the ratio of

kinetic to interaction energy, decreasing κ correspond to stronger interactions,

or smaller values of kFa1D in Fig. 5.9.
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CHAPTER 6

ENGINEERING FULDE-FERRELL-LARKIN-OVCHINNIKOV STATES IN

A FERMI GAS

This chapter was adapted from “Protocol to engineer Fulde-Ferrell-Larkin-Ovchinnikov

states in a cold Fermi gas” by Shovan Dutta and Erich J. Mueller, published in Physical

Review A 96, 023612 (2017).

6.1 Abstract

We propose a two-step experimental protocol to directly engineer Fulde-Ferrell-

Larkin-Ovchinnikov (FFLO) states in a cold two-component Fermi gas loaded

into a quasi-one-dimensional trap. First, one uses phase imprinting to create

a train of domain walls in a superfluid with equal number of ↑- and ↓-spins.

Second, one applies a radio-frequency sweep to selectively break Cooper pairs

near the domain walls and transfer the ↑-spins to a third spin state which does

not interact with the ↑- and ↓-spins. The resulting FFLO state has exactly one

unpaired ↓-spin in each domain wall and is stable for all values of domain-wall

separation and interaction strength. We show that the protocol can be imple-

mented with high fidelity at sufficiently strong interactions for a wide range of

parameters available in present-day experimental conditions.
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6.2 Introduction

Ever since Fulde and Ferrell [1] and Larkin and Ovchinnikov [2] (FFLO) pre-

dicted translational symmetry breaking in superconductors with magnetic im-

purities, there has been an intense search for physical examples of the phe-

nomenon [3]. Although thermodynamic evidence has been found in certain

heavy-fermion superconductors [4–13], layered organic superconductors [14–

24], and cold Fermi gases in elongated traps [25, 26], the phase space for the

FFLO state is generically small. As we suggested in a recent Letter [27], one can

enlarge this parameter space by circumventing thermodynamics, and directly

engineering the FFLO state. There we argued that such an engineered FFLO

superfluid would be long-lived. Here we give a detailed protocol for this engi-

neering, thereby greatly extending the ability to produce and study the FFLO

phase.

In a two-component system of fermions, superconductivity typically occurs

when spin-↑ particles form Cooper pairs with spin-↓ particles. Magnetic impu-

rities can change the relative chemical potentials of the ↑- and ↓-spins, break-

ing pairs and frustrating superconductivity. In cold Fermi gases, where the

spin-relaxation time exceeds the timescale of the experiment, similar physics

occurs when more ↓-spins than ↑-spins are placed in a trap, making an imbal-

anced (or spin-imbalanced) gas. In 1964, Fulde and Ferrell [1] argued that one

could find exotic pairing in such systems, where the Cooper pairs condense

into a state with finite momentum, ∆0(x) ∼ eik0x. At the same time, Larkin

and Ovchinnikov [2] proposed that such systems will have an oscillatory or-

der parameter, ∆0(x) ∼ cos k0x, an ansatz that is energetically more favorable.

Subsequent work found that one generally expects a train of domain walls (soli-
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Figure 6.1: Spatial variation in the FFLO state. Solid blue curve shows the order
parameter or pair wave function ∆0(x). Dashed yellow curve shows the den-
sity of unpaired fermions, δn(x) ≡ |n↑(x) − n↓(x)|. The unpaired fermions are
localized near the domain walls.

tons), where the order parameter periodically changes sign [28–34]. Larkin and

Ovchinnikov’s wave function is viewed as a special case, where the width of

the domain walls is comparable to their separation. In all cases the spin im-

balance is concentrated near the order-parameter nodes, where the density of

pairs vanishes (Fig. 6.1). These FFLO states have been predicted to occur in a

wide range of physical systems, including heavy-fermion superconductors [35],

organic supercoductors [36–39], ultracold Fermi superfluids [40–49], and high-

density quark matter [50–56].

In this paper, we present a simple and robust approach to generating an

FFLO state in a superfluid of cold fermionic atoms. We build upon the fact that

experimentalists routinely produce superfluids of fermionic lithium or potas-

sium atoms [57], control their environment through optical traps [26], control

their spin states with radio waves and microwaves [58], and tune their interac-

tions through Feshbach resonance [59]. After engineering these exotic superflu-

ids, they can probe the order parameter using both in-situ techniques [25, 26]

and time-of-flight imaging [60–62].

Our approach differs from the conventional method of simply cooling an
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imbalanced gas into the FFLO phase. By coherently driving the system into this

state, we overcome the hysteresis and metastability issues which can thwart the

traditional prescriptions [45].

6.3 Overview

We envision a two-component gas of fermionic atoms (two hyperfine states of

6Li or 40K) with attractive interactions, loaded into a quasi-one-dimensional

(quasi-1D) optical trap consisting of an array of weakly coupled 1D tubes

(Fig. 6.2). The 1D nature of each tube leads to Fermi-surface nesting, stabiliz-

ing the FFLO states [42–45]. The small intertube tunneling helps establish long-

range superfluid order [46, 47]. To produce FFLO states in each tube, we pro-

pose a two-step protocol. In the first step, one creates an array of domain walls

(solitons) in a balanced superfluid. To this end, one loads an equal mixture of

↑- and ↓-fermions into the trap and cools the system near a Feshbach resonance

to form a superfluid, as demonstrated experimentally in Refs. [25, 26]. One can

create solitons in these superfluids by phase imprinting [60–68], whereby one

shines an off-resonant laser pulse on selected portions of the superfluid, which

rotates the local phase of the order parameter by π. Working in a 3D geome-

try, past experiments [60–62] have demonstrated that one can create solitons in

Fermi superfluids by phase imprinting. The same technique has been used ex-

tensively in Bose gases [69–73]. A train of solitons can be formed in each tube

by imprinting a π phase in alternate regions of the trap, as illustrated in Fig. 6.2.

The tight radial confinement in each tube will prevent the solitons from decay-

ing into vortices and sound waves via the snake instability [62, 74–77]. This first

step is straightforward and we do not model it in detail.
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Figure 6.2: Schematic experimental setup for producing balanced soliton trains
in an array of weakly coupled tubes. First, uniform superfluids are prepared
in each tube by cooling an equal number of attractively interacting ↑- and ↓-
fermions near a Feshbach resonance. Then solitons (domain walls) are im-
printed by shining off-resonant lasers in alternate regions labeled “−” to reverse
the sign of the local order parameter.

The subject of this paper is analyzing the second step. Once the domain walls

(solitons) are formed, we propose using radio waves to selectively break up

Cooper pairs in the soliton cores, transferring spin-↑ atoms at these locations to

a third spin state |φ〉which does not interact with the |↑〉 and |↓〉 spin states, thus

leaving behind an FFLO state with unpaired ↓-spins at the nodes. For example,

in 40K one could use |↑〉 = |9
2
,−7

2
〉, |↓〉 = |9

2
,−9

2
〉, and |φ〉 = |9

2
,−5

2
〉, where the

two numbers denote the total atomic spin F and its projection mF [78]. The

frequencies for the atomic transitions are sensitive to the local environment, and,

as we will show, one can select frequencies such that the transitions only occur

near the cores of the domain walls.

In a recent paper [27], we showed that when each soliton in a given tube is

filled with exactly one unpaired fermion, the resulting commensurate FFLO (C-
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FFLO) phase is stable for all values of soliton spacing and interaction strength.

In this paper, we will demonstrate that one can produce such long-lived C-FFLO

states in a controlled manner by shining radio waves on a balanced soliton train

and performing a frequency sweep.

As we describe in Sec. 6.4, a soliton train has gapped bulk modes that are de-

localized, and gapless bound states that are localized in the soliton cores. Our

protocol utilizes the separation of energy scales between these localized and

bulk excitations. The C-FFLO state differs from a balanced soliton train only

in the occupation of the bound states. In our protocol we change these occu-

pations by sweeping the energy of radio waves which couple the | ↑〉 and |φ〉

states. As in other applications of Rapid Adiabatic Passage ideas [79–84], the

sweep rate must be slow enough to satisfy adiabaticity. However, the sweep

duration is limited by the finite lifetime of the balanced soliton train [27]. This

lifetime increases sharply with interactions. Therefore, one can achieve higher

fidelities when the interactions are stronger. Unwanted bulk excitations caused

by the sweep can be eliminated by Pauli blocking if one starts with an appro-

priate density of |φ〉-atoms. Even without Pauli blocking, our approach gives

relatively few bulk excitations when the bulk gap is large. A larger bulk gap

also yields a higher critical temperature [31–34], thus reducing thermal fluc-

tuations. These arguments further suggest that it is beneficial to work in the

strongly interacting regime. We analyze this protocol in detail in Sec. 6.5, show-

ing that current experiments are in a parameter range where one can generate

long-lived C-FFLO states with high fidelity.

Our results are based on a mean-field self-consistent Bogoliubov de-Gennes

(BdG) formalism which gives an accurate description of quasi-1D Fermi gases
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for moderate to weak interactions, and is semiquantitative for stronger interac-

tions [40, 43, 85–94]. In addition, past theoretical studies have shown that 1D

BdG equations correctly model the equilibrium properties of an array of tubes

[33, 34, 90]. As we will show, our protocol depends primarily on a separation of

energy scales between the localized and bulk excitations of a soliton train. It is

not contingent on the quantitative details.

The rest of the paper is organized as follows. In Sec. 6.4 we describe the Bo-

goliubov modes of a train of solitons (or domain walls) and show how the gen-

eration of a C-FFLO state from a balanced soliton train is equivalent to changing

the mode occupations. In Sec. 6.5, we model the radio-frequency sweep which

implements this change. We carefully analyze different processes that could af-

fect the generation of the C-FFLO state, finding parameter regimes where the

protocol has high fidelity. We conclude with a summary and outlook in Sec. 6.6.

6.4 Quasiparticle modes

In this section, we cast the problem of generating the C-FFLO state from a bal-

anced soliton train in terms of the occupation of the Bogoliubov modes. This

formalism is convenient for modeling the population transfer by the radio-

frequency sweep.

We first summarize a few important features of the fermionic quasiparticle

spectrum of a soliton train that are relevant for analyzing the effect of a radio-

frequency sweep. We will also establish the connection between the occupation

of the Bogoliubov modes with the generation of C-FFLO states. Further details

on the spectrum of a soliton train can be found in Refs. [27–34].
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Following our approach in Ref. [27] we use the Andreev approximation [95],

whereby one linearizes the dispersion about the Fermi points and considers

right-moving and left-moving modes separately. With this approximation one

can solve the BdG equations analytically, which is particularly useful to obtain a

qualitative understanding of the physics and estimating the variation of physi-

cal quantites, such as the bulk gap, with the experimental parameters. However,

this approximation is strictly valid only for weak interactions where pairing is

limited to the vicinity of each Fermi point. As we will see in Sec. 6.5, the validity

of our protocol does not depend on making the Andreev approximation. It only

rests on a few generic features, such as a separation of energy scales between

localized and bulk excitations, that are also present in the full model. We will

only use the Andreev approximation to estimate the range of parameters over

which the protocol has high fidelity. We find good numerical agreement of these

estimates with the full BdG equations.

The BdG equations for the coherence factors in a 1D tube can be expressed

as −∂2
x/2− εF ∆0(x)

∆∗0(x) ∂2
x/2 + εF


 uj(x)

vj(x)

 = εj

 uj(x)

vj(x)

 , (6.1)

where we have set ~ = m = 1, m being the mass of each fermion. For suf-

ficiently weak interactions, only the modes near the Fermi points contribute

to pairing. Thus, as already explained, we make the Andreev approximation,

where we write the fermion fields as a sum over right-moving and left-moving

Bogoliubov modes γ̂±j , Ψ̂↑(x)

Ψ̂†↓(x)

 =
∑
s=±,j

eiskFx

 usj(x)

vsj (x)

 γ̂sj , (6.2)
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where (
−∂

2
x

2
− εF

)
 u±j (x)

v±j (x)

 e±ikFx

≈
∓ikF∂x

 u±j (x)

v±j (x)


 e±ikFx (6.3)

and {γ̂sj , γ̂s
′†
j′ } = δss′δjj′ where kF is the Fermi momentum. The BdG equations

for the right-moving and left-moving Bogoliubov modes can be obtained be

substituting (uj(x), vj(x)) = (u±j (x), v±j (x))e±ikFx in Eq. (6.1) and using Eq. (6.3),

which yield ∓ikF∂x ∆0(x)

∆∗0(x) ±ikF∂x


 u±j (x)

v±j (x)

 = ε±j

 u±j (x)

v±j (x)

 , (6.4)

where ∆0(x) = g1D

∑
s=±,j

nF(εsj + h)usj(x)vs∗j (x) . (6.5)

For real ∆0(x), the right- and left-moving branches are related by a complex

conjugation: (u−, v−) = (u+, v+)∗ and ε− = ε+ = ε. Thus we can rewrite Eq. (6.5)

as

∆0(x) = 2g1D

∑
j
nF(εj + h)Re

[
u+
j (x)v+∗

j (x)
]
. (6.6)

A periodic solution to Eqs. (6.4) and (6.6) has the soliton train profile ∆0(x) =

∆1k1sn(∆1x/kF, k1), where ∆1 = 2kFk0K(k1)/π [28–34]. Here 2π/k0 denotes the

period, sn is a Jacobi elliptic function [96], K denotes the complete elliptic inte-

gral of the first kind, and k1 ∈ (0, 1) parametrizes the sharpness of each soliton.

The modes are characterized by the parameter k1 which is in turn set by the

self-consistency condition in Eq. (6.6). Many of our results are conveniently

expressed in terms of w ≡ (k0/kF) exp(πkFa1D/2) where a1D denotes the 1D scat-

tering length (a1D = −2/g1D [97]). The parameter w corresponds to the width of

each soliton in units of the separation between solitons (k−1
0 ). This ratio quanti-

fies the effects of interactions in a soliton train. The width of a soliton is deter-

mined by the interaction strength, and for fixed k0, decreasing the interactions
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increases w (recall, g1D < 0). If the interactions become too weak, the superfluid

becomes too frail to support the soliton train and the system is driven normal.

Thus for balanced soliton trains (h = 0) one must have w . 4. For w . 1, one

enters the strongly interacting regime.

Since ∆0(x) is periodic, each Bogoliubov mode can be labeled by a quasi-

momentum lying in the first Brillouin zone. The energy spectrum ε(k) is most

conveniently expressed in the extended zone representation as

k

k0

= ± 1

π

ε

ε+
Re

[√
ε2− − ε2
ε2+ − ε2

Π

(
ε2+ − ε2−
ε2+ − ε2

,

√
1− ε2−

ε2+

)]
, (6.7)

where ε± ≡ 1
2
(1 ± k1)∆1 and Π denotes the complete elliptic integral of the

third kind. As per our convention (see Sec. 4.1), the spectrum is symmetric for

positive and negative energies. It has a continuum of bulk modes with |ε| > ε+

and a band of midgap modes for with |ε| < ε−, as seen in the boxed region

of Fig. 6.3(a). Describing the region outside the box requires going beyond the

Andreev approximation. Those modes are not relevant to the processes which

we are studying. For sufficiently strong interactions (w . 2), ε+ ≈ 4kFk0/w and

ε− ≈ 16kFk0w
−1e−4π/w � ε+. Hence, the bulk gap increases as 1/w.

The mode wave functions are of the Bloch form, labeled by a quasimomen-

tum p ∈ [−k0/2, k0/2) and an energy ε. The positive and negative energy modes

are related by a particle-hole transformation: (u(x), v(x))↔ (−v(x), u(x)). In ad-

dition, one has the symmetry (u±−p(x), v±−p(x)) = (v±∗p (x), u±∗p (x)) for modes with

the same energy. The midgap modes represent Andreev bound states which are

localized in the soliton cores [98, 99]. For strong enough interactions (w . 3),

they are given by (for ε, p > 0) u+
p (x)

v+
p (x)

 ≈√ ξ

L


∑

n even

−i∑n odd

 ei(p+nk0)x

cosh
(
2ξ(n+ p

k0
)
) , (6.8)
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where L denotes the length of the system, and ξ = πw/16 represents the

width of a bound state around a soliton core: to a good approximation,

|u+
p (x)|2, |v+

p (x)|2 ∝ exp(−(k0x/
√

2ξ)2) for |k0x| < π/2.

The higher-energy bulk modes are relatively unaffected by pairing. Hence,

they are well described by plane waves. The lowest-energy bulk mode (|ε| = ε+)

is the one most affected. For w . 2, this mode is given by (for ε, p > 0) u+(x)

v+(x)

 ≈ w

8
√
L


∑

n even

−i∑n odd

 ei(n+1/2)k0x

sinh
(
πw
8

(n+ 1
2
)
) . (6.9)

Note that the coherence factors u+
p (x) [and v+

p (x)] for both midgap modes

and bulk modes can be written in the form u+
p (x) = (1/

√
L)
∑

n ū
j
p,ne

i(p+2nk0)x

where n is an integer and −k0 ≤ p < k0. This is because the soliton train has

an additional symmetry, ∆0(x+π/k0) = −∆0(x), which decouples the even and

odd Fourier modes in the BdG equations, effectively doubling the size of the

Brillouin zone [27, 91].

For h 6= 0, the number of excess fermions per soliton ns is simply related

to the spectrum ε(k) in Eq. (6.7) as ns = 2|kh|/k0 where ε(kh) = h. Hence, the

C-FFLO state, with ns = 1, is formed when ε− < |h| < ε+ [see Fig. 6.3(a)]; i.e.,

when the chemical potentials lie in the gap between bulk modes and midgap

modes. Since µ↑,↓ ≡ εF ∓ h, a C-FFLO state with excess ↓-spins is formed when

ε− < h < ε+, whereas the one with excess ↑-spins is formed when −ε+ < h <

−ε−.

In our convention, detailed in Chapter 4, the occupation of a Bogoliubov

mode γ̂j at zero temperature is given by 〈γ̂†j γ̂j〉 = Θ(−εj − h), where Θ denotes

the unit step function. Therefore, a balanced soliton train (h = 0) is formed by
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filling up all the negative energy modes. In a C-FFLO state with excess ↓-spins,

only the negative energy bulk modes, with ε < −ε+, are occupied. Therefore,

one can produce such a state by vacating all the occupied midgap modes in

a balanced soliton train. Conversely, to produce a C-FFLO state with excess

↑-spins, one needs to fill all the unoccupied midgap modes. This change of

occupation can be achieved by a radio-frequency sweep, which we model in the

next section.

6.5 Generation of C-FFLO states

Here we model the process of generating a C-FFLO state from a balanced soliton

train by a radio-frequency sweep. We describe in detail the physics behind the

protocol in Sec. 6.5.1. In Sec. 6.5.2 through 6.5.7 we explore various processes

which could interfere with producing the FFLO state, explaining how to choose

parameters. We show that the protocol can be implemented with high fidelity

in present-day experimental conditions.

Our strategy is to use radio waves to selectively break up pairs in the soli-

ton cores, and convert the spin-↑ atoms to a third noninteracting spin state |φ〉.

As we described in the last section, a balanced soliton train differs from a C-

FFLO state in the occupation of the Bogoliubov modes. In our convention, the

quasiparticle spectrum of a soliton train is symmetric for positive and negative

energies, with delocalized bulk modes for |ε| > ε+ and localized midgap modes

for |ε| < ε− [Fig. 6.3(a)]. All negative energy modes are occupied in a balanced

soliton train. The C-FFLO state with excess ↓-spins is formed by removing all

quasiparticles from the midgap modes. Our key idea is to use a Rapid Adia-
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batic Passage protocol which uses a radio-frequency (RF) sweep to vacate these

midgap modes by transferring the spin-↑ atoms to the |φ〉 state. A preformed

Fermi sea of |φ〉-atoms prevents any bulk excitation, though even without the

Fermi sea the number of bulk excitations can be small.

6.5.1 Modeling the radio-frequency sweep

We model the coupling of the atoms to radio waves by

ĤRF = Ω

∫
dx Φ̂†(x)Ψ̂↑(x)e−i

∫
dtω(t) + h.c. , (6.10)

where Φ̂†(x) creates a fermion at position x in the spin state |φ〉, Ω is the cou-

pling strength, and ω(t) is the frequency of the radio waves. In our protocol one

sweeps ω over a small frequency range (a few kHz) around ∆εhf, where ∆εhf

is the internal energy difference of the | ↑〉 and |φ〉 states (hundreds of MHz).

Throughout the sweep the coupling is far-off-resonant for the spin-↓ atoms. We

can write Eq. (6.10) in terms of the Bogoliubov operators γ̂j as

ĤRF = Ω
∑
j

∫
dx Φ̂†(x)uj(x)γ̂j e

−i
∫
dtω(t) + h.c. . (6.11)

As can be seen, within our convention, the RF coupling removes quasiparticles

from the superfluid while creating particles in the |φ〉 state, and vice-versa. There

are right-moving and left-moving Bogoliubov modes centered at the two Fermi

points [Fig. 6.3(a)]. They respond equally to the applied field, so we will only

consider the right-moving modes. As we showed in Sec. 6.4, each right-moving

mode can be labeled by a quasimomentum p ∈ [−k0, k0), and an energy ε in-

dexed by j, with wave functions of the form ujp(x) = (1/
√
L)
∑

n ū
j
p,ne

i(kF+p+2nk0)x

where n is an integer. The noninteracting state |φ〉 is composed of plane-wave
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eigenstates, Φ̂†(x) = (1/
√
L)
∑

k e
−ikxφ̂†k. As a result, radio waves only couple

|φ〉 states with momentum kF + k to Bogoliubov modes with quasimomentum

pk such that pk + 2nkk0 = k for some integer nk, or pk = k − 2k0bk/2k0 + 1/2c.

Thus we can rewrite Eq. (6.11) as

Ĥ+
RF = Ω

∑
k

∑
j

ūjk φ̂
†
kF+k γ̂

j
pk
e−i

∫
dtω(t) + h.c. , (6.12)

where the superscript ‘+’ indicates that we are working with the right-moving

Bogoliubov modes, the k-summation is over all momenta, the j-summation is

over different modes with the same quasimomentum pk, and ūjk ≡ ūjpk,nk .

The effect of the coupling in Eq. (6.12) is best understood in a repeated-zone

representation of the Bogoliubov modes. This is shown by the blue curves in

Fig. 6.3(b) where we also plot the spectrum of the |φ〉 states shifted down by ω

(red curve). Near the Fermi point, the |φ〉 spectrum is linear with slope kF. In

this repeated-zone picture, a |φ〉 state is coupled to the quasiparticle states at

the same momentum, and the coupling is on resonance where the red curve in-

tersects a blue curve. In the experiment, one sweeps ω over a small range from

ωmax to ωmin such that all the occupied midgap modes come on resonance at least

once, as in Fig. 6.3(b). If the sweep is sufficiently adiabatic, the RF coupling

will vacate these modes, while populating the resonantly coupled |φ〉 states

[Fig. 6.3(c)]. Since the |φ〉-atoms are noninteracting, or very weakly interact-

ing, their momentum distribution cannot change appreciably over the sweep

duration, so there is no possibility of refilling any of the unoccupied midgap

modes.

There may also be transitions from the bulk modes. These unwanted transi-

tions can be entirely eliminated if all of the |φ〉 states below an energy threshold

εφ are initially occupied, so that the available |φ〉 states are far-off-resonant with
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Figure 6.3: Bogoliubov mode occupations during a radio frequency sweep
which drives a balanced soliton train into an FFLO state. (a) Blue curves show
the Bogoliubov spectrum of a soliton train, containing bulk modes with |ε| > ε+
and midgap modes with |ε| < ε−, where ε is measured from the Fermi level
εF. Red curve shows the quadratic dispersion of a noninteracting spin state |φ〉.
The internal energy difference is large compared to the Fermi energy, ∆εhf � εF.
(b,c) Blue curves show the right-moving Bogoliubov modes [boxed in (a)] in
the repeated-zone representation. Red line shows the |φ〉 dispersion shifted by
the radio frequency ω, which is swept from ωmax = ∆εhf + kFk0/2 [in (b)] to
ωmin = ∆εhf−3kFk0/2 [in (c)]. Small dots indicate occupied states. The RF sweep
couples a filled quasiparticle state with an empty |φ〉 state at the same momen-
tum and vice versa. If the coupling is sufficiently adiabatic (see Sec. 6.5.2), the
sweep will transfer all particles from the midgap modes to the resonantly cou-
pled |φ〉 states [as in (c)]. If all |φ〉 states below a suitable momentum kφ ≡

√
2εφ

are initially occupied, the sweep does not affect the bulk modes or the vacant
midgap modes.

the bulk modes [Fig. 6.3(b)]. As we show below, this can be achieved for a wide

range of parameters. Alternatively, if it is inconvenient to pre-fill the trap with

|φ〉-atoms, one can tune the sweep rate so that it is adiabatic for the midgap

modes, but diabatic for the bulk modes, thus only causing transition from the

midgap modes. This latter approach requires a separation of scales in the co-

herence factors |ūjk| in Eq. (6.12) between the bulk and the midgap modes. As

we will show, this separation of scales exists and becomes larger at stronger
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interactions.

6.5.2 Adiabaticity requirements for midgap modes

We model a linear frequency sweep with ω decreasing from ωmax = ∆εhf +kFk0/2

to ωmin = ∆εhf− 3kFk0/2 at a rate ν, as depicted in Figs. 6.3(b) and 6.3(c). During

this evolution, each midgap mode is swept through resonance with a |φ〉 state

with k ∈ [−k0, 0]. The coherence factors |ūgk| (‘g’ refers to midgap modes) in this

interval are larger than those in any other interval. For each value of k ∈ [−k0, 0],

the RF coupling in Eq. (6.12) is well-approximated by a two-level finite duration

Landau-Zener problem between a midgap state and a |φ〉 state [83, 84]. In order

for the transfer probability to be unity, one needs both that the sweep rate is

sufficiently small, and that the frequency range of the sweep is sufficiently large.

For our system, these two requirements yield

kFk0 & 10Ω |ūgk| and Ω |ūgk| &
√
ν for all k ∈ [−k0, 0] . (6.13)

In Sec. ?? we showed that for sufficiently strong interactions (w . 3, where w ≡

(k0/kF) exp(πkFa1D/2)), |ūgk| is well-approximated by |ūgk| ≈
√
ξ sech(2ξk/k0),

where ξ = πw/16 measures the spatial width of a midgap state around a soliton

core. Thus we can rewrite the conditions in Eq. (6.13) in terms of w as

kFk0 & 10Ω
√
ξ and Ω

√
ξ &
√
ν cosh(2ξ) , (6.14)

where ξ(w) ≈ πw/16 . (6.15)

Note that Ω
√
ξ acts as the effective coupling strength. This is sensible because

the coupling strength involves the inner product of a midgap state and a plane

wave, which is indeed proportional to the square root of the width ξ of the

midgap state.
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6.5.3 Eliminating bulk excitations by Pauli blocking

As previously explained, if one starts with a Fermi sea of |φ〉-atoms, Pauli block-

ing prevents any excitation from the occupied bulk modes. This requires that

the Fermi energy εφ is sufficiently large. However, if it is too large, one may

transfer atoms from the |φ〉 states to the vacant quasiparticle modes. Here we

calculate the bounds on εφ. We find that the lower and upper bounds are well

separated for strong enough interactions.

We can estimate a lower bound on εφ by calculating the effect on the

bulk mode b∗ with the smallest detuning from resonance, which occurs at

kF + k = kφ ≡
√

2εφ when ω = ωmax [Fig. 6.3(b)]. The finite duration Landau-

Zener problem gives negligible transfer probability if

εF − εφ . ε+ − kFk0/2− 10Ω
∣∣ūb∗kφ−kF

∣∣ . (6.16)

Similarly, the upper bound on εφ is set by requiring that no particle is transferred

from a filled |φ〉 state to an empty midgap state. The smallest detuning for such

a coupling occurs at k = kφ − kF when ω = ωmin [Fig. 6.3(c)]. The transfer

probability approaches zero if

εF − εφ & ε− + 3kFk0/2 + 10Ω
∣∣ūgkφ−kF

∣∣ . (6.17)

The conditions in Eqs. (6.16) and (6.17) simplify for w . 2, where ε− ≈ 0, ε+ ≈

4kFk0/w, |ūgk| ≈
√
ξ sech(2ξk/k0), and |ūb∗k | ≈ |k0/πk| for k < −k0/2 (details in

Sec. ??). Combining these estimates with Eq. (6.14) and using the inequality

kF − kφ & (εF − εφ)/kF > 0, we can write

Ω
∣∣ūgkφ−kF

∣∣ < Ω
√
ξ . 0.1kFk0 , and (6.18)

Ω
∣∣ūb∗kφ−kF

∣∣ . 1

π

ΩkFk0

εF−εφ
.

0.1

π
√
ξ

(kFk0)2

εF−εφ
≈ 0.4

π
3
2
√
w

(kFk0)2

εF−εφ
. (6.19)
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Substituting these upper bounds into Eqs. (6.16) and (6.17), we find that the

inequalities will be satisfied if

(5/2)kFk0 . εF − εφ .
(
4/w − 1/2−√w/π3/2

)
kFk0 . (6.20)

Note that Eq. (6.20) gives only sufficient, not necessary, conditions on the en-

ergy threshold εφ. In practice, the bounds on εφ would be less stringent than in

Eq. (6.20).

6.5.4 Bulk excitations without Pauli blocking

If all |φ〉 states are initially empty, the RF coupling will excite particles from

the occupied bulk modes to these empty |φ〉 states. Here we estimate an upper

bound on the probability Pb of such excitations.

The coherence factors |ūjk| in Eq. (6.12) fall off as one moves away from the

Fermi point. Thus Pb is maximum for the bulk mode b+ which is resonantly cou-

pled to a |φ〉 state at the smallest magnitude of k, which occurs for (kF + k)2/2 ≈

εF − ε+ [Figs. 6.3(b) and 6.3(c)], or k ≈
√

2(εF − ε+) − kF . k+ ≡ −ε+/kF.

For w . 2, k+ ≈ 4k0/w (see Sec. 6.4). The corresponding coherence factor is

given by |ūb+k+ | ≈ |k0/πk+| ≈ w/(4π), which is linear in w. In contrast, the co-

herence factors for resonantly coupled midgap modes (see Sec. 6.5.2) are given

by |ūgk| &
√
πw/16 sech(πw/8) ∼ O(

√
w) for small w. Hence the coherence fac-

tors for bulk excitations fall off much faster with stronger interactions (smaller

w), which means one can tune the coupling strength Ω so that the RF sweep is

adiabatic for midgap modes, but diabatic for bulk modes.

In particular, at the lower bound of the coupling strength for adiabaticity in
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Eq. (6.14), a Landau-Zener analysis for the bulk mode b+ gives

Pb . 1− e−2π

∣∣ūb+k+∣∣2Ω2/ν ≈ 1− e−(2w/π2) cosh2(πw/8) , (6.21)

which falls toward zero as interactions are increased. For w = 2, Pb . 0.5, and

for w = 1, Pb . 0.2. Thus even without Pauli blocking, one excites a small

fraction of the bulk modes at strong enough interactions.

6.5.5 Condition for dynamical stability

In Ref. [27] we showed that a balanced soliton train has dynamical instabilities

toward a uniform superfluid phase. The instability consists of neighboring soli-

tons approaching one another and annihilating after a characteristic lifetime set

by the maximum instability rate ηmax. For our protocol to work properly, the

sweep duration τsw must be short compared to this lifetime, i.e., τsw � η−1
max, as

otherwise the soliton train would decay before the sweep is completed. In Ref.

[27] we found an upper bound on ηmax in the full BdG dynamics, ηmax . 2
√
ε+ε−.

For w . 2, this upper bound can be expressed as (see Sec. 6.4)

ηmax . 2
√
ε+ε− ≈ kFk0f(w) , (6.22)

where f(w) ≈ 16w−1e−2π/w . (6.23)

Note that ηmax decreases sharply with w, as stronger interactions stabilize the

soliton train. The sweep duration is given by τsw = 2kFk0/ν. Hence, the condi-

tion τsw � η−1
max will be satisfied if

1/f(w)� 2(kFk0)2/ν . (6.24)

Note that Eq. (6.24) is again a sufficient condition, not a necessary one.

221



6.5.6 Implication for interaction strength

Combining the adiabaticity requirements in Eq. (6.14) and the stability condition

in Eq. (6.24), we obtain

1

f(w)
� 2(kFk0)2

ν
& 200

Ω2ξ(w)

ν
& 200 cosh2(2ξ(w)) (6.25)

[Recall, w parametrizes the interaction strength, f(w) is given by Eq. (6.23),

and ξ(w) is given by Eq. (6.15)]. To satisfy this inequality, one must have

1/f(w) � 200 cosh2(2ξ(w)), which occurs for w < 3/4, i.e., in the strongly in-

teracting regime. Quantitative calculations in this regime may require going

beyond the Andreev approximation. Nevertheless, our estimates should be ro-

bust. Firstly, the procedure itself rests on very generic features which do not

depend on the specifics of the model, such as (i) the principle of Rapid Adia-

batic Passage to transfer particles between two states [79–84], (ii) a separation of

energy scales between the localized and bulk quasiparticle modes, and (iii) sym-

metry properties of a soliton train. Therefore Eqs. (6.14), (6.16), (6.17), and (6.24)

remain valid in the full model. We have only invoked the Andreev approxi-

mation in writing down expressions for ξ(w) and f(w) in Eqs. (6.15) and (6.23),

and in estimating the bounds in Eqs. (6.20) and (6.21). By numerically solving

the full BdG equations, we find good agreement with these estimates at strong

interactions. Further, as we discussed earlier, stronger interactions yield a large

bulk gap, which increases the critical temperature of the superfluid [31–34], thus

reducing the effect of thermal fluctuations which we have ignored. Hence, our

protocol will have a high fidelity in the strongly interacting regime. Note that

experimentalists routinely tune the atomic interactions from very small to very

large values using a Feshbach resonance [59].
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6.5.7 Typical experimental parameters

As a specific example, suppose we would like to create a C-FFLO state where

adjacent domain walls are separated by π/k0 ∼ 10 µm. This lengthscale is

compatible with phase imprinting, where achievable lengthscales are ultimately

limited by diffraction. We consider the parameters in Ref. [25] where 6Li atoms

were trapped in quasi-1D tubes with εF = 1.2 µK, or kF = 5.4 × 106 m−1. Then

a 10 µm soliton spacing corresponds to k0/kF ≈ 0.05. To ensure the soliton train

is stable thoughout the sweep, we require ηmaxτsw ≈ 1/20. Then Eq. (6.25) gives

1

f(w)
� 40(kFk0)2

ν
& 4000

Ω2ξ(w)

ν
& 4000 cosh2(2ξ(w)). (6.26)

Comparing the first and last terms, we get w . 0.54 or kFa1D . 1.5, which

could be set by tuning a magnetic field around a Feshbach resonance [59]. For

comparison, in Ref. [25] kFa1D ≈ 0.6. For kFa1D = 1.5, the instability rate is

ηmax . kFk0f(w) ≈ 3.8 s−1, which gives a sweep duration τsw ∼ 1/(20ηmax) ≈

13 ms. During this interval the frequency is to be varied over a range ∆ω =

2kFk0 ≈ 5 kHz, at a rate ν ≈ 3.8 × 105 Hz/s. Equating the middle terms in

Eq. (6.26) yields a Rabi frequency Ω ∼ kFk0/(10
√
ξ ) ≈ 0.77 kHz. To suppress

unwanted quasiparticle excitations, one can fill up all |φ〉 states with energy

below εφ where, from Eq. (6.20), 0.4 µK . εφ . 0.9 µK. These numbers are well

within reach of present-day experiments. Even if one starts with no |φ〉-atoms,

from Eq. (6.21) we find that the sweep will only excite less than 11% of the bulk

modes.
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6.6 Summary and outlook

We have described a simple experimental protocol to engineer long-lived FFLO

states in a two-component gas of cold fermionic atoms loaded in a quasi-1D

trap. The protocol consists of first preparing a train of domain walls in a bal-

anced superfluid by phase imprinting, then using a radio-frequency sweep to

selectively transfer the spin-↑ atoms near the domain walls to a third noninter-

acting spin state |φ〉, leaving behind an FFLO state with exactly one unpaired

fermion per domain wall. Prior work has shown that this engineered configu-

ration is stable [27]. By analyzing the different limiting factors, we have shown

that the protocol can be implemented with high fidelity for sufficiently strong

interactions which are readily attainable in current experimental set-ups. It pro-

vides a route to directly produce FFLO states in experiments in a controlled

manner and study their properties. Such a direct approach complements the

thermodynamic search of the exotic state and contributes to the larger goal of

engineering many-body quantum states.

In describing the protocol, we have analyzed the case where the frequency is

swept over an interval ∆ω = 2kFk0 [Figs. 6.3(b) and 6.3(c)], as this is the shortest

sweep which is expected to transfer all of the particles from the localized modes.

One can also sweep over larger frequency intervals, but the analysis would have

to be repeated to ensure the broader sweep did not excite bulk modes.

Our procedure yields an FFLO state in the presence of a gas of |φ〉 atoms.

Since the |φ〉-atoms are very weakly interacting, they should not affect the dy-

namics of the soliton train. Alternatively, one could remove all |φ〉-atoms after

the sweep by a resonant optical pulse [100].
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The generated FFLO state can be probed using a variety of techniques that

have been proposed in the literature [87, 90–92, 101–109]. For example, one can

excite collective modes by ramping to a different interaction strength. If the

ramp is fast compared to the bulk gap ε+ ≈ 4kFk0/w, the domain walls will not

have time to adjust their shape, which will excite a novel collective mode where

the width of each domain wall oscillates in time [27]. The collective modes could

be detected using spectroscopic or imaging techniques [61, 62, 90–92, 110, 111].

Our protocol could be generalized to create incommensurate FFLO states

which have less than one excess fermion per soliton, for example, by sweeping

over smaller frequency intervals such that only a fraction of the midgap modes

are resonantly driven during a sweep. However, since the midgap modes are

contiguous in energy, it would be more challenging to control the number of

unpaired fermions per soliton.

Finally, a recent study has shown that domain walls are also stabilized in 3D

when filled with unpaired fermions [74], which could offer ways of extending

our protocol to higher dimensions.
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[110] P. Törmä, “Physics of ultracold Fermi gases revealed by spectroscopies,”

Phys. Scripta 91, 043006 (2016).

[111] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross,

E. Demler, S. Kuhr, and I. Bloch, “The ‘Higgs’ amplitude mode at the

two-dimensional superfluid/Mott insulator transition,” Nature 487, 454

(2012).

239

http://dx.doi.org/ 10.1103/PhysRevLett.101.120404
http://dx.doi.org/10.1103/PhysRevLett.104.236402
http://dx.doi.org/ 10.1103/PhysRevA.84.041601
http://dx.doi.org/10.1103/PhysRevA.78.063624
http://dx.doi.org/10.1088/1367-2630/11/5/055041
http://dx.doi.org/10.1103/PhysRevA.78.013637
http://dx.doi.org/ 10.1088/0031-8949/91/4/043006
http://dx.doi.org/10.1038/nature11255
http://dx.doi.org/10.1038/nature11255


CHAPTER 7

DIMENSIONAL CROSSOVER IN A SPIN-IMBALANCED FERMI GAS

This chapter, apart from the Supplement in Sec. 7.7, was adapted from “Dimensional

crossover in a spin-imbalanced Fermi gas” by Shovan Dutta and Erich J. Mueller, pub-

lished in Physical Review A 94, 063627 (2016).

7.1 Abstract

We model the one-dimensional (1D) to three-dimensional (3D) crossover in a

cylindrically trapped Fermi gas with attractive interactions and spin imbalance.

We calculate the mean-field phase diagram and study the relative stability of

exotic superfluid phases as a function of interaction strength and temperature.

For weak interactions and low density, we find 1D-like behavior, which repeats

as a function of the chemical potential as new channels open. For strong inter-

actions, mixing of single-particle levels gives 3D-like behavior at all densities.

Furthermore, we map the system to an effective 1D model, finding significant

density dependence of the effective 1D scattering length.

7.2 Introduction

Spin-imbalanced Fermi gases are predicted to display an array of exotic super-

conducting phases, where the order parameter has nontrivial structure [1–82].

Mean-field theories predict that these states occupy a very small fraction of the

phase diagram in 3D, but are ubiquitous in 1D [1–16, 18–20], with the caveat
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that quantum fluctuations prevent long-range order in 1D [83, 84]. Indeed,

cold-atom experiments in 3D [85–90] have found no sign of the exotic Fulde-

Ferrell-Larkin-Ovchinnikov (FFLO) phase [91, 92], while experiments on 1D

tubes [21, 22] found thermodynamic evidence for a fluctuating version [23–44]

of FFLO but were unable to measure the order parameter. One avenue for di-

rectly observing these exotic superfluid states is to use highly anisotropic quasi-

1D geometries where they should be robust [41, 93–103]. A competing approach

is to study fermions in optical lattices, which also stabilizes the FFLO phase

[104–106]. Here we solve the Bogoliubov–de Gennes (BdG) equations in a quasi-

1D geometry. We find large regions of the phase diagram in which the FFLO

finite-momentum-pairing state is stable. We also find a stable breached-pair

(BP) state where pairs coexist with a Fermi surface [2–4, 107–110]. Our analysis

provides a much needed narrative for thinking about the 1D-to-3D crossover,

going beyond the existing single-band models [93, 100, 102, 111–115] and stud-

ies of finite systems [96–98, 103]. While we focus on cold atoms, these consider-

ations are also relevant to nuclear, astrophysical [110, 116–128], and condensed-

matter systems [116, 129–163]. Evidence of the FFLO phase has recently been

found in a quasi-two-dimensional (2D) superconductor [129], and there are on-

going attempts to see related physics in 2D atomic systems [164–172].

We consider a harmonic oscillator potential of frequency ω⊥ which confines

the motion of the atoms in the x-y plane. The atoms are free to move in the z

direction, have mass m, and interact via s-wave collisions, characterized by a

scattering length as (tunable via a Feshbach resonance [45, 173]). We consider

the “Bardeen-Cooper-Schrieffer (BCS) side” of resonance where as < 0, and

calculate the mean-field phase diagram in the µ-h plane, where µ ≡ (µ↑ + µ↓)/2

and h ≡ (µ↑ − µ↓)/2 denote, respectively, the average chemical potential and
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the chemical potential difference of the two spins. Prior work on this model

have examined the low-density (small-µ) limit, where the transverse motion of

the atoms is confined to the lowest oscillator level [20–23, 93, 111–113], and the

system maps onto an effective 1D model [174, 175]. Conversely, when µ is large,

the atoms can access many energy levels of the trap, and the system is locally

three dimensional. Here we investigate the crossover between these regimes. In

the Supplement (Sec. 7.7), we extend our modeling to Fermi gases trapped in an

array of tubes produced by a 2D optical lattice, which more closely resembles

the experimental setup in Refs. [21, 22]. In addition to the crossover with µ, we

also explore the transition from 1D to 3D as one increases the coupling between

tubes by lowering the lattice depth.

The exact 1D phase diagram contains three phases which are fluctuating

analogs of the BCS superfluid, the FFLO state, and a fully polarized (FP) gas

[20–24]. Since interaction effects in 1D are stronger at low densities, pairs are

more stable at smaller µ, and the slope γ ≡ dµ/dh of the line separating the

BCS and FFLO phases is negative. The analogous phase boundary in 3D has a

positive slope, providing a convenient distinction between 1D-like and 3D-like

behavior. In 3D there is also a partially polarized Normal (N) state [2–4].

For weak interactions and µ < 2~ω⊥, we find 1D-like behavior, in that γ < 0.

The critical field hc, at which the BCS-to-FFLO transition occurs, jumps when-

ever a new channel opens (near µ ∼ n~ω⊥), but after this jump we again find

γ < 0 [Fig. 7.1(a)]. Once many channels are occupied we find 3D-like behav-

ior with γ > 0. Each 1D-like interval hosts a large FFLO region. In the 3D

regime, these regions merge to form a single domain. As interactions are in-

creased, the crossover to 3D-like behavior moves to smaller µ [Fig. 7.2(a)]. For
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very strong interactions near unitarity (as → −∞), the harmonic oscillator lev-

els are strongly mixed, and we always find γ > 0 [Fig. 7.2(b)]. Regardless, we

find that the FFLO phase occupies much of the phase diagram for all interaction

strengths. Moreover, at sufficiently strong interactions, we find a BP region,

nestled between the BCS and the FFLO phases. Such a (zero-temperature) BP

phase is stable in 3D only for negative µ in the deep Bose-Einstein condensate

(BEC) side of resonance (as > 0) [1–13, 110, 176]. These results suggest that

exotic superfluids will be observable in quasi-1D experiments.

We study the temperature variation of the phase diagrams (Figs. 7.4 and

7.5). The FFLO and BP phases shrink much faster with temperature than the

BCS phase as they have much smaller pairing energies. For weak interactions,

the BCS phase survives in isolated pockets, which disappear sequentially with

temperature. The critical temperatures grow with interactions, as interactions

favor pairing.

In addition to directly solving the 3D BdG equations, we map the system to

an effective 1D model in the single-channel limit µ < 2~ω⊥. We find that the

effective 1D coupling constant g1D becomes more strongly attractive at larger

µ. Our mapping reduces to that in [174, 175] in the low-density limit, but has

previously unexplored correction terms at higher densities. These become more

important at stronger interactions [Eq. (7.10)].

We use the BdG mean-field formalism. This approach does not include a

Hartree self-energy [16]. This deficiency is typically unimportant for weak inter-

actions but becomes significant as one approaches unitarity. It may also be im-

portant for studying the competition between phases with similar energies. Un-

fortunately the literature contains no convenient way to incorporate the Hartree
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term. The technical difficulty is that the bare coupling constant for contact in-

teractions has an ultraviolet divergence. Renormalizing this divergence causes

the Hartree term to identically vanish, and there is active debate about the sig-

nificance of those terms [16]. At unitarity, one can circumvent this problem by

imposing universality on the equation of state and constructing a regularized

energy functional [17, 103, 177, 178]. However, there is no equivalent scheme

at intermediate interactions, as the proper set of constraints is unknown. Along

with self-energy corrections, quantum fluctuations also become significant at

stronger interactions [179–182]. Thus we do not expect our results to be ac-

curate in the unitary regime. In fact, two recent experiments with 6Li atoms,

performed near unitarity, found the behavior of the system to be 1D-like at low

densities [21, 22], whereas our model predicts 3D-like physics there. We believe

the physics neglected in the BdG approach largely renormalizes as, and that our

unitary results should agree with experiments for as > 0. Finally, we cannot

rule out other phases not considered here, e.g., deformed Fermi surface pairing

[46, 47], or an incoherent mixture of paired and unpaired fermions [48, 49].

Despite these limitations, our simple model lets us make concrete predic-

tions and provides insight into the nature of the dimensional crossover. In par-

ticular, we find that the phase diagram changes dramatically with interaction

strength (Figs. 7.1 and 7.2). These phase diagrams, and even the equation of

state, can be probed in experiments [1, 2, 42–44, 46–49, 51, 94, 95, 100, 101, 104–

107, 183–201].
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7.3 Model

Our starting point is the many-body Hamiltonian

Ĥ =

∫
d3r

[∑
σ=↑,↓

ψ̂†σ(~r)
(
Ĥsp − µσ

)
ψ̂σ(~r) + g ψ̂†↑(~r)ψ̂

†
↓(~r)ψ̂↓(~r)ψ̂↑(~r)

]
, (7.1)

where ψ̂σ(~r) denote the fermion field operators, Ĥsp is the single-particle Hamil-

tonian, Ĥsp = −~2∇2/(2m) + (1/2)mω2
⊥(x2 + y2), and g is the “bare” coupling

constant describing interactions between an ↑ spin and a ↓ spin. We can relate g

to as by the Lippmann-Schwinger equation 1/g=m/(4π~2as)−
∫
d3km/(8π3~2k2)

[202]. We define the pairing field ∆(~r) = g〈ψ̂↓(~r)ψ̂↑(~r)〉, and ignore quadratic

fluctuations, arriving at the mean-field Hamiltonian

ĤMF =

∫
d3r

ψ̂↑(~r)
ψ̂†↓(~r)


†Ĥsp − µ↑ ∆(~r)

∆∗(~r) µ↓ − Ĥsp


ψ̂↑(~r)
ψ̂†↓(~r)


+
∑
n

(
εsp
n − µ↓

)
− g−1

∫
d3r |∆(~r)|2 , (7.2)

where εsp
n denote the single-particle energies. We diagonalize ĤMF by a Bogoli-

ubov transformation (see convention in Sec. 4.2), obtaining ĤMF =
∑

n[(En −

h)γ̂†n↑ γ̂n↑ + (En + h)γ̂†n↓ γ̂n↓ + (εn −En)] −g−1
∫
d3r|∆(~r)|2. Here εn ≡ ε

sp
n − µ, γ̂n↑,↓

represent the Bogoliubov quasiparticle annihilation operators, and the eigen-

values En (> 0) are determined from the equationĤsp − µ ∆(~r)

∆∗(~r) µ− Ĥsp


u(~r)

v(~r)

 = E

u(~r)

v(~r)

 . (7.3)

In the zero-temperature ground state, all quasiparticle states with a negative

energy are filled, and others are empty, which yields a total energy

E =
∑
n

[α(En − h) + εn − En]− g−1

∫
d3r |∆(~r)|2 , (7.4)
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where α(x) ≡ x for x < 0, and 0 for x > 0. The ground-state solution is found

by minimizing E as a functional of ∆(~r) for a given µ and h.

To simplify calculations, we take the ansatz ∆(~r) = ∆0e
iqz exp [−(x2 + y2)/ξ2],

and minimize Eq. (7.4) with respect to ∆0, ξ, and q. The exp (iqz) factor de-

scribes Fulde-Ferrell (FF) pairing at wave vector q. The ansatz (with q = 0) also

encompasses the BCS and the BP phases and, when ∆0 = 0, includes the Nor-

mal phase. A Larkin-Ovchinnikov (LO) ansatz, in which exp (iqz) is replaced by

cos (qz), produces very similar results. Based on prior calculations, one expects

that further ansätze, such as the liquid crystal phases in [82], will also give simi-

lar boundaries. While we label regions of the phase diagram as FFLO, the exact

nature of the order is uncertain.

We diagonalize Eq. (7.3) by expanding u(~r) and v(~r) in the single-particle

states with energies lower than a cutoff Ec. We exactly solve this finite-

dimensional low-energy sector and calculate the contribution of higher-energy

states perturbatively. We write Eq. (7.3) in the bra-ket notation, and express |v〉

in terms of |u〉 to obtain (Ĥsp−µ)|u〉+∆̂(Ĥsp+E−µ)−1∆̂†|u〉 = E|u〉. The second

term acts as a perturbation, yieldingEn−εn = 〈n|∆̂(Ĥsp+ε
sp
n −2µ)−1∆̂†|n〉, where

|n〉 is the corresponding single-particle state. Using completeness of the single-

particle states, we write this as En − εn =
∫∞

0
dτe−2µτ 〈n|e−Ĥspτ∆̂e−Ĥ

spτ∆̂†|n〉,

which can be expanded in powers of ε−1
n using the Hadamard lemma. Since εn

is large, we only retain the first term, which is 〈n|∆̂∆̂†|n〉/(2εn). Thus we rewrite

Eq. (7.4) as

E = Eex −
∑
〈n|∆̂∆̂†|n〉/(2εn)− g−1

∫
d3r|∆(~r)|2, (7.5)

where Eex denotes the exact-diagonalized part, and the sum is over n with εsp
n >

Ec. We take |n〉 = |nx, ny, k〉, where (nx, ny) labels harmonic oscillator states in
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the x-y plane, and k labels plane waves along z. Then εsp
n = (nx + ny + 1)~ω⊥ +

~2k2/(2m), and 〈n|∆̂∆̂†|n〉 = ∆2
0ξ

2/(4πd2
⊥
√
nxny) for large nx, ny, where d⊥ ≡√

~/(mω⊥). Thus the energy per unit length along z is

Ẽ = Ẽex +
∆̃2

0ξ̃
2

4π

{
k̃c
[
1 + f

(
(1− µ̃)/k̃2

c

)]
− π/(2ãs)

}
, (7.6)

where k̃c ≡ [2(Ẽc − 1)]1/2, f(x) ≡
√

2x tan−1
√

2x, and the tildes denote nondi-

mensionalized quantities, with energies rescaled by ~ω⊥ and lengths rescaled

by d⊥. We perform calculations with Ẽc = 10. We verified that our results are

unchanged if Ẽc is made larger. Our approach to including high-energy modes

eliminates the ultraviolet divergence associated with the contact interaction. It

is similar to the approach in [16], where higher modes are included via a local-

density approximation. Other regularization schemes have also been successful

[203–205].

7.4 Results of the full model

Figure 7.1(a) shows the phase diagram at weak interactions. For small h the

ground state is a fully paired BCS state. Increasing h drives a first-order transi-

tion to an FFLO or a Normal region. As described earlier, in this weak-coupling

limit, the phase boundary is reminiscent of 1D, with a structure that repeats with

µ as various channels open. The FFLO state is most stable when µ is just above

n~ω⊥ for integer n. The length ξ over which ∆(~r) falls off increases with µ. The

FFLO wave vector q grows with h. The FFLO-Normal and FFLO-FP transitions

are second order, with the amplitude ∆0 → 0 as the boundary is approached.

Figure 7.2 shows how the phase diagram changes at stronger interactions.

As interactions favor pairing, we find superfluidity over a larger area. However,
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Figure 7.1: Zero-temperature phase diagram of a two-component Fermi gas in
a 2D harmonic trap of frequency ω⊥. Here d⊥/as = −3, where as is the 3D
scattering length, and d⊥ ≡ (~/mω⊥)1/2. (a) Phase boundaries calculated using
3D BdG equations. (b) BCS critical field of the full model (solid curve) and of
various effective 1D models (dashed curves). Short-dashed (red) line, 1D BdG
with the mapping in Eq. (7.10); dot-dashed (blue) line, 1D BdG with Olshanii’s
mapping [174, 175]; and long-dashed (green) line, Bethe Ansatz with Eq. (7.10).
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Figure 7.2: Zero-temperature phase diagram of the full model for (a) d⊥/as =
−3/2 and (b) d⊥/as = 0. Dashed curves plot the BCS critical field predicted by
effective 1D models. Conventions for the curves are the same as in Fig. 7.1.
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Figure 7.3: Quasiparticle dispersion at unitarity for (a) the BP phase at (µ̃, h̃) =

(2.2, 1), (b) the FFLO phase at (µ̃, h̃) = (2, 0.8), and (c) the FFLO phase at (µ̃, h̃) =
(2.35, 1.15). Different curves denote different transverse modes.

the phase diagram becomes more 3D-like, and the relative stabilities of differ-

ent superfluid phases change. In particular, we see the appearance of a stable

BP phase near unitarity. As seen in the excitation spectra in Fig. 7.3(a), the BP

state is a gapless superfluid with a uniform order parameter (in the z direction),

which contains both paired and unpaired modes. The unpaired fermions fill

the sea of negative energy states. The literature (mostly on isotropic systems)

distinguishes between BP states by the topology of the Fermi sea [107, 110, 176].

For a given transverse quantum number, the Fermi sea in Fig. 7.3(a) is con-

nected, making our state analogous to the “BP1” state in [107]. We do not find

BP states where a Fermi sea is broken into disjoint momentum intervals (cf. [1–

13, 50, 96, 108, 110, 176, 206–211]). However, we do find FFLO states of both

varieties [Figs. 7.3(b) and 7.3(c)]. The BCS-BP transition as well as the BP-FFLO

transition are first order, accompanied by jumps in the polarization.

We show the phase diagrams at finite temperature in Figs. 7.4 and 7.5. Here

we include thermal fluctuations at temperature T by minimizing the mean-field

free energy F = E − TS, where S denotes the entropy. This has the effect of

changing the sum in Eq. (7.4) to (−1/β)
∑

n ln
(
1 + e−β(En−h)

)
+
∑

n(εn + h),
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Figure 7.4: Variation of the superfluid regions with temperature for d⊥/as = −3.
(a) FFLO region. (b) BCS region(s). The BCS phase is stable to the left of the
curve(s) at a given temperature.
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Figure 7.5: Variation of the superfluid regions with temperature for d⊥/as = 0.
(a) FFLO region. (b) BCS region.

where β ≡ 1/(kBT ), and En takes on both positive and negative values. Such a

mean-field approach ignores the contribution of noncondensed pairs and over-

estimates the critical temperature [1, 5, 6, 52–56, 179–182, 212]. However, we

expect the qualitative features in Figs. 7.4 and 7.5 to be valid. In particu-

lar, we find vastly different critical temperatures for the FFLO and BCS phases,

requiring separate figures to show the behavior. This separation of scales is rea-
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sonable, as the pairing energy of the gapped BCS phase is much larger than the

gapless FFLO or BP phases. The critical temperatures grow with the interaction

strength since the pairing energy is increased. The BCS phase acquires polar-

ization at finite T , which causes ∆0 to decrease with h, making the BCS-Normal

transition second order at small µ̃. At sufficiently high temperature the BP and

BCS phases merge and become indistinguishable. The most striking feature of

the weak-coupling phase diagram (Fig. 7.4) is that the BCS region breaks up

into a series of disconnected lobes which disappear one by one at higher tem-

peratures.

7.5 Derivation of and comparison with an effective 1D model

To further understand this system, we take q = 0 and map it onto an effective

1D model for µ̃ < 2. We project Eq. (7.3) into the harmonic oscillator basis,

treating ∆~m,~n ≡ 〈~m|∆̂|~n〉 as a perturbation if ~n or ~m 6= ~0 [where ~n ≡ (nx, ny)].

This yields a 1D BdG equation for the ~n = ~0 mode. Neglecting the influence of

higher modes on the lowest mode yields an energy per unit length

Ẽ =
∆̃2ξ̃2

16π2

∫
d3k̃

k̃2
−
∑′

~m,~n

∆̃2
~m,~n

∫
dk̃

4π

ε̃~m/ε̃~m,+ + ε̃~n/ε̃~n,+
ε̃~m,+ + ε̃~n,+

− ∆̃2ξ̃2

8ãs
+

∫
dk̃

2π

[
ε̃~0 − ε̃~0,+ + α

(
ε̃~0,+− h̃

)]
, (7.7)

where the integrals are over all k̃, and the prime on the sum stands for (~m,~n) 6=

(~0,~0). Here ε~0,+ =
(
ε2
~0
+∆2

~0,~0

) 1
2 , and ε~n,+ = ε~n for ~n 6= ~0, with ε̃~n = nx+ny+k̃2/2+

1− µ̃. The first two terms in Eq. (7.7) separately diverge, but their sum is finite.

This expression for Ẽ maps to that of a purely 1D mean-field model provided

we identify the effective 1D order parameter ∆1D and the coupling constant g1D
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as ∆1D = ∆~0,~0 = ∆0ξ̃
2/(ξ̃2 + 1) and

1

g̃1D
=

(ξ̃2 + 1)2

8ξ̃2as
− lim

nc→∞

[
(ξ̃2 + 1)2

8ξ̃2

√
2nc − 2µ̃+ 3

−
∑′

~m,~n

CmxnxCmyny
∫
dk̃

4π

ε̃~m/ε̃~m,+ + ε̃~n/ε̃~n,+
ε̃~m,+ + ε̃~n,+

]
. (7.8)

Here g̃1D ≡ g1D/(d⊥~ω⊥), and

Cmn ≡
1

πm!n!

(
2

ξ̃2 + 1

)m+n
[

Γ

(
1 +m+ n

2

)
2F1

(
−m,−n;

1−m− n
2

;
ξ̃2 + 1

2

)]2

(7.9)

when m + n is even and 0 otherwise, where 2F1 is a hypergeometric function

and Γ is the Gamma function. The prime on the sum in Eq. (7.8) stands for the

condition 2 6 mx + nx + my + ny 6 2nc and the limit converges as n−3/2
c . The

effective coupling constant g1D is weakly dependent on ∆(~r), and its structure

is best understood by taking ∆̃0 → 0, ξ̃ → 1, for which

1

g̃1D
=

1

2ãs
+
ζ(1

2
, 2− µ̃)

2
√

2
−
√

2

π
Θ(µ̃− 1)

∞∑
j=1

2−2j

√
j+1− µ̃ tan−1

√
µ̃− 1

j+1− µ̃ , (7.10)

where ζ denotes the Hurwitz zeta function, and Θ is the unit step function. At

µ̃ = 1, 1/g̃1D = 1/(2ãs) + ζ(1/2)/(2
√

2), which is Olshanii’s two-particle result

[174, 175]. As µ̃ grows, g̃1D decreases, approaching −∞ as µ̃ → 2. This diver-

gence is unphysical and signals a breakdown of the mapping to 1D when more

channels open.

In Fig. 7.1(b) we evaluate the validity of this mapping by plotting the critical

field of the BCS phase, hc, from the effective 1D model. It closely follows the

critical field obtained from the full model for nearly all µ̃ < 2. We also plot hc

using Olshanii’s mapping [174, 175], which agrees with the full model at small

µ̃, but becomes less accurate as µ̃ increases. Furthermore, we show the predic-

tion of the Bethe Ansatz with the mapping in Eq. (7.10), which illustrates the
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difference between an exact and a mean-field analysis in 1D [20]. The mapping

to 1D becomes less accurate at stronger interactions due to mixing of the trap

levels, as seen in Fig. 7.2.

7.6 Outlook

Achieving the temperatures required to directly observe the FFLO state at

weak coupling is extremely challenging. The numbers near unitarity are more

promising, but the accuracy of our mean-field theory is questionable there. The

1D thermodynamic measurements [21, 22] are promising: the measured equa-

tion of state agrees with the thermodynamic Bethe Ansatz, which contains a

fluctuating version of the FFLO phase. Time-dependent BdG calculations sug-

gest the FFLO domain walls will be observable in time-of-flight expansion of 1D

gases [101]. Density-matrix renormalization-group simulations on very small

systems are more ambiguous [201]. This signature should be even more robust

in the geometries we have been studying. There are also interesting connections

to experiments on domain walls in highly elongated traps [213–215]. It is likely

that these various research directions will converge in the near future.
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7.7 Supplement: Fermi gas in array of coupled tubes

Here, we extend our analysis to model experiments where a spin-imbalanced

Fermi gas is loaded into an array of 1D tubes by turning on a lattice in the trans-

verse plane, as in Refs. [21, 22]. We calculate the mean-field phase diagram

taking into account all energy bands of the lattice. The 1D-to-3D crossover oc-

curs in two different ways depending on whether the lattice depth is decreased

or the interactions are increased. Lowering the lattice depth increases tunneling

between the tubes, making the system more three dimensional, as was observed

in Ref. [22]. On the other hand, stronger interactions mix the energy bands, en-

abling more transverse degrees of freedom and promoting 3D-like behavior, as

we found for a single tube in the main text.

We consider a square lattice in the x–y plane and choose units such that the

single-particle Hamiltonian is given by Ĥsp = −~∇2 + V0(sin2 x+ sin2 y − 1). The

eigenstates of Ĥsp can be expressed as φ~k(~r) =
(
1/
√
V
)
eikzzχkx(x)χky(y), where

V is the volume, (kx, ky) are the quasimomenta in the extended-zone represen-

tation, and the Bloch functions χk(x) can be computed exactly as

χk(x) =
1√
π

[
C

(
ak

(
V0

4

)
,
V0

4
, x+

π

2

)
+ i sgn(k)S

(
ak

(
V0

4

)
,
V0

4
, x+

π

2

)]
, (7.11)

where C and S denote, respectively, the Mathieu cosine and Mathieu sine func-

tions with period π and characteristic value a [216]. The single-particle spectrum

is given by εsp(~k) = k2
z + akx(V0/4) + aky(V0/4).

We consider a generalized Fulde-Ferrell ansatz for the pair wave function,

∆(~r) = ∆0 e
iqz
∑
jx,jy

exp

[
−(x− jxπ)2 + (y − jyπ)2

ξ2

]
, (7.12)

where ∆0, q, and ξ are variational parameters. As before, the mean-field energy

E can be calculated from Eq. (7.4) after diagonalizing the BdG Hamiltonian. We

254



perform this diagonalization numerically for states below an energy cutoff Ec

and include the higher-energy states perturbatively, yielding [see Eq. (7.5)]

E = Eex −
∑′

~k

∫
d3r |∆(~r)|2 |φ~k(~r)|2

2
[
εsp(~k)− µ

] − 1

g

∫
d3r |∆(~r)|2, (7.13)

where Eex is the exact-diagonalized part and the primed sum is over states with

εsp(~k) > Ec � µ. For such states, φ~k(~r) ≈
(
1/
√
V
)
ei
~k.~r and εsp(~k) ≈ k2. Using

this approximation in Eq. (7.13), we find the energy per unit volume

E
V =

Eex

V −
1

V

∫
d3r |∆(~r)|2

[
1

g
+

1

2V
∑

~k

Θ(k2 − Ec)
k2 − µ

]
, (7.14)

where Θ is the unit step function. This expression can be simplified further by

substituting the ansatz for ∆(~r) from Eq. (7.12) and writing g in terms of the

scattering length as using the Lippmann-Schwinger equation, which yields

E
V =

Eex

V +
∆2

0ξ
2

2π

[
ϑ3

(
0, e−π

2/(2ξ2)
)]2

{
− 1

8πas
+

1

2

∫
d3k

(2π)3

[
1

k2
− Θ(k2 − Ec)

k2 − µ

]}
=
Eex

V +
∆2

0ξ
2

8π3

[
ϑ3

(
0, e−π

2/(2ξ2)
)]2

(
− π

2as
+
√
Ec −

√
µ tanh−1

√
µ

Ec

)
, (7.15)

where ϑ3 denotes a Jacobi theta function [216]. We find the phase diagram by

minimizing the energy density with respect to ∆0, ξ, and q.

Figure 7.6 shows the phase diagram in the µ–h plane for V0 = 5 and as = −1.

As in a single tube, we find the FFLO phase is stable over a significant range

of parameters. Generically, as h is increased from zero, the fully paired BCS

phase becomes unstable to a partially polarized phase at a critical imbalance hc

through a first-order phase transition. As we discussed in Sec. 7.2, the variation

of hc with µ provides a convenient distinction between 1D-like and 3D-like be-

havior. In 3D, pairing is favored at higher density, which increases the stability

of the BCS state, resulting in a larger critical field hc. Thus, dhc/dµ > 0. In 1D,

the effect is reversed and dhc/dµ < 0. We find that hc(µ) has a positive slope in
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Figure 7.6: Mean-field phase diagram of a spin-imbalanced Fermi gas loaded
into an array of coupled tubes by turning on a square lattice in the transverse
plane, with V0/ER = 5 and πas/a = −1. Here µ and h denote the average chem-
ical potential and chemical potential difference between the two spin compo-
nents, respectively, ER is the recoil energy, V0 is the lattice depth, a is the lattice
spacing, and as is the s-wave scattering length. The gray shaded regions show
the locations of the energy bands of the lattice.

Fig. 7.6 (solid blue curve). This is because the interactions are sufficiently strong

to mix the energy bands of the lattice and produce 3D-like kinematics.

Figure 7.7 shows how the curve hc(µ) changes as the interactions are re-

duced. At weaker interactions, there is less mixing between the energy bands.

Consequently, if the chemical potential µ lies in the gap between two low-lying

energy bands, the transverse motion is frozen out and the phase diagram is 1D

like. The system exhibits 3D-like behavior when µ is inside an energy band or

when sufficiently many bands are occupied. The 1D-like regions shrink with

stronger interactions. This variation with the interaction strength is similar to

what we found for a Fermi gas in a single tube [see Figs. 7.1 and 7.2].
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Figure 7.7: Variation of the critical imbalance curve, hc(µ), with the interaction
strength, for V0/ER = 10. (a) πas/a = −1, (b) πas/a = −0.4, (c) πas/a = −0.25.
As in Fig. 7.6, gray shaded regions show the energy bands of the lattice.

Figure 7.8: Variation of the critical imbalance curve with the lattice depth, for
πas/a = −0.25. (a) V0/ER = 10, (b) V0/ER = 5, (c) V0/ER = 2.5. As before, gray
shaded regions show where the energy bands of the lattice are located.

Tuning the lattice depth V0 provides another means of probing the 1D-to-3D

crossover. In the limit V0 → ∞, the tubes are isolated from one another and

each can be modeled by a 2D harmonic trap, which we studied in the main text.

Figure 7.8 shows how the phase diagram changes as the lattice depth is varied.

For a large but finite V0, the particles can tunnel between the tubes and the en-

ergy bands have a finite width that scales with the tunneling. In particular, the

lower-energy bands are well separated from each other and we find 1D-like be-

havior between the first and second band. As V0 is decreased, the energy bands

get wider and eventually overlap, making the system fully three dimensional.
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CHAPTER 8

KINETICS OF BOSE-EINSTEIN CONDENSATION IN A DIMPLE TRAP

This chapter was adapted from “Kinetics of Bose-Einstein condensation in a dimple

potential” by Shovan Dutta and Erich J. Mueller, published in Physical Review A 91,

013601 (2015).

8.1 Abstract

We model the dynamics of condensation in a bimodal trap consisting of a large

reservoir region and a tight “dimple” whose depth can be controlled. Exper-

imental investigations have found that such dimple traps provide an efficient

means of achieving condensation. In our kinetic equations, we include two- and

three-body processes. The two-body processes populate the dimple and lead to

loss when one of the colliding atoms is ejected from the trap. The three-body

processes produce heating and loss. We explain the principal trends, give a de-

tailed description of the dynamics, and provide quantitative predictions for the

time scales and condensate yields. From these simulations, we extract optimal

parameters for future experiments.

8.2 Introduction

8.2.1 Overview

Cold atom physics faces ever-increasing challenges related to kinetics. Experi-

mentalists are trying to produce ever-more complicated states of matter which
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are intrinsically difficult to cool [1–5]. To further complicate matters, the tech-

niques used to produce these states add mechanisms for heating. One paradigm

for addressing these challenges is to divide the system into two parts: a “reser-

voir” which can readily be cooled, coupled to a smaller subsystem which has

interesting properties [6–15]. The prototypical example of such a separation are

the “dimple traps” pioneered by Pinkse et al. [7] and more recently explored by

several other groups [6, 8–11]. The key to such programs is an understanding

of the kinetic processes through which energy and particles move between the

two subsystems. Here we model the loading and equilibration of a dimple trap

in a gas of weakly interacting Bosons.

The initial dimple experiments were motivated by a desire to reduce the

complexity of cooling atomic gases and explore fundamental questions of con-

densate growth [16–35]. Dimples have been key to proposals to study atom

lasers [11, 36, 37]. They also have promising applications in atom interferom-

etry [38], quantum tweezers for atoms [39], controlling soliton-sound interac-

tion [40], ultraslow light propagation [41], and studying analogs of cosmological

physics [42–45].

Stellmer et al. describe a typical dimple experiment in Ref. [46]. They precool

a cloud of bosonic atoms to hundreds of nanokelvin and trap them in a large

but shallow optical trap. At this point, the phase space density is well below the

threshold for condensation. Next, a laser beam focused in a small region near

the trap center creates a strongly attractive dimple potential, causing a great in-

crease in the local atom density without much change in temperature. As the

density in the dimple grows, they see the development of a condensate. Theo-

retical steps have been taken to understand Bose condensation by this method
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[10, 16, 47–53] (see Sec. 8.2.2 for a brief review). However, a detailed quantita-

tive study of how the condensate fraction, the temperature, and the character-

istic time scales depend on the trap parameters and the initial conditions is, to

our knowledge, still lacking. Here, we take a simple quantum kinetic approach

toward achieving this goal.

Since in experiments like Stellmer et al.’s, the phase space density in the

reservoir stays small, we model it as a classical Boltzmann gas in a three-

dimensional (3D) harmonic well. We assume that the collision rate in the reser-

voir is fast compared to the condensation dynamics so that the reservoir is al-

ways in quasi-thermal equilibrium: the occupation of a mode of energy ε is

nrε(t) = e−(ε−µr(t))/kBTr(t), where the temperature Tr and the chemical poten-

tial µr depend on time. Many cold atom experiments are described by such a

quasiequilibrium [6, 7, 10]. For simplicity we assume that the harmonic well is

isotropic. We model the dimple as a 3D square well and consider the case where

it is turned on suddenly at t = 0. This is a prototypical protocol for turning on

the dimple [10, 16, 20, 49]. In Sec. 8.3.1, we outline the physical parameters

relevant to the dynamics. In Sec. 8.3.2, we analyze the two-body scattering pro-

cesses responsible for the transfer of atoms from the reservoir to the dimple and

their redistribution among the momentum states of the dimple. In particular,

the dimple is populated via two-body collisions: one particle enters the dimple,

transferring energy to the second. This permits us to write down rate equa-

tions for the populations of the dimple states. Due to the symmetry of kinetic

processes, the population of a dimple state depends only on its energy. Since

in most present-day experiments the dimple contains thousands of energy lev-

els [10, 11], we describe their populations by a continuous distribution function

f(E, t), treating the ground state occupation N0 separately. As the collision pro-
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cesses also change the number of atoms Nr and the energy Er in the reservoir,

we arrive at coupled rate equations for f(E, t), N0, Nr, and Er.

In Sec. 8.4.1, we discuss the short-time dynamics after turning on the dimple.

We find that energy levels near half the dimple depth start filling up first. When

the atom density in the dimple becomes comparable to that in the reservoir,

particle scattering between energy levels initiates thermalization. Denoting the

collisional mean free time in the reservoir by τcoll, we find that for t & 8τcoll,

f(E, t) is well approximated by a thermal distribution. The states in the high-

energy tail take longer to thermalize than those near the bottom of the dimple.

During thermalization, for large enough dimple depths, we notice that f(E, t)

passes through a bimodal shape, which should show up in time-of-flight images

in experiments. We find that N0(t) grows slowly at first until it becomes suffi-

ciently large that Bose stimulation takes over. This gives rise to an onset time

τon after which the condensate grows rapidly. This effect was studied for con-

densation by evaporative cooling in harmonic traps [20, 27–29], and has been

observed in recent experiments on dimples [10, 11]. Our estimates of thermal-

ization time scales are similar to those found in a wide range of experiments

[20, 24, 25, 27, 46, 54, 55].

We consider both the cases of an infinite trap depth and a finite trap depth.

In the former situation, we allow particles in the reservoir to have arbitrarily

high energies, whereas in the latter, we eject particles which recoil from a col-

lision with an energy greater than the trap depth. In Sec. 8.4.2, we discuss the

infinite trap depth case. In practice, this is equivalent to a trap whose depth is

large compared to the dimple depth and the initial thermal energy. The reser-

voir temperature rises as particles are scattered into the dimple. In the absence
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of inelastic losses, the dimple population grows monotonically, saturating after

a time τsat at a value limited by the amount of heating. Guided by the result

that the dimple thermalizes fast compared to the population growth rates, we

introduce a simplified model where we assume that f(E, t) is given by a ther-

mal Bose-Einstein distribution. This method reproduces all features of the full

model for t & 10τcoll and requires fewer computational resources to simulate.

We only use this approximation in Sec. 8.4.2, returning to the full kinetic equa-

tions in later sections. We provide detailed results of how the final populations,

the final temperature, the entropy gain, τon, and τsat vary with the dimple depth

εd, the initial phase space density ρi, the ratio of the reservoir volume to the dim-

ple volume Ω, and the initial temperature Tr0. In particular, the atoms do not

condense if εd is smaller than |µr(t = 0)|. As εd is increased, the final conden-

sate fraction F0 grows and attains a maximum for an optimal depth ε∗d, which

is set by ρi, Ω, and Tr0. With further increase in εd, F0 falls off due to increased

heating. Such a nonmonotonic variation was observed in a recent experiment

[10]. In addition to maximizing F0, εd = ε∗d also minimizes τon. Both F0 and ε∗d

increase with ρi and Ω. We find that Ωτcoll sets the typical time scale for satura-

tion. The dynamics become more nonadiabatic and takes longer to saturate at

larger dimple depths.

We add inelastic losses to our model in Sec. 8.4.3. Here we consider the

case for 87Rb where three-body recombination dominates the loss [56]. In this

process three atoms collide to produce a molecule in an excited state, thereby

releasing a large amount of energy which causes all three atoms to escape. As

a result, the condensate fraction decays toward zero after reaching a peak value

F
peak
0 at t = τpeak. Thus, three-body loss gives a finite condensate lifetime ∆tlf

[11]. We find that F peak
0 exhibits a nonmonotonic dependence on εd, similar to
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F0. However, the maximum condensate fraction is smaller by almost an order

of magnitude due to the large three-body loss rate in the dimple, where the den-

sity becomes large. We find that three-body loss also lowers the optimal dimple

depth, in agreement with recent findings [10]. Smaller dimples result in higher

local densities, which increase the loss rate. We therefore find an optimal vol-

ume ratio Ω∗. Similarly, there is an optimal initial phase space density ρ∗i . The

three-body rate grows faster with Tr0 than the two-body collision rate. Thus,

F
peak
0 falls off with Tr0. We find that ∆tlf increases with Ω and decreases with

εd, ρi, and Tr0. Since the three-body loss rate varies with the s-wave scattering

length a as |a|4 [57], one can influence it by using a different species of atoms

or exploiting Feshbach resonances [8]. However, such manipulations may in-

troduce other inelastic channels or hydrodynamic losses [58] and one should be

careful to take that into account.

In Sec. 8.4.4, we discuss how our results change when the reservoir trap has a

finite depth εt. Here, we eject any atom which gains sufficient energy from a col-

lision to have a total energy ε > εt. Such a model correctly describes a trapped

gas in the Knudsen regime: the collisional mean free path is larger than the size

of the reservoir, which is true in most experiments on trapped gases [25]. We

assume that the atom energies in the reservoir follow a Boltzmann distribution

truncated at ε = εt. Previous numerical studies have shown that this assump-

tion accurately describes evaporative cooling [25–27]. The effect of finite trap

depth on the dynamics becomes appreciable when εt is no longer larger than εd

and kBTr0. We find that lower trap depths yield lower final temperatures and

increase the condensate growth rate. This leads to a higher condensate fraction

F
peak
0 and a longer lifetime ∆tlf. However, when εt becomes very small, the in-

creased evaporation rate of the reservoir limits the rise of ∆tlf. We summarize
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our findings and suggest future work in Sec. 8.5.

To keep the problem computationally tractable, we have made some simpli-

fying approximations. First, we have not included the mean-field interactions

between the condensate and the thermal cloud [10, 28–30, 34, 35, 47, 59–61].

This mean field changes the effective potential experienced by the atoms by

an amount proportional to the condensate density, in effect changing the dim-

ple depth. This effect causes a repulsion between the condensate and thermal

cloud [29, 59] and also lowers the critical temperature [60]. It can be compen-

sated by making the dimple parameters time-dependent and is unimportant for

the short-time dynamics. We do not model quantum fluctuations of the conden-

sate [27, 34, 47, 60], although our model does include thermal fluctuations. The

modifications due to quantum fluctuations should be much smaller than that of

the mean field [27, 60]. We use the infinite square well energy eigenstates for the

dimple. The kinetics do not depend on the exact model of the dimple potential

as long as it contains many energy levels, which is true for present-day experi-

ments [10, 11]. In modeling the condensation kinetics, we neglect two kinds of

elastic collisions: First, we neglect collisions internal to the dimple where there

is no exchange of atoms with the reservoir. These processes serve to equilibrate

the dimple. Within our approximations, we find that the dimple thermalizes

within τth ≈ 8τcoll, and these processes can at most speed up thermalization. For

t > τth, these neglected collisions play no role. Second, we neglect collisions

in which an atom from a low-energy state in the dimple and an atom from the

reservoir collide, leaving two atoms in the dimple. Such collisions can become

important for deep dimples when the condensate fraction becomes apprecia-

ble and can subsequently enhance the dimple population rate. They can be

included in a future refinement of our model and might alter some quantitative
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details such as the time to reach saturation. However, we do not expect that

these processes will change any of the qualitative features our model captures

[28].

8.2.2 Review of past theoretical studies

In order to put our work in context, here we briefly summarize previous theo-

retical studies of related problems. Much of the theoretical groundwork was de-

veloped in Refs. [27–30], largely in the context of modeling evaporative cooling.

Our approach closely follows that quantum kinetic formalism. Alternative for-

malisms have also been developed. For example, Stoof and Bijlsma developed

a field theoretical approach [31, 47], while Holland and collaborators developed

another form of the quantum Boltzmann equation [32, 34]. The general prob-

lem is complex: the system is spatially inhomogeneous, out of equilibrium, and

experiencing time-dependent forces. Moreover, the possible parameter space

is huge. Any two studies may be distinguished by the system geometry, the

formalism used, and the range of parameters studied. Below we give further

details about the most relevant studies.

As already introduced, we consider the case of a small impurity at the center

of a three-dimensional cloud. This system can be contrasted, for example, to

the work of Garrett et al. in which the “dimple potential” spans the waist of

an elongated cloud [10]. They found that in such large and inhomogeneous

impurities, three-body collisions are relatively unimportant. This is in striking

contrast to our geometry.

In Ref. [16], Comparat et al. consider a geometry closer to ours, but a very
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different experimental protocol. They envisage an experiment where the dimple

is first loaded with thermal atoms from a large reservoir. Then one removes the

reservoir trap and ramps down the dimple depth to induce condensation. Such

a forced evaporation in a cigar-shaped dimple led to the first realization of a

133Cs condensate [8]. They analyze the evolution using classical kinetic theory

and optimize elements of their protocol. The also pay close attention to the

details of the trapping potential, such as the influence of gravity. The same

experiment was studied by Ma et al. using a different classical kinetic approach

[48]. They used a Monte Carlo simulation to integrate the Boltzmann equation.

They carefully study the dependence on the dimple size and the differences

between using 133Cs and 85Rb.

While not a kinetic theory, Uncu et al. carried out some modeling of adiabatic

dimple loading by considering conservation of entropy. They used a simple

model for the dimple, parametrized solely by the depth and location [50–52].

Finally, Stoof and collaborators conducted a number of kinetic simulations

using their stochastic field theory approach [47, 49]. One feature of this ap-

proach is that it allowed them to model the case where the reservoir is par-

tially condensed and describe the collective excitations of the reservoir. They

restricted their studies to 1D clouds.
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8.3 Formalism

8.3.1 Physical parameters of the dimple potential

In this subsection, we describe our model for the reservoir and the dimple and

develop some useful notation.

We model the reservoir as an isotropic harmonic well of frequency ω, trun-

cated at the trap depth εt, and assume a truncated Boltzmann distribution. We

can relate the number of atoms Nr and the energy Er in the reservoir to εt, the

inverse temperature βr = 1/kBTr, and the fugacity zr = eβrµr by integrating over

the phase space:

Nr =

∫ ′ d3pd3r

h3
exp

[
− βr

( p2

2m
+

1

2
mω2r2 − µr

)]
. (8.1)

Here, m denotes the mass of an atom. The prime stands for the condition that

any atom in the reservoir has a total energy less than εt, i.e., p2

2m
+ 1

2
mω2r2 < εt.

Eq. (8.1) can be simplified to obtain

Nr =
zr

(βr~ω)3

1

2
γ(3, βrεt) , (8.2)

where γ denotes the lower incomplete gamma function. Similarly, we find for

the energy,

Er =

∫ ′ d3pd3r

h3

( p2

2m
+

1

2
mω2r2

)
e−βr(

p2

2m
+ 1

2
mω2r2−µr)

=
1

βr

zr
(βr~ω)3

1

2
γ(4, βrεt) . (8.3)

After turning on the dimple, Nr, Er, βr, and zr change as functions of time.

We define fr(t) and er(t) as the ratio of Nr(t) and Er(t) to their initial values N
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and E , respectively. Thus,

fr ≡
Nr

N =
z̃r

β̃3
r

γ(3, β̃rε̃t)

γ(3, ε̃t)
, (8.4)

er ≡
Er
E =

z̃r

β̃4
r

γ(4, β̃rε̃t)

γ(4, ε̃t)
, (8.5)

where z̃r ≡ zr/zr0, β̃r ≡ βr/βr0, and ε̃t ≡ βr0εt. The zeros in the subscripts refer

to the respective values at t = 0. In our simulation of the kinetics, we use Eqs.

(8.4) and (8.5) to extract the instantaneous values of z̃r and β̃r from a knowledge

of fr and er.

The spatial density of atoms in the reservoir can be found as

nr(~r) =

∫ ′ d3p

h3
exp

[
− βr

( p2

2m
+

1

2
mω2r2 − µr

)]
=
zr
λ3
r

2√
π
γ
(3

2
, βrεt −

1

2
βrmω

2r2
)
e−

1
2
βrmω2r2 . (8.6)

Here, λr = (2π~2βr/m)1/2 denotes the thermal de Broglie wavelength. We see

that nr and hence the phase space density fall off with distance from the center

of the well. We define the “initial phase space density” ρi to be

ρi ≡ nr0(~0)λ3
r0 = zr0

2√
π
γ(3/2, ε̃t) , (8.7)

which corresponds to the phase space density near the dimple at r = 0.

The “collisional mean-free time” τcoll is the average time between successive

collisions among the atoms in the reservoir near r = 0. We can estimate τcoll at

t = 0 as τcoll = (nσv)−1, where n = nr0(~0), σ = 8πa2 is the scattering cross section

for weakly interacting bosons [62], and v denotes the average initial speed of

the reservoir atoms near r = 0. One can find v as

v =
1

nr0(~0)

∫ ′ d3p

h3

p

m
exp

[
− βr0

( p2

2m
− µr0

)]
=
( 8

πmβr0

)1/2
√
π/2

γ(3/2, ε̃t)
γ(2, ε̃t) . (8.8)
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Therefore,

τcoll =
(mβr0)1/2

16
√

2πa2nr0(~0)

2√
π

γ(3/2, ε̃t)

γ(2, ε̃t)
. (8.9)

We define an effective volume Vr of the reservoir as Vr ≡ Nr/nr(~0). At t = 0,

this volume has the value

Vr0 = N /nr0(~0) =
( 2π

β0mω2

)3/2
√
π

4

γ(3, ε̃t)

γ(3/2, ε̃t)
, (8.10)

where we have substituted from Eqs. (8.2) and (8.6). The incomplete gamma

functions become quite insensitive to ε̃t for ε̃t & 5, where γ(ν, ε̃t) ≈ Γ(ν). Then,

ρi and Vr0 are just functions of the trap frequency, the initial temperature, and

the total number of trapped atoms. When ε̃t . 1, the truncated Boltzmann

distribution may no longer be a good model for the reservoir.

We model the dimple as a square well of depth εd and length ld. We find that

the condensation dynamics depends on the ratio of Vr0 to the dimple volume l3d.

Thus, we define the “volume ratio” Ω ≡ Vr0/l
3
d. Using Eqs. (8.7) and (8.10), one

can write

Ω ≡ Vr0
l3d

=
Nλ3

r0

l3d ρi
=
N
l̃3d

1

zr0

√
π/2

γ(3/2, ε̃t)
, (8.11)

where l̃d ≡ ld/λr0.

We assume that the eigenstates of the dimple coincide with those for the

“particle-in-a-box” model, i.e., they are plane wave states of definite momenta:

ψ~n(~r) = l
−3/2
d e

i 2π
ld
~n.~r

, (8.12)

where ~n is a triplet of integers. Such a state has energy

εn ≡ −εd + En = −εd +
2π2~2

ml2d
n2 , (8.13)

with n = (n2
1 + n2

2 + n2
3)1/2. We can estimate the total number of such states,

M , by applying the condition that εn must be negative, which gives M ≈
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(1/6π2)(2ml2dεd/~2)3/2. For typical magnitudes of ε and ld in present-day experi-

ments, M is very large [10, 46]. Multiplying Eq. (8.13) by βr0, we can express it

in the tilde notation as

ε̃n ≡ −ε̃d + Ẽn = −ε̃d + (π/l̃2d)n
2 . (8.14)

Other models for the dimple (such as a harmonic oscillator) yield similar results

for the dynamics.

8.3.2 Kinetic model for condensation in the dimple

To model the nonequilibrium dynamics after the dimple is turned on, we con-

sider the two different kinds of two-body elastic collisions which dominate the

energy and particle transport between the reservoir and the dimple. These are

illustrated in Fig. 8.1. In the first kind, a collision between two atoms in the

reservoir transfers one of the atoms to the dimple, while the other atom gains

energy. The second atom can leave the reservoir if its total energy exceeds the

trap depth εt. However, when εt is large compared to εd, it is more likely that the

second atom will stay in the reservoir and cause heating. Collisions of this kind

lead to the growth of the dimple population and increase the local phase space

density. In the second kind of collision, an atom in the reservoir collides with an

atom in the dimple and transfers it to another energy state in the dimple. The

first atom can then either remain in the reservoir or leave, depending on the

amount of energy it gains or loses in the process. Collisions of this second kind

serve to thermalize the dimple by redistributing its atom population among the

various energy levels. In the following, we analyze these two kinds of collisions

(and their reverse processes) in detail to derive the equations of motion for the

dynamics.
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Figure 8.1: Two body collisions responsible for the growth and redistribution
of the dimple population: (a) Two atoms from the reservoir collide and one of
them enters a dimple state, transferring energy to the other. (b) A reservoir
atom exchanges energy with an atom in the dimple, transferring it to a different
energy state.

Growth of dimple population

Here we consider the process shown in Fig 8.1(a). Two reservoir atoms with

momenta ~p and ~q collide with each other. One of the atoms enters the ~n-th state

in the dimple and the other atom recoils with momentum ~k. The rate of this pro-

cess depends on the following factors: (i) It is proportional to the occupations of

the momentum states ~p and ~q at the origin, which give rise to the Boltzmann fac-

tor exp[−βr((p2 + q2)/2m− 2µr)]. (ii) Due to the quantum-mechanical symmetry

of identical bosons, the likelihood of scattering into the ~n-th state is enhanced by

a factor ofN~n, the number of bosons already present in the ~n-th state. This effect

gives rise to a Bose stimulation factor 1 +N~n. (iii) The rate is proportional to U2
0 ,

where U0 = 4π~2a/m is the scattering amplitude for weakly interacting bosons,

a being the s-wave scattering length [62]. This factor originates from the over-

lap of initial and final states in Fermi’s golden rule. Since all four single-particle

states involved in the collision have definite momenta, the overlap also pro-
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duces a delta function which imposes conservation of momentum. Finally, we

must conserve energy. Combining these factors, we can write down the total

rate at which atoms enter the ~n-th dimple state via such processes:(
dN~n

dt

)g
in

=
2π

~
U2

0 (1 +N~n)

∫ ′ d3pd3q

(2π~)6
e−βr(

p2+q2

2m
−2µr)

× δ
{
p2 + q2 − [~p+ ~q − (2π~/ld)~n]2

2m
− εn

}
. (8.15)

Here, the prime restricts the initial momenta ~p and ~q to regions where p2, q2 <

2mεt.

In the reverse process, a reservoir atom collides with an atom in the ~n-th

dimple state and both enter the reservoir. The rate at which such processes

decrease N~n can be written using similar reasoning as above:(
dN~n

dt

)g
out

= − 2π

~
U2

0N~n

∫ ′ d3pd3q

(2π~)6
e−βr(

p2+q2

2m
−εn−µr)

× δ
{
p2 + q2 − [~p+ ~q − (2π~/ld)~n]2

2m
− εn

}
. (8.16)

The net growth rate of N~n can now be found by summing Eqs. (8.15) and (8.16).

In the forward process described by Eq. (8.15), when the atom recoiling with

momentum ~k has energy exceeding εt, i.e., k2/2m = (p2 + q2)/2m+ εd−En > εt,

it is lost from the trap. We call such collisions “one-way collisions” since they

do not have any reverse process. Whereas collisions in which k2/2m < εt can

happen both ways. We call such collisions “two-way collisions.” A one-way

collision reduces the number of atoms in the reservoir (Nr) by 2, whereas a two-

way collision reduces Nr by 1. Thus, we write(
dN~n

dt

)g
=

(
dN~n

dt

)g
1

+

(
dN~n

dt

)g
2

, (8.17)(
dNr

dt

)g
= −

∑
~n

[
2

(
dN~n

dt

)g
1

+

(
dN~n

dt

)g
2

]
, (8.18)
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with explicit expressions for these terms given in Appendix 8.6.

In a two-way collision, the reservoir energy Er increases by εd − En, which

leads to heating. The net rate of increase of Er due to two-way collisions can be

written as (
dEr
dt

)g
2

=
∑
~n

(εd − En)

(
dN~n

dt

)g
2

. (8.19)

On the other hand, in a one-way collision between two atoms of momenta ~p

and ~q, their total energy (p2 + q2)/2m is lost from the reservoir. Depending on

whether this energy is greater or less than twice the average particle energy

in the reservoir, such a collision cools down or heats up the reservoir. We can

obtain the rate at which Er decreases due to one-way collisions which populate

the ~n-th dimple state by using arguments similar to those preceding Eq. (8.15):(
dEr
dt

)g
1,~n

=− 2π

~
U2

0 (1 +N~n)

∫ ′′d3pd3q

(2π~)6
e−βr(

p2+q2

2m
−2µr)

× p2 + q2

2m
δ

{
p2 + q2 − [~p+ ~q − (2π~/ld)~n]2

2m
− εn

}
. (8.20)

Here, the double prime indicates that the initial momenta satisfy p2, q2 < 2mεt

and p2 + q2 > 2m(εt− εd +En). In Appendix 8.6, we reduce Eq. (8.20) to a lower

dimensional integral. The net rate of change of Er is given by(
dEr
dt

)g
=

(
dEr
dt

)g
2

+
∑
~n

(
dEr
dt

)g
1,~n

. (8.21)

Due to symmetry, the population of the dimple states depend only on their

energy, as can be verified from Eqs. (8.46) and (8.47). This feature allows us to

describe them by a continuous distribution function in energy f(Ẽ, t): the num-

ber of atoms in the energy interval dẼ at time t equals N f(Ẽ, t)dẼ. Using this

definition we can relate f(Ẽ, t) to N~n(t) via the density of states D(Ẽ): f(Ẽ, t) =

D(Ẽ)N~n(t)/N , where Ẽn = Ẽ. The density of states D(Ẽ) can be obtained by
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noting that Ẽn = (π/l̃2d)n
2 [Eq. (8.14)], which yields D(Ẽ) = 2l̃3d(Ẽ/π)1/2. We

can then express Eq. (8.17) as equations of motion for f(Ẽ, t). The characteristic

time in these equations is τcollΩ, the product of the collision time and the volume

ratio of the reservoir to the dimple.

To account for condensation, we treat N~0(t) separately from f(Ẽ, t) and de-

fine f0(t) ≡ N~0(t)/N as the condensate fraction. Eqs. (8.15) and (8.16) then

give equations of motion for f0(t), which can be written in terms of one- and

two-way collisions.

The reservoir fraction fr(t) defined in Eq. (8.4) then evolves according to(
dfr
dt

)g
= −2

(
df0

dt

)g
1

−
(
df0

dt

)g
2

−
∫ ε̃d

0

dẼ

{
2

[
∂f(Ẽ, t)

∂t

]g
1

+

[
∂f(Ẽ, t)

∂t

]g
2

}
,

(8.22)

and similar expressions hold for the relative energy in the reservoir er(t) defined

in Eq. (8.5).

Redistribution of dimple population

Here, we examine two-body collisions of the kind illustrated in Fig 8.1(b), where

a reservoir atom of momentum ~p exchanges energy with a dimple atom in state

~n1, sending it to a different state ~n2. The rate of such processes can be calculated

using reasoning similar to that outlined at the beginning of section 8.3.2:

dN~n1→~n2

dt
=

2π

~
U2

0N~n1(1 +N~n2)
1

l3d

∫ ′ d3p

(2π~)3
e−βr(

p2

2m
−µr)

× δ
{
p2

2m
+ En1 −

[~p+ (2π~/ld)(~n1 − ~n2)]2

2m
− En2

}
, (8.23)
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where the prime denotes the condition p2 < 2mεt. The net rate of change of N~n

due to such collisions is given by(
dN~n

dt

)r
=
∑
~n′ 6=~n

dN~n′→~n

dt
− dN~n→~n′

dt
. (8.24)

Once again there are one- and two-way collisions. In Eq. (8.23), if the final

energy of the reservoir atom is sufficiently large, p2/2m + En1 − En2 > εt, it is

lost from the trap. Such one-way collisions happen only when the dimple atom

is transferred to a much lower energy level. As in our prior sections, collisions

in which the above condition is not satisfied happen both ways. These do not

change the number of atoms in the reservoir (Nr), but can change their average

energy, thus changing the reservoir temperature Tr. Denoting the rates of one-

and two-way collisions by R(1)
~n,~n′ and R

(2)
~n,~n′ , respectively, we write(

dN~n

dt

)r
=
∑
~n′ 6=~n

R
(1)
~n,~n′ +R

(2)
~n,~n′ , (8.25)(

dNr

dt

)r
= −

∑
~n′,~n

En′>En

R
(1)
~n,~n′ . (8.26)

In a one-way collision, the energy in the reservoir (Er) decreases by an

amount p2/2m. Therefore, we obtain the net rate of change of Er due to one-

way collisions as (
dEr
dt

)r
1

=
∑
~n′,~n

En′>En

(
dEr
dt

)r
1,~n′→~n

, (8.27)

where(
dEr
dt

)r
1,~n′→~n

= − 2πzr
~l3d

U2
0N~n′(1 +N~n)

∫ ′′ d3p

(2π~)3
e−βr

p2

2m

× p2

2m
δ

{
p2

2m
+ En′ −

[~p+ (2π~/ld)(~n1 − ~n2)]2

2m
− En

}
. (8.28)
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Here, the double prime imposes the condition 2m(εt + En − En′) < p2 < 2mεt.

Conversely, when a two-way collision transfers a dimple atom from state ~n′ to

state ~n, the reservoir energy changes by En′ − En. Thus,(
dEr
dt

)r
2

=
∑
~n′,~n

En′>En

(En′ − En)R
(2)
~n,~n′ . (8.29)

The total change inEr is then found by adding the two contributions [Eqs. (8.27)

and (8.29)].

Describing the dimple states in terms of a continuous distribution function

f(Ẽ, t), as defined in section 8.3.2, we can express Eq. (8.25) as[
∂f(Ẽ, t)

∂t

]r
=

∫ ε̃d

0

dẼ ′
[
R1(Ẽ, Ẽ ′) +R2(Ẽ, Ẽ ′)

]
, (8.30)

where R1(Ẽ, Ẽ ′) and R2(Ẽ, Ẽ ′) are given in Appendix 8.7. As would be ex-

pected, we find that the characteristic time for these processes is the collision

time τcoll. The rate equations for the condensate fraction f0, the reservoir frac-

tion fr, and the relative energy in the reservoir er can be obtained likewise from

Eqs. (8.25)−(8.29).

To simulate the overall dynamics incorporating both the growth and the re-

distribution process, we add the corresponding equations of motion describing

the two processes. In the next section, we present our numerical results. Three-

body processes will be discussed in Sec. 8.4.3.
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Ẽ

1
04

f
(Ẽ
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Figure 8.2: Time evolution of the atom distribution in the dimple, f(Ẽ, t), for
0 < t . 10τcoll, where Ẽ ≡ E/kBTr0 is the energy measured from the bottom
of the dimple scaled by the initial reservoir temperature. (a) Initial population
growth occurs near Ẽ = ε̃d/2. These atoms are quickly transferred to lower
energy states, giving rise to a hump near Ẽ = 0, which grows rapidly. Around
t ≈ 1.6τcoll, f(Ẽ, t) has a bimodal shape for ε̃d & 8, which should show up
in time-of-flight experiments. (b) f(Ẽ, t = 8τcoll) is well fit by a thermal Bose-
Einstein distribution given by Eq. (8.31). Parameter values used for plotting
are ρi = 0.05, Ω = 2000, ε̃d = 20, ε̃t = 10, and l̃d = 100. At Tr0 = 1µK, these
parameters give τcoll ≈ 11 ms for 87Rb.

8.4 Results

8.4.1 Initial dynamics and thermalization

Figure 8.2 shows how the particle distribution in the dimple f(Ẽ, t) evolves for

0 < t . 10τcoll after the dimple is turned on at t = 0. Although the plots cor-
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respond to specific initial conditions stated in the caption, we observe the same

general features for other choices of parameters. We find that the reservoir par-

ticles predominantly scatter into states whose energies are near half the dimple

depth, creating a hump in f(Ẽ, t). Such a highly nonequilibrium distribution

does not last for long. Within a few τcoll, the processes in Fig. 8.1(b) transfer

these atoms to lower energy states near the bottom of the dimple. This gener-

ates a hump in f(Ẽ, t) near Ẽ = 0, which grows and soon overtakes the hump

near Ẽ = ε̃d/2. As a result, around t ∼ 1.6τcoll, f(Ẽ, t) has a bimodal shape. The

peaks are more distinct for larger dimple depths and are hard to resolve when

ε̃d . 8. This nonequilibrium stage lasts for a few collision times. For 87Rb with

ρi = 0.05 and Tr0 = 1µK, the collision time is τcoll ≈ 11 ms, sufficiently long that

one can experimentally resolve these dynamics. In time-of-flight imaging, the

bimodal shape of f(Ẽ, t) should produce two expanding shells of atoms.

For t & 8τcoll, we find that f(Ẽ, t) is well approximated by a thermal distri-

bution. This is seen in Fig. 8.2(b) where we fit f(Ẽ, t = 8τcoll) to a Bose-Einstein

distribution truncated at Ẽ = ε̃d:

f(Ẽ) =
D(Ẽ)/N

eβd(−εd+E−µd) − 1
=

1

ρiΩ

2(Ẽ/π)1/2

eβ̃d(−ε̃d+Ẽ−µ̃d) − 1
. (8.31)

Here βd ≡ β̃dβr0 = 1/kBTd and µd ≡ µ̃d/βr0 denote the inverse temperature

and chemical potential of the dimple. The high-energy tail of f(Ẽ, t) takes a

little longer to thermalize. Once the density in the dimple exceeds that of the

reservoir, the time scales for redistribution become much shorter than those for

growth. Thus we find quasi-thermal equilibrium inside the dimple for t & 8τcoll,

though βd and µd change with time.

We find that the condensate fraction f0 grows very slowly at first until it

becomes large enough that Bose stimulation can take over. This gives rise to
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Figure 8.3: Evolution of the condensate fraction f0 (solid blue) and the non-
condensed fraction fnc (dashed red) in the dimple for ρi = 0.05, Ω = 2000,
and l̃d = 20, assuming no three-body loss. The condensate fraction f0(t) grows
slowly at first until Bose stimulation takes over at the onset time τon. The pop-
ulations reach equilibrium at a much later time τsat: F0 and Fnc denote the sat-
uration values of f0 and fnc, respectively. (a) ε̃d = 7: when the dimple depth
is small, f0(t) monotonically increases toward F0. (b) ε̃d = 28: at large dimple
depths, f0(t) overshoots F0 after t = τon before coming down again.

a noticeable time delay in the onset of condensation, marked as τon in Fig.

8.3 where we plot f0(t) for two different sets of parameter values. Figure 8.3

also shows the evolution of the total noncondensate fraction in the dimple

fnc(t) =
∫ ε̃d

0
dẼf(Ẽ, t). After t = τon, f0(t) grows rapidly due to Bose en-

hancement. Part of this enhanced growth comes from atoms in low-lying ex-

cited states scattering to the ground state via two-body collisions with reservoir

atoms. This redistribution causes a sudden dip in fnc(t) just after t = τon. In
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the absence of three-body loss, f0(t) and fnc(t) reach their respective saturation

values F0 and Fnc at a much later time t = τsat. When ε̃d is small, f0(t) monoton-

ically approaches F0 from below [Fig. 8.3(a)], whereas for large dimple depths,

f0(t) overshoots F0 shortly after t = τon [Fig. 8.3(b)]. In both cases, however,

the reservoir fraction fr(t) monotonically decreases from 1 toward its saturation

value Fr.

8.4.2 Results for infinite trap depth

When the trap is sufficiently deep, no particles can be lost. Therefore only two-

way collisions are present and we have the relation fr(t) + f0(t) + fnc(t) = 1.

We can simplify the calculation further by noting our previous observation that

the dimple thermalizes very quickly compared to the growth rate of its atom

population. Thus, we assume that f(Ẽ, t) is always described by a thermal dis-

tribution as given in Eq. (8.31), where the temperature (Td) and the chemical

potential (µd) of the dimple vary with time. This approximation allows us to

rapidly simulate the dynamics for a wide range of parameter values and repro-

duces all features of the full model for t & 10τcoll.

Long time behavior

Figure 8.4 shows the variation of F0 with ε̃d for different values of the initial

phase space density ρi and the volume ratio Ω. The different features in the

plots can be explained by the following model: as particles are scattered into

the negative energy states of the dimple, those remaining in the reservoir have

a higher total energy. Therefore the temperature Tr increases and the chemical
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potential µr drops [see Eqs. (8.2) and (8.3)]. In equilibrium, Tr = Td ≡ Tf

and µr = µd ≡ µf ≤ −εd, since we are considering bosonic atoms. At a given

temperature Tf , there is an upper limit to the number of noncondensed particles

the dimple can hold, which occurs when µf = −εd:

fmaxnc ≈ 1

ρiΩ

∫ ∞
0

dẼ
2(Ẽ/π)1/2

eβ̃f Ẽ − 1
=

ζ(3/2)

ρiΩβ̃
3/2
f

, (8.32)

where βf ≡ 1/kBTf . Consequently, only if 1 − Fr ≥ fmaxnc will we get conden-

sation. The condensate fraction will be F0 = 1 − Fr − fmaxnc and the chemical

potential will be µf = −εd. The chemical potential of the reservoir must mono-

tonically decrease as particles scatter into the dimple. Thus we only find con-

densation if ln(ρi) = µ̃r0 > −ε̃d. This behavior is illustrated in Fig. 8.4. As ε̃d

increases from this threshold, the condensate fraction grows. This growth oc-

curs because the lower final chemical potential implies a lower density of the

reservoir atoms (and hence, a larger number of atoms in the dimple). However,

deeper dimples also lead to more heating of the reservoir. If ε̃d is too large, this

heating prevents condensation. Thus F0 is nonmonotonic, and there exists an

optimal dimple depth, ε̃∗d, for which F0 is maximum. The F0 vs ε̃d curves for

different ρi and Ω can be well reproduced by assuming µf = −εd and imposing

conservation of energy and particle number. When kBTf is small relative to εd,

this yields

FrT̃f −
ε̃d
3

(1− Fr) + fmaxnc T̃f
ζ(5/2)

2ζ(3/2)
= 1 , (8.33)

with Fr = e−β̃f ε̃d/ρiβ̃
3
f and fmaxnc given by Eq. (8.32). Solving Eq. (8.33) for T̃f

one finds a very weak dependence on ρi and virtually no dependence on Ω for

sufficiently large Ω. Therefore, choosing a higher volume ratio does not change

the reservoir fraction Fr but decreases the maximum fraction of noncondensed

particles in the dimple fmaxnc . In other words, increasing the ratio of the reservoir

size to the dimple size increases the local atom density without altering the final
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Figure 8.4: Variation of the final condensate fraction F0 with the dimple depth
ε̃d ≡ εd/kBTr0 for different choices of the initial phase space density ρi and the
volume ratio Ω when the trap depth is infinite and there is no three-body loss.
In (a), Ω = 2000 and in (b), ρi = 0.05. When ε̃d < |µ̃r0| = | ln(ρi)|, the atoms do
not condense. As ε̃d is increased beyond this threshold, the atom density in the
dimple grows, producing a larger F0. However, atoms scattering into a deeper
dimple also cause more heating, which prevents condensation at large ε̃d. Con-
sequently, there exists an optimal dimple depth ε̃∗d which yields the maximum
condensate fraction. Larger ρi and Ω increase the atom density in the dimple
without causing much change in the final temperature, hence give a larger F0.
The optimal dimple depth ε̃∗d also grows with both ρi and Ω.
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temperature, thus producing a larger condensate fraction. Similarly, a large ρi

decreases both Fr and fmaxnc , hence increasing F0, as one would expect intuitively.

This explains why the F0 vs ε̃d curves in Fig. 8.4 are higher for greater values of

Ω and ρi. We also find that the optimal dimple depth ε̃∗d increases with both Ω

and ρi.

Figures 8.5(a) and 8.5(b) show that the final temperature rises linearly with

the dimple depth when ε̃d is large. We can understand this behavior by consid-

ering the limit of very large ε̃d, where F0 is vanishingly small and the dimple

population can be treated classically. Using Eqs. (8.4) and (8.31), one can write

Fr = ze−β̃f ε̃d/ρiβ̃
3
f and Fnc ≈ z/ρiΩβ̃

3
f , with z = exp [βf (εd + µf )]. Conservation

of both energy and particle number then yields

Fr =
β̃f ε̃d + 3β̃f − 3/2

β̃f ε̃d + 3/2
=

1

1 + β̃
3/2
f eβ̃f ε̃d/Ω

. (8.34)

To approximate the solution to this transcendental equation, we replace the

right-hand side with a step function. The value of β̃f at the center of the

step [and hence, our approximate solution to Eq. (8.34)] is found by setting

1/(1 + β̃
3/2
f eβ̃f ε̃d/Ω) = 1/2. This gives β̃f = 1.5 ε̃−1

d W
(
(21/3/3) ε̃dΩ2/3

)
, where

W denotes the Lambert W function. Since W increases only logarithmically for

large arguments, T̃f rises linearly with ε̃d when ε̃d is large. Substituting this re-

sult into the left-hand size of Eq. (8.34), we see that for large ε̃d, Fr ∼ A + B/ε̃d,

where A and B depend logarithmically on ε̃d. This structure is apparent in Fig.

8.5(c) as a saturation of Fnc. At smaller dimple depths, Fnc equals fmaxnc , which

grows with ε̃d as β̃f decreases.
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Figure 8.5: (a, b) Variation of the final temperature T̃f ≡ Tf/Tr0 with the dimple
depth ε̃d ≡ εd/kBTr0 for different choices of ρi and Ω. In (a), Ω = 2000 and
in (b), ρi = 0.05. When ε̃d < |µ̃r0|, very few atoms scatter into the dimple and
Tf ≈ Tr0. As ε̃d is increased, atoms scattering into the dimple cause more heating
of the reservoir. Thus, T̃f increases monotonically with ε̃d. (c) Variation of the
final condensate fraction F0 (solid blue), the final non-condensate fraction Fnc
(dot-dashed green), and their sum Fd (dashed red) with the dimple depth ε̃d for
ρi = 0.05 and Ω = 2000. When µr0 < −εd, no condensation occurs and F0 = 0.
At larger dimple depths, the phase space density in the dimple becomes large
enough to reach condensation. In this regime, the final chemical potential lies
at the bottom of the dimple, µf ≈ −εd, and the noncondensed fraction in the
dimple follows the standard expression for a Bose gas, Fnc = ζ(3/2)/ρiΩβ̃

3/2
f ∝

ε̃d. Deeper dimples give a larger T̃f , causing Fnc to grow monotonically. When
ε̃d becomes very large, excessive heating prevents condensation. Thereafter µf
decreases below −εd, causing Fnc to saturate.
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Figure 8.6: (a) Variation of the saturation time τsat with the dimple depth ε̃d for
different values of ρi when Ω = 2000. The rate of particle scattering into the
dimple falls with increasing ε̃d due of smaller overlap between the initial and
final states. This results in a larger τsat. Changing the initial phase space density
ρi alters the collision time τcoll, however τsat/τcoll remains essentially unchanged.
This is expected since the dimple is populated via two-body collisions. (b) Vari-
ation of τsat with the volume ratio Ω at different dimple depths when ρi = 0.05.
τsat grows almost linearly with Ω because a larger Ω increases the total particle
number without changing the scattering rate into the dimple. Thus Ωτcoll sets
the typical timescale for saturation.

Timescales

As seen from Fig. 8.3, the condensation dynamics are well characterized by two

time scales: the time needed for the populations to saturate, τsat, and the time

which marks the onset of condensation, τon.

Chemical equilibrium is reached when the reservoir chemical potential µr

crosses below the dimple bottom and merges with the dimple chemical poten-

tial µd. This is accompanied by the reservoir fraction fr(t) approaching Fr from

above. For concreteness, we define the saturation time τsat as the time required

for fr(t) to equal 1.002Fr. In Fig. 8.6(a), we plot τsat vs ε̃d for different choices of

ρi. The collapse of the curves for different ρi indicates that τsat is proportional to
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τcoll. This is expected since the dimple is populated via two-body collisions. Ad-

ditionally, the rate of these two-body collisions decreases as the dimple is made

deeper due to reduced overlap between the initial and final states, causing τsat

to rise monotonically. Fig 8.6(b) shows the variation of τsat with the volume ra-

tio Ω for different values of the dimple depth. As evident from the plots, Ωτcoll

sets the typical time scale for saturation. This is because a larger Ω increases the

total number of atoms N without changing the particle scattering rate into the

dimple. Thus it takes longer for the dimple population to reach a given fraction

of N .

For suitable initial conditions, µd quickly reaches the bottom of the dimple,

signaling the onset of condensation. Thereafter f0(t) grows rapidly due to Bose

stimulation. We define the onset time τon as the time when the growth rate of

f0 increases at the maximum rate, i.e., d3f0/dt
3|t=τon = 0 (see Fig. 8.3). Figure

8.7 shows how τon varies with ε̃d, ρi, Ω, and l̃d. For very small or very large

dimple depths, we do not find any condensation, so f0(t) is never macroscopic

and it is not sensible to quote an onset time. Interestingly, there are ranges

of large ε̃d where F0 ≈ 0 but f0(t) rises to significant values before falling to

0. Thus, τon is well-defined even for some parameters where F0 is vanishingly

small. In the window of ε̃d where F0 is significant, we find that τon is minimum

near the optimal dimple depth ε̃∗d. Therefore, choosing ε̃d = ε̃∗d both minimizes

the onset time and yields the maximum condensate fraction. As ε̃d is decreased

below ε̃∗d, f0(t) takes longer and longer to take off, but saturates more quickly.

Thus, τon rises while τsat diminishes, until at a particular dimple depth ε̃>d , the

two time scales become equal. For lower ε̃d, the atoms do not condense. This

phenomenon shows up in the τon vs ε̃d curve as an apparent singularity at ε̃d =

ε̃>d . Increasing either ρi or Ω favors condensation and lowers τon.
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Figure 8.7: (a, b) Variation of the onset time τon with the dimple depth ε̃d for
different choices of ρi and Ω when the dimple size l̃d ≡ ld/λr0 = 20, where λr0
is the initial thermal wavelength. In (a), Ω = 2000 and in (b), ρi = 0.05. Within
the range of ε̃d where the saturation condensate fraction F0 is significant, τon is
minimum near the optimal dimple depth ε̃∗d which maximizes F0 (see Fig. 8.4).
As ε̃d is lowered below ε̃∗d, τon grows and τsat falls until they become equal at
ε̃d = ε̃>d ≈ −µ̃r0. For smaller dimple depths, condensation does not occur and
F0 = 0. F0 also becomes vanishingly small when ε̃d exceeds a large value ε̃<d .
However, for a range of ε̃d > ε̃<d , the condensate fraction rises to significant
values before falling to 0. Thus τon is well defined in this range. (c) Variation of
τon with l̃d for ρi = 0.05, Ω = 2000, and ε̃d = 10. Since the initial growth rate of
the condensate fraction is proportional to 1/l̃3d, τon increases with l̃d, saturating
when l̃d becomes sufficiently large.
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Figure 8.8: Relative increase of the total entropy of the reservoir and the dimple,
∆S/Si, as a function of the dimple depth ε̃d for different values of ρi and Ω. In
(a), Ω = 2000 and in (b), ρi = 0.05. The entropy grows because the dimple is
turned on suddenly, leading to nonadiabatic dynamics. The dimple loading is
more nonadiabatic when ε̃d is large, causing a higher entropy gain. ∆S/Si also
grows as ρi is increased or Ω is decreased, although this dependence is weak.

The initial growth rate of f0 is proportional to the inverse volume of the

dimple measured in units of the thermal wavelength, 1/l̃3d [see Eqs. (8.57) and

(8.58)]. Therefore, a higher l̃d leads to a smaller onset time. This trend is seen

in Fig. 8.7(c) which shows how τon varies with l̃d when ρi, Ω, and ε̃d are held

fixed. l̃d does not affect other features of the dynamics. For large l̃d, where most

experiments operate, τon also becomes independent of l̃d. When l̃d ε̃
1/2
d . 1, the

continuum approximation for the dimple states is not expected to hold [see Eq.

(8.14)] and the kinetics should be modeled via a discrete spectrum.

We have considered a sudden turn on of the dimple. Hence the dimple load-

ing is nonadiabatic. A measure of the nonadiabaticity is given by the percent-

age increase in the total entropy, which we plot in Fig. 8.8. As expected, we

find that the dynamics are more nonadiabatic for deeper dimples, with the en-

tropy increasing by 50% when ε̃d ≈ 60. The entropy gain also shows a weak

dependence on ρi and Ω, increasing slowly as ρi is increased or Ω is decreased.

314



8.4.3 Effect of three-body loss

Here we incorporate three-body loss into our kinetics model. The loss intro-

duces an additional timescale to the dynamics which depends on the particular

atomic species. We will consider the case of 87Rb.

At low temperatures the rate of three-body recombinations is, to a good

approximation, proportional to the probability of finding three particles at the

same point [62]. Thus the loss rate of the total atom density n(~r) is[
dn(~r)

dt

]l
= −L〈[Ψ̂†(~r)]3[Ψ̂(~r)]3〉 , (8.35)

where L denotes the loss coefficient which was measured experimentally for

87Rb as L = 1.8 × 10−29 cm6 s−1 [56]. We write Ψ̂(~r) as the sum of a condensate

mean field ψ0(~r) and a field ψ̂th(~r) representing thermal fluctuations. Substitut-

ing this decomposition into Eq. (8.35) and using Wick’s theorem to expand, we

find [10, 62, 63][
dn(~r)

dt

]l
= −L

[
n3

0(~r) + 9n2
0(~r)nex(~r) + 18n0(~r)n2

ex(~r) + 6n3
ex(~r)

]
, (8.36)

where n0(~r) = |ψ0(~r)|2 and nex(~r) = 〈ψ̂†th(~r)ψ̂th(~r)〉 denote the densities of the

condensate and excited-state atoms respectively. nex(~r) is further decomposed

into nnc(~r), the density of the non-condensate atoms in the dimple, and nr(~r),

the density of reservoir atoms from Eq. (8.6). We then derive the decay rates

of the individual densities and how these decays contribute to the kinetics (see

Appendix 8.8). In particular, we find that the condensate fraction f0(t) evolves

as [
df0(t)

dt

]l
= −Lρ

2
iΩ

2

λ6
r0

f0

[
f 2

0 + 6f0f
′ + 6f ′2

]
, (8.37)

where f ′ ≡ fnc + (z̃r/Ωβ̃
3/2
r )[γ(3/2, β̃rε̃t)/γ(3/2, ε̃t)] and γ denotes the lower in-

complete gamma function.
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Results for the case εt � kBTr0, εd

As with the discussion in Sec. 8.4.2, we consider the limit of infinite trap depth

εt � kBTr0, εd. Here we have loss, and the total number of atoms in the system

decays monotonically toward zero. The decay rate depends explicitly on the

particle density. The more general case of finite trap depth will be discussed in

Sec. 8.4.4.

As before, we find that the condensate fraction f0(t) grows slowly at first

until Bose stimulation causes it to take off at the onset time t = τon. Since f0(t)

is very small for t < τon, the three-body loss of condensate atoms is negligible

at these early times. Thus the onset time is largely unaffected by the presence

of three-body recombination. For t > τon, f0(t) grows rapidly, greatly increas-

ing the particle density and enhancing the three-body loss rate. The condensate

fraction attains its maximum value F peak
0 at t = τpeak when the condensate de-

cay rate balances the rate of particle scattering into the condensate. Thereafter,

f0(t) decreases due to three-body loss. Since the condensate holds a macro-

scopic number of particles, the atom density in the condensate far exceeds that

of any of the excited states. Therefore, f0(t) decays much faster than either the

non-condensate fraction in the dimple fnc(t) or the reservoir fraction fr(t). The

preferential ejection of low-energy atoms via three-body recombination leads to

evaporative heating. This heating, along with the particle loss, ultimately re-

sults in the death of the condensate. Thus we get a finite condensate lifetime,

∆tlf, defined as the duration for which f0(t) is larger than half its maximum

value. These general features are illustrated in Fig. 8.9 where we plot f0(t) for

a specific set of parameter values. In the following we discuss how F
peak
0 , ∆tlf,

τpeak, and τon vary with the different parameters.
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Figure 8.9: Time evolution of the condensate fraction f0 in the presence of three-
body loss for ε̃d = 8, Ω = 2000, ρi = 0.2, and Tr0 = 0.1 µK. f0 takes off at t = τon

due to Bose stimulation. As the dimple population grows, the atom density in
the dimple increases, which leads to a higher three-body recombination rate. At
t = τpeak, the three-body decay rate of f0 balances the two-body scattering rate
into the condensate, and f0 reaches its peak value F peak

0 . As more particles scat-
ter into the dimple, the temperature continues to increase. Three-body losses
further heat the system by ejecting more low-energy particles. This heating,
combined with the particle loss, causes the chemical potential to drop which
decreases f0. Thus we get a finite condensate lifetime ∆tlf.

Figure 8.10 shows the variation of the peak condensate fraction and the three

timescales with the dimple depth ε̃d when other parameters are held fixed. Sim-

ilar to Fig. 8.4, we find that the variation of F peak
0 with ε̃d is non-monotonic.

However, the maximum value as well as the optimal dimple depth ε̃∗d are sig-

nificantly reduced by three-body loss. When εd < |µr0|, the initial chemical po-

tential lies below the dimple bottom, and the atoms do not condense, so F peak
0

vanishes. At larger dimple depths, the population of the condensate is gov-

erned by the competition between two-body collisions scattering particles into

the condensate and three-body recombinations causing particles to leave the

condensate. The condensate fraction reaches its peak when the two-body and

three-body rates balance each other. As εd is increased beyond the threshold

|µr0|, the two-body rate climbs as the phase space density increases, then falls
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Figure 8.10: Variation of (a) the peak condensate fraction F peak
0 , (b) the onset time

τon (dot-dashed green), the peak time τpeak (dashed red), and the condensate
lifetime ∆tlf (solid blue) with the dimple depth ε̃d ≡ βr0εd for Ω = 2000, ρi = 0.2,
and Tr0 = 0.1 µK. For ε̃d < |µ̃r0|, the atoms do not condense. As ε̃d is increased,
the two-body scattering rate into the condensate grows rapidly at first, then falls
off at large ε̃d. The peak condensate fraction is reached when the three body loss
rate balances the two-body scattering rate. Since the three-body rate depends
only on the atom density, the non-monotonic variation of the two-body rate
shows up in the variation of F peak

0 with ε̃d. The growth of the two-body rate
above the condensation threshold decreases τon and τpeak. These vary little at
large ε̃d since both F

peak
0 and the two-body rate fall off. At large ε̃d, three-body

loss is dominated by collisions between the non-condensed dimple atoms and
the condensate atoms. The number of such non-condensed atoms grows with
ε̃d, yielding shorter lifetimes.

due to increased heating and a reduced overlap between the initial and final

states. The three-body rate only depends on the density, so the F peak
0 vs ε̃d curve

follows the variation of the two-body scattering rate. The rapid increase of the

two-body rate with εd just above the threshold leads to a sharp decrease in the
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onset time, τon, and the time required to reach peak condensate fraction, τpeak.

At large dimple depths, τpeak decrease very slowly because both F
peak
0 and the

two-body rate fall off. We also find that the condensate lifetime ∆tlf decreases

monotonically with ε̃d. For large ε̃d, the condensate loss is dominated by colli-

sions between the non-condensed dimple atoms and the condensate. The num-

ber of such non-condensed dimple atoms grows with ε̃d, yielding the shorter

lifetimes.

In Fig. 8.11(a) we plot the variation of F peak
0 with the volume ratio Ω. De-

creasing Ω reduces the total number of atoms (N ), without changing the maxi-

mum number of non-condensed atoms in the dimple. Therefore, when Ω be-

comes very small, the atoms in the dimple no longer condense, as seen ex-

perimentally in Ref. [46]. As Ω is increased, the condensate fraction increases

rapidly until Ω reaches an optimal value Ω∗, beyond which F
peak
0 falls off due

to increased three-body loss. We see a similar variation of F peak
0 with ρi in Fig.

8.12(a). When ρi is very small, few atoms populate the dimple and no conden-

sation takes place. As one increases ρi, F
peak
0 rises rapidly at first, then falls for

ρi > ρ∗i . The increase of the condensate fraction with Ω and ρi was also seen

in Fig. 8.4 where no inelastic loss was assumed. The fall-off at large Ω or large

ρi can be explained as follows: As Ω or ρi is increased, the total particle num-

ber N and the condensate population N0 grows, however, the number of non-

condensed atoms in the dimple (Nnc) does not change. Therefore at large Ω or ρi,

N0 � Nnc . The non-condensate population merely acts as a medium to trans-

fer particles from the reservoir to the condensate. In addition, three-body loss

principally occurs in the dimple, resulting from collisions among the densely

packed condensate atoms. Thus the dynamics are governed by the simplified
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Figure 8.11: Variation of (a) F peak
0 , (b) τon (dot-dashed green), τpeak (dashed red),

and ∆tlf (solid blue) with the volume ratio Ω for ε̃d = 10, ρi = 0.2, and Tr0 = 0.1
µK. When Ω is very small, the total atom number N is small and the dimple
can hold its entire population in the excited states, so condensation does not
occur. As Ω is increased, F peak

0 grows rapidly at first, then falls off when Ω
becomes larger than an optimal value Ω∗. At large Ω, the condensate population
N0 far exceeds the non-condensate population in the dimple, and three-body
loss is dominated by collisions among the condensate atoms. Balancing the
two-body growth rate and the three-body decay rate gives a peak condensate
size Npeak

0 which is independent of Ω. Since N ∝ Ω, F peak
0 falls off as 1/Ω. The

condensate lifetime is set by the depletion rate of the reservoir. When Ω is large,
the condensate size and hence the loss rate becomes independent of Ω. Thus it
takes longer to empty a larger reservoir, causing ∆tlf to grow linearly. We also
find that τon and τpeak are mostly independent of Ω.
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Figure 8.12: Variation of (a) F peak
0 , (b) τon (dot-dashed green), τpeak (dashed red),

and ∆tlf (solid blue) with the initial phase space density ρi for ε̃d = 10, Ω = 3000,
and Tr0 = 0.1 µK. When ρi is very small, the atoms do not condense. As ρi is
increased, F peak

0 rises rapidly at first, then falls at large ρi because the three-body
decay rate of the condensate fraction grows faster than the two-body growth
rate. Thus we get an optimal phase space density ρ∗i which yields the largest
condensate, although this peak is much less pronounced compared to the peaks
seen when one varies ε̃d (Fig. 8.10) or Ω (Fig. 8.11). The increased three-body
decay rate at larger ρi also leads to a smaller condensate lifetime: ∆tlf falls off as
ρ
−1/2
i for large ρi. However, since τcoll diminishes more rapidly as 1/ρi, ∆tlf/τcoll

grows as
√
ρi. We find that τon/τcoll and τpeak/τcoll decrease slowly with ρi.

rate equations

Ṅ0 = c1nN0 − c2N
3
0 , and ṅ = −(c1/Vr)nN0 , (8.38)

where Vr is the reservoir volume and n is the density of reservoir particles. The

rate coefficients c1 and c2 represent two-particle collisions which fill the dimple,

and three-body losses respectively. They depend on the reservoir temperature

but do not depend explicitly on Ω or ρi. From our full model we find that the
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temperature does not vary much (∼ 25%) during the condensate lifetime, and

depends very weakly on Ω and ρi (also seen in Fig. 8.5). Thus we treat c1 and

c2 as constants in solving Eq. (8.38). N0 attains its peak value when Ṅ0 = 0.

Thus Npeak
0 = (c1n(τpeak)/c2)1/2. From Figs. 8.11(b) and 8.12(b) we see that when

Ω or ρi is large, the condensate reaches its peak size very quickly, then decays

gradually. For 0 < t < τpeak, the change in n is negligible. Hence N
peak
0 ≈

(c1n(0)/c2)1/2 ∝ ρ
1/2
i , and F

peak
0 ≡ N

peak
0 /N = N

peak
0 /(ρiΩ l̃

3
d) ∝ Ω−1ρ

−1/2
i . This

accounts for the reduction of F peak
0 at large Ω or ρi. To calculate the lifetime we

note that the transfer of one atom from the reservoir to the condensate decreases

n by 1/Vr � n(0). Therefore, as the growth rate of N0 declines after t = τpeak,

the decay rate also falls to maintain Ṅ0 ≈ 0, or N0(t) ≈ (c1n(t)/c2)1/2. Thus the

lifetime is set by the time required for the reservoir to be depleted [46]. Using

the above expression forN0(t) in the other equation, we find 1/N0(t) = 1/N
peak
0 +

c1t/2Vr, which gives a lifetime ∆tlf ≈ 2Vr/(c1N
peak
0 ) ∝ Ωρ

−1/2
i . Since τcoll falls off

with ρi as 1/ρi [Eq. (8.9)], ∆tlf/τcoll ∝ Ωρ
1/2
i . Such variation of the lifetime is

illustrated in Figs. 8.11(b) and 8.12(b). We find that τon and τpeak vary little with

Ω. As was true without three-body collisions, τon/τcoll decreases slowly with ρi.

τpeak/τcoll also falls with ρi, following the variation of τon/τcoll.

Figure 8.13 shows how F
peak
0 , ∆tlf, τpeak, and τon vary with the initial reservoir

temperature Tr0. To understand the features, we note that the growth and redis-

tribution of the dimple population occur via two-body collisions. Thus the rates

of these processes are set by 1/τcoll which is proportional to T 2
r0 [see Eqs. (8.7)

and (8.9)]. However, from Eq. (8.37) we find that the three-body loss rate is pro-

portional to T 3
r0. Therefore, a higher initial temperature increases the strength

of three-body decay processes relative to two-body elastic processes. This re-

duces the peak condensate fraction as well as the condensate lifetime. We find
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Figure 8.13: Variation of (a) F peak
0 , (b) τon (dot-dashed green), τpeak (dashed red),

and ∆tlf (solid blue) with the initial reservoir temperature Tr0 for ε̃d = 10,
Ω = 2000, and ρi = 0.2. The rate of two-body collisions which populate the
dimple is set by 1/τcoll ∝ T 2

r0, whereas the three-body loss rate grows as T 3
r0.

Thus a higher Tr0 increases the three-body loss rate relative to the two-body
scattering rate, causing both F

peak
0 and ∆tlf/τcoll to decrease. ∆tlf/τcoll diverges

as 1/Tr0 for small Tr0. Since F peak
0 is smaller at larger Tr0, it takes fewer two-body

collisions to reach this value, so τpeak/τcoll decreases slowly with Tr0. The onset
of condensation is not affected much by three-body loss, thus τon/τcoll is nearly
independent of Tr0.

that ∆tlf/τcoll diverges as 1/Tr0 for small Tr0. Since F peak
0 is smaller for larger

Tr0, it takes fewer two-body collisions to reach the peak condensate fraction.

Consequently, τpeak/τcoll decreases slowly with Tr0. We also notice that τon/τcoll

stays essentially constant as Tr0 is varied because the onset of condensation is

governed by two-body processes alone.
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8.4.4 Effect of finite trap depth

Here we discuss how the above results are altered when the reservoir trap has

a finite depth εt. First we remind the reader that we have modeled the growth

and redistribution of the dimple population by two kinds of elastic collisions, as

illustrated in Fig. 8.1. Both processes can be either one-way or two-way: if the

recoiling reservoir atom has a total energy greater than εt, it escapes from the

trap. Such a collision has no reverse process and happens only one-way. Other

collisions happen both ways.

When ε̃t ≡ βr0εt → ∞, only two-way collisions are present. After the dim-

ple is turned on, two-way growth processes start populating the dimple. Such

processes reduce the number of reservoir atoms Nr, but increase their total en-

ergy Er, thus heating up the reservoir. When the atom density in the dimple

becomes comparable to that in the reservoir, two-way redistribution processes

transfer atoms to the lower energy dimple states, leading to thermalization (see

Fig. 8.2). These redistribution processes do not changeNr, but increaseEr, caus-

ing heating. Three-body recombinations also cause evaporative heating. Thus

the reservoir temperature Tr increases monotonically, as shown by the solid blue

curve in Fig. 8.14. When ε̃t is finite, both one-way and two-way collisions are

present. In a one-way growth process, the colliding atoms are removed from

the reservoir. Since the dimple is located at the trap center, the average energy

of a colliding atom is less than the average energy per particle in the reservoir.

Therefore, one-way growth processes (and for the same reason, one-way redis-

tribution processes) contribute to heating. Thus we find that Tr always increases

just after turning on the dimple. When the atom density in the dimple becomes

large enough, redistribution processes start operating. At first, both one-way
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Figure 8.14: Time evolution of the reservoir temperature Tr for different values
of the trap depth ε̃t ≡ βr0εt with ε̃d = 10, Ω = 2000, ρi = 0.2, and Tr0 = 0.1 µK.
When ε̃t → ∞ (solid blue line), particle transfer from the reservoir to the dim-
ple and their redistribution from the higher-energy to the lower-energy dimple
states heat the reservoir. Along with evaporative heating by three-body loss,
this causes Tr to rise monotonically. When ε̃t is finite (dashed and dotted lines),
a reservoir atom can recoil from a collision with a total energy greater than εt
and leave the trap. The average initial energy of this atom is less than the aver-
age particle energy in the reservoir since the dimple is located at the trap center.
Therefore such one-way collisions contribute to heating at short times. When
the atom density in the dimple becomes sufficiently large, both one-way and
two-way collisions initiate thermalization by transferring atoms from the higher
to the lower-energy dimple states. However, the one-way transfer soon results
in an excess of particles in the low-energy states. Two-way collisions now trans-
fer these extra particles to higher-energy states and thus cool the reservoir. The
cooling rate increases as ε̃t is lowered. Thus lower trap depths yield lower final
temperatures.

and two-way collisions cause a net transfer of atoms from the higher energy to

the lower energy dimple states. However, the one way particle transfer soon

overcompensates thermalization, resulting in an excess of atoms in the low-

energy states. This imbalance flips the direction of the two-way traffic, which

now transfers atoms to the higher energy states. Such two-way collisions de-

crease Er without changing Nr, thus cooling the reservoir. A smaller ε̃t results

in a larger imbalance of the atom distribution, which increases the cooling rate.

Thus we see in Fig. 8.14 that Tr decreases after the initial growth when ε̃t is
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Figure 8.15: Variation of (a) F peak
0 , (b) τon (dot-dashed green), τpeak (dashed red),

and ∆tlf (solid blue) with the trap depth ε̃t ≡ βr0εt for ε̃d = 10, Ω = 2000, ρi = 0.2,
and Tr0 = 0.1 µK. As ε̃t is decreased, the rate of one-way redistribution processes
which transfer atoms from the higher-energy to the lower-energy dimple states
increases. This gives rise to a faster growth of the condensate, which increases
F

peak
0 and decreases τon and τpeak. A smaller trap depth also causes more cooling,

which reduces the non-condensate fraction fnc and thus the three-body decay
rate of the condensate. Hence we get a larger condensate lifetime. However,
when ε̃t becomes very small, the increased evaporation rate of the reservoir
limits the growth of ∆tlf/τcoll.

sufficiently small compared to ε̃d.

In Fig. 8.15 we plot the variation of the peak condensate fraction F
peak
0 and

the timescales with the trap depth ε̃t. As ε̃t is decreased, one-way redistribution

processes become stronger, leading to a faster growth of the condensate. Con-

sequently, a higher condensate density has to be reached before the three-body

decay rate can balance the growth rate. Thus F peak
0 grows as the trap is made
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shallower. The larger growth rate also reduces the onset time τon and the time

required to reach the peak, τpeak. A smaller trap depth causes less heating and

reduces the non-condensate fraction fnc, which in turn decreases the three-body

decay rate of the condensate. Combined with the faster growth rate, this yields

a larger condensate lifetime ∆tlf. However, as the trap depth is lowered, the

evaporation rate of the reservoir atoms also increases, and eventually becomes

comparable to the decay rate of the condensate. As the number of reservoir

atoms falls, so does the rate of particle transfer from the reservoir to the dimple,

and hence the growth rate of the condensate. This limits the rise of ∆tlf/τcoll.

Additionally, τcoll grows at small ε̃t [Eq. (8.9)], causing ∆tlf/τcoll to decrease.

8.5 Summary and outlook

In this work we have studied the condensation kinetics of weakly interacting

Bosons in a dimple potential using quantum kinetic rate equations. We have

modeled the growth and redistribution of the dimple population by two-body

elastic collisions. We have incorporated three-body inelastic losses for 87Rb, and

varied the reservoir trap depth εt to study the effects of evaporation. The dy-

namics are controlled by the dimple depth εd, the ratio of the reservoir volume

to the dimple volume Ω, the initial phase space density ρi, and the initial temper-

ature Tr0. The absolute size of the dimple does not matter as long as it is much

larger than the thermal wavelength. We have presented detailed results for con-

densate fraction, the temperature, and the different timescales. Our results are

consistent with features observed in recent experiments, and should provide a

useful guide for more efficient production of condensates in the future.

327



We find that the initial growth of the dimple population is dominated by

states whose energy is near half the dimple depth. However, scattering be-

tween levels quickly transfers these particles to the low-energy states, giv-

ing rise to a bimodal particle distribution at t ≈ 2τcoll when εd & 8kBTr0.

The dimple attains quasi-thermal equilibrium in about 8τcoll after it is turned

on. Comparable thermalization timescales were reported in previous studies

[20, 24, 25, 27, 46, 54, 55]. The condensate grows slowly at first until Bose stimu-

lation can take over. This results in a time-delay τon before the onset of conden-

sation, as was seen in Refs. [10, 11]. When εt � εd and kBTr0, particle scattering

into the dimple causes heating in the reservoir. In the absence of three-body loss,

the dimple population saturates at a value limited by this heating. The satura-

tion time is proportional to both τcoll and Ω, and increases monotonically with

εd. When εd is small such that the initial chemical potential is below the dimple

bottom, we do not get condensation. As εd is increased beyond this threshold,

the saturation condensate fraction F0 grows rapidly at first, then falls off due to

increased heating. This gives rise to an optimal dimple depth ε∗d which yields

the largest condensate fraction. The onset time τon is also minimized at εd = ε∗d.

We find that ε∗d scales with kBTr0. The non-monotonic behavior of the conden-

sate fraction was observed in a recent experiment [10]. A larger ρi or Ω both

favor condensation, increasing F0 and ε∗d, while decreasing τon. The reduction

of τon was seen in Ref. [46]. The dynamics become more non-adiabatic at larger

εd, with the entropy growing by 20% when εd ≈ 20kBTr0. Typical experiments

have εd ranging from a few kBTr0 to ∼ 10kBTr0 [10, 11].

We find that three-body loss plays an important role for 87Rb, reducing the

maximum condensate fraction to a few percent for Tr0 = 100 nK. It also limits

the condensate lifetime ∆tlf. The condensate fraction now decays toward zero
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after reaching a peak value F peak
0 at t = τpeak. F peak

0 varies non-monotonically

with εd similar to F0. However, both its maximum value and the optimal dimple

depth ε∗d are significantly reduced by three-body loss, in agreement with similar

modeling in Ref. [10]. When ρi or Ω is very small, condensation does not occur,

as seen experimentally in Ref. [11]. As ρi or Ω is increased, F peak
0 grows rapidly

at first, then falls due to increased loss rate resulting from higher local densities.

Thus there exist an optimal volume ratio Ω∗ and an optimal initial phase space

density ρ∗i which yield maximum condensate fraction. We find that the peak at

ρi = ρ∗i is much flatter than either of those at Ω = Ω∗ or εd = ε∗d. The three-body

decay rate grows much faster with Tr0 than the rate of two-body collisions, caus-

ing F peak
0 to drop. We find that ∆tlf/τcoll increases with ρi and Ω, and decreases

with εd and Tr0. We also find that τpeak follows the variation of τon, falling off

with εd, ρi, and Tr0, while being almost independent of Ω. When the trap depth

is finite, particles recoiling with sufficiently high energies from elastic collisions

escape from the trap. This leads to cooling. Lower trap depths yield lower final

temperatures and enhance the condensate growth rate, producing larger and

longer-lived condensates. However, at very small trap depths, the increased

evaporation rate of the reservoir limits the condensate lifetime.

Several of our predictions are amenable to testing in future experiments. The

bimodal shape of f(Ẽ, t) at t ≈ 2τcoll should show up in time-of-flight images as

two expanding shells of atoms, though their actual shape would depend on the

trap geometry. Our predictions for condensate fractions can readily be checked

using the techniques in Refs. [6, 8–11].

Our model can be readily generalized to study experiments where the dim-

ple is turned on gradually, making the loading process more adiabatic [6–8, 10].
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A gradual turn-on is likely to increase the condensate fraction, although recent

experiments suggest that it does not affect the dynamics at large times [46]. One

can also make the reservoir trap anisotropic [10, 11], or vary the location of the

dimple [51]. Dimples located off-center in a harmonic trap should have smaller

filling rates due to lower particle density, but can assist in evaporative cool-

ing since the particles would have higher energies. In Ref. [11], Stellmer et al.

employed a novel technique where the reservoir is continuously laser cooled

while the dimple particles are rendered transparent to the cooling photons by

a blue-detuned laser beam. This prevents heating of the reservoir and signif-

icantly increases the condensate lifetime. It would be valuable to study how

this technique alters the kinetics in future theory work. One could also explore

the loading of arrays of dimples. Our framework can be naturally extended to

model such experiments. Dimple methods can also be applied to Fermions [12]

or Boson-Fermion mixtures.

In modeling the kinetics, we have made a few simplifying assumptions

to reduce the computational complexity. In particular, we have not included

mean-field interactions between the condensate and the thermal cloud [10, 28–

30, 34, 35, 46, 47, 59–61], and we have neglected two kinds of elastic collisions,

as described in the last paragraph in Sec. 8.2.1. These can be incorporated in

future refinements of our model. They might alter some quantitative predic-

tions by factors of 2, but we do not expect them to change any of the qualitative

features [7, 28, 29, 32].
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8.6 Appendix A: Rate equations for population growth

The rate of inflow of particles to the ~n-th dimple state is given by [Eq. (8.15)](
dN~n

dt

)g
in

=
2π

~
U2

0 z
2
r (1 +N~n)

∫ ′ d3pd3q

(2π~)6
e−βr(

p2+q2

2m
)

× δ

{
p2 + q2 − [~p+ ~q − (2π~/ld)~n]2

2m
− εn

}
, (8.39)

where the prime on the integral symbol denotes the condition that the initial

momenta of the colliding particles must satisfy p2, q2 < 2mεt. To simplify Eq.

(8.39) we write it in terms of ~̃p, ~̃q ≡ (βr/4m)1/2(~p ± ~q) and use the dispersion of

the dimple modes, Eq. (8.14). This gives(
dN~n

dt

)g
in

=
2ma2z2

r

π3~3β2
r

(1 +N~n)

∫ ′
d3p̃ d3q̃ e−(p̃2+q̃2)

× δ
[
q̃2 + βrεd − p̃2 − 2βrEn + 2(2βrEn)1/2 ~̃p.n̂

]
, (8.40)

where n̂ ≡ ~n/n and in the new variables, the prime stands for the constraint

p̃2 + q̃2±2~̃p.~̃q < 2βrεt. Dividing the integration region into separate parts we can

express Eq. (8.40) as(
dN~n

dt

)g
in

= G̃
z̃2
r

β̃2
r

(1 +N~n)
∑
i=1,2

Gi(β̃rε̃t, β̃rε̃d, β̃rẼn) , (8.41)
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where G̃ ≡ 16
√

2 (a/λr0)2(z2
r0/βr0~) and

G1(ε̃t, ε̃d, Ẽ) ≡ 1√
Ẽ

[ ∫∫
IA,C

dp̃dq̃ p̃ q̃2 e−(p̃2+q̃2) +

∫∫
IB,C

dp̃dq̃ q̃

(
ε̃t −

p̃2 + q̃2

2

)
e−(p̃2+q̃2)

]
,

(8.42)

G2(ε̃t, ε̃d, Ẽ) ≡ 1√
Ẽ

∫∫
II,C

dp̃dq̃ p̃ q̃2 e−(p̃2+q̃2) . (8.43)

Here the labels under the integrals denote the following conditions on p̃ and q̃:

IA : p̃2 + q̃2 ≥ ε̃t − ε̃d + Ẽ and p̃+ q̃ < (2ε̃t)
1/2

IB : p̃+ q̃ ≥ (2ε̃t)
1/2 and p̃2 + q̃2 < 2ε̃t

II : p̃2 + q̃2 < ε̃t − ε̃d + Ẽ

C :
[
p̃− (2Ẽ)1/2

]2 ≤ q̃2 + ε̃d ≤
[
p̃+ (2Ẽ)1/2

]2
Conditions IA and IB correspond to the range of initial momenta for which the

atom recoiling back to the reservoir gains sufficient energy from the collision

to escape from the trap. Such collisions happen only one-way: they do not

have any reverse process. Whereas if condition II is satisfied, no atom is lost

from the trap, giving rise to two-way collisions. Condition C ensures that both

momentum and energy are conserved in the process.

Similarly, we simplify Eq. (8.16) describing the rate of particle flow out of

the ~n-th dimple state to obtain(
dN~n

dt

)g
out

=−G̃ z̃r

zr0β̃2
r

N~n e
−β̃r(ε̃d−Ẽn)G2(β̃rε̃t, β̃rε̃d, β̃rẼn). (8.44)

The net growth rate of N~n(t) is then found by adding Eqs. (8.41) and (8.44). We

write this as a sum of contributions from one-way and two-way collisions:(
dN~n

dt

)g
=

(
dN~n

dt

)g
1

+

(
dN~n

dt

)g
2

, (8.45)
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where (
dN~n

dt

)g
1

= G̃
z̃2
r

β̃2
r

(1 +N~n)G1(β̃rε̃t, β̃rε̃d, β̃rẼn) , (8.46)(
dN~n

dt

)g
2

= G̃
z̃2
r

β̃2
r

{
1−N~n

[
1

zr
eβ̃r(ε̃d−Ẽn) − 1

]}
× G2(β̃rε̃t, β̃rε̃d, β̃rẼn) . (8.47)

Each one-way collision reduces the number of atoms in the reservoir (Nr) by

2, whereas every two-way collision changes Nr by 1. Hence we write(
dNr

dt

)g
= −

∑
~n

[
2

(
dN~n

dt

)g
1

+

(
dN~n

dt

)g
2

]
. (8.48)

In a one-way collision, the total energy of the colliding particles is lost from

the reservoir. Therefore, the rate at which one-way collisions decrease the total

energy in the reservoir (Er) can be written as [Eq. (8.20)](
dEr
dt

)g
1

= − 2π

~
U2

0 z
2
r

∑
~n

(1 +N~n)

∫ ′′ d3pd3q

(2π~)6
e−βr(

p2+q2

2m
)

× p2 + q2

2m
δ

{
p2 + q2 − [~p+ ~q − (2π~/ld)~n]2

2m
− εn

}
, (8.49)

where the double prime restricts the initial momenta to regions where p2, q2 <

2mεt and p2 + q2 > 2m(εt − εd + En). To simplify Eq. (8.49) we apply the same

operations as we did on Eq. (8.39). This yields(
dEr
dt

)g
1

= −G̃ z̃2
r

βrβ̃2
r

∑
~n

(1 +N~n)Cg(β̃rε̃t, β̃rε̃d, β̃rẼn) , (8.50)

where

Cg(ε̃t, ε̃d, Ẽ) ≡ 1√
Ẽ

[ ∫∫
IA,C

dp̃dq̃ p̃ q̃2(p̃2 + q̃2)e−(p̃2+q̃2)

+

∫∫
IB,C

dp̃dq̃ q̃ (p̃2 + q̃2)

(
ε̃t −

p̃2 + q̃2

2

)
e−(p̃2+q̃2)

]
. (8.51)
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A two-way collision which scatters a particle to the ~n-th state increases Er

by εd − En. Therefore, (
dEr
dt

)g
2

=
∑
~n

(εd − En)

(
dN~n

dt

)g
2

. (8.52)

Since the occupation of a dimple state depends only on its energy [Eqs. (8.46)

and (8.47)], the dimple population can be described by a continuous distribu-

tion function f(Ẽ, t) = D(Ẽ)N~n(t)/N with Ẽn = Ẽ, where D(Ẽ) = 2l̃3d(Ẽ/π)1/2

denotes the density of states. Using this definition in Eqs. (8.45)−(8.47) we find

the growth rate of f(Ẽ, t):[
∂f(Ẽ, t)

∂t

]g
=

[
∂f(Ẽ, t)

∂t

]g
1

+

[
∂f(Ẽ, t)

∂t

]g
2

, (8.53)

where[
∂f(Ẽ, t)

∂t

]g
1

= G
z̃2
r

β̃2
r

[
2

(
Ẽ

π

) 1
2

+ ρiΩf(Ẽ, t)

]
G1(β̃rε̃t, β̃rε̃d, β̃rẼ) , (8.54)[

∂f(Ẽ, t)

∂t

]g
2

= G
z̃2
r

β̃2
r

G2(β̃rε̃t, β̃rε̃d, β̃rẼ)

{
2

(
Ẽ

π

) 1
2

− ρiΩf(Ẽ, t)

[
1

zr
e−β̃r(ε̃d−Ẽ) − 1

]}
,

(8.55)

with the “rate constant” G given by

G ≡ G̃

ρiΩ
=

16
√

2

βr0~

( a

λr0

)2ρi
Ω

π/4

[γ(3/2, ε̃t)]2
=

1

τcollΩ

√
π/2

γ(2, ε̃t)γ(3/2, ε̃t)
. (8.56)

Here we have substituted from Eqs. (8.7), (8.9), and (8.11). We note that the

characteristic timescale for the growth of the dimple population is τcollΩ.

Condensation occurs when a macroscopic number of particles reside in the

ground state. The condensate fraction is defined as f0(t) ≡ N~0(t)/N . Using Eqs.

(8.45)−(8.47) we obtain(
df0

dt

)g
1

= G
z̃2
r

β̃2
r

(
1

l̃3d
+ ρiΩf0

)
G1(β̃rε̃t, β̃rε̃d, 0) , (8.57)(

df0

dt

)g
2

= G
z̃2
r

β̃2
r

[
1

l̃3d
− ρiΩf0

(
1

zr
e−β̃r ε̃d − 1

)]
G2(β̃rε̃t, β̃rε̃d, 0) . (8.58)
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Similarly, Eqs. (8.48), (8.50), and (8.52) yield the growth rates of the reservoir

fraction fr ≡ Nr/N and of ẽr ≡ er
(
γ(4, ε̃t)/γ(3, ε̃t)

)
= (Er/E)[γ(4, ε̃t)/γ(3, ε̃t)]:(

dfr
dt

)g
= − 2

(
df0

dt

)g
1

−
(
df0

dt

)g
2

−
∫ ε̃d

0

dẼ

{
2

[
∂f(Ẽ, t)

∂t

]g
1

+

[
∂f(Ẽ, t)

∂t

]g
2

}
,

(8.59)(
dẽr
dt

)g
1

= −G z̃
2
r

β̃3
r

{(
1

l̃3d
+ ρiΩf0

)
Cg(β̃rε̃t, β̃rε̃d, 0)

+

∫ ε̃d

0

dẼ

[
2

(
Ẽ

π

) 1
2

+ ρiΩf(Ẽ, t)

]
Cg(β̃rε̃t, β̃rε̃d, β̃rẼ)

}
, (8.60)(

dẽr
dt

)g
2

= ε̃d

(
df0

dt

)g
2

+

∫ ε̃d

0

dẼ (ε̃d − Ẽ)

[
∂f(Ẽ, t)

∂t

]g
2

. (8.61)

8.7 Appendix B: Rate equations for population redistribution

The rate at which particles are scattered from state ~n1 to state ~n2 of the dimple is

given by [Eq. (8.23)]

dN~n1→~n2

dt
=

2π

~
U2

0

zr
l3d
N~n1(1 +N~n2)

∫ ′ d3p

(2π~)3
e−βr

p2

2m

× δ

{
p2

2m
+ En1 −

[
~p+ (2π~/ld)(~n1 − ~n2)

]2
2m

− En2

}
, (8.62)

where the prime restricts the initial energy of the reservoir particle below the

trap depth: p2 < 2mεt. We can write Eq. (8.62) more simply in terms of ~̃p ≡

(βr/2m)1/2~p :

dN~n1→~n2

dt
= R̃

z̃r

β̃r

N~n1(1 +N~n2)
∫ ?
dp̃ 2p̃ e−p̃

2[
Ẽn1 + Ẽn2 − 2(Ẽn1Ẽn2)

1/2 n̂1.n̂2

]1/2 , (8.63)

where n̂i ≡ ~ni/ni, R̃ ≡ (4πa2zr0/l
3
d)
√

2/mβr0, and the asterisk imposes the con-

dition βrEn2 cos2 θ(~n2, ~n1−~n2) < p̃2 < βεt, θ(~n2, ~n1−~n2) being the angle between

~n2 and ~n1−~n2. The lower limit on p̃ arises from conservation of energy and mo-

mentum. When En2 < En1 , the reservoir particle recoils with a higher energy. If
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p̃2 > βr(εt − En1 + En2), its energy exceeds εt and it is lost from the trap. Such

collisions have no reverse process. Whereas for p̃2 < βr(εt − En1 + En2), no par-

ticle is lost and collisions happen both ways. When En2 > En1 , every scattering

event which transfers a particle from state ~n1 to state ~n2 can happen backward as

well. Thus we can identify the contributions of one-way and two-way collisions

in Eq. (8.63):(
dN~n1→~n2

dt

)
1

= R̃
z̃r

β̃r
N~n1(1+N~n2)

α
(
e−max{β̃rẼn2 cos2θ(~n2,~n1−~n2), β̃r(ε̃t−Ẽn1+Ẽn2 )}−e−β̃r ε̃t

)[
Ẽn1 + Ẽn2 − 2(Ẽn1Ẽn2)

1/2 n̂1.n̂2

]1/2 ,

(8.64)(
dN~n1→~n2

dt

)
2

= R̃
z̃r

β̃r
N~n1(1+N~n2)

α
(
e−β̃rẼn2 cos2θ(~n2,~n1−~n2)−e−min{β̃r ε̃t, β̃r(ε̃t−Ẽn1+Ẽn2 )})[

Ẽn1 + Ẽn2 − 2(Ẽn1Ẽn2)
1/2 n̂1.n̂2

]1/2 ,

(8.65)

where α denotes the ramp function: α(x) = x for x > 0, and α(x) = 0 for x < 0.

The overall rate of change of N~n due to particle transfer from other states can

then be written as (
dN~n

dt

)r
=
∑
~n′ 6=~n

R
(1)
~n,~n′ +R

(2)
~n,~n′ , (8.66)

where

R
(i)
~n,~n′ ≡

(
dN~n′→~n

dt

)
i

−
(
dN~n→~n′

dt

)
i

, i = 1, 2. (8.67)

Two-way collisions do not alter the number of particles in the reservoir (Nr),

whereas each one-way collision removes one particle from the reservoir. There-

fore, (
dNr

dt

)r
= −

∑
~n′,~n

En′>En

R
(1)
~n,~n′ . (8.68)

In a one-way collision, the reservoir particle is lost from the trap. This re-

duces the energy in the reservoir (Er) by p2/2m. The expression for the net rate
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of decrease ofEr looks similar to Eq. (8.62) and is given in Eq. (8.28). To simplify

we perform the same substitutions as in Eq. (8.62), thus obtaining(
dEr
dt

)r
1

= −R̃ z̃r

βrβ̃r

∑
~n′,~n

En′>En

N~n′(1 +N~n) ×

ξ
(
max{β̃rẼn cos2θ(~n, ~n′ − ~n), β̃r(ε̃t − Ẽn′ + Ẽn)}, β̃rε̃t

)[
Ẽn + Ẽn′ − 2(ẼnẼn′)1/2 n̂.n̂′

]1/2 ,

(8.69)

where ξ(a, b) ≡
[
(1 + a)e−a − (1 + b)e−b

]
Θ(b − a), Θ being the Heaviside step

function: Θ(x) = 1 for x > 0, and Θ(x) = 0 for x < 0.

A two-way collision which transfers a particle from state ~n′ to state ~n in-

creases Er by En′ − En. Hence,(
dEr
dt

)r
2

=
∑
~n′,~n

En′>En

(En′ − En)R
(2)
~n,~n′ . (8.70)

Due to symmetry, N~n depends only on En [Eqs. (8.64)–(8.67)]. Thus we

describe the discrete states in the dimple by a continuous density of states

D(Ẽ) = 2l̃3d(Ẽ/π)1/2 and their occupations by a distribution function f(Ẽ, t) ≡

D(Ẽ)N~n(t)/N where Ẽn = Ẽ. Then Eqs. (8.64)−(8.67) give[
∂f(Ẽ, t)

∂t

]r
=

∫ ε̃d

0

dẼ ′
[
R1(Ẽ, Ẽ ′) +R2(Ẽ, Ẽ ′)

]
, (8.71)

whereRi(Ẽ
′, Ẽ) = −Ri(Ẽ, Ẽ

′) and for Ẽ ′ > Ẽ,

R1(Ẽ, Ẽ ′) ≡ R z̃r

β̃
1/2
r

f(Ẽ ′, t)

[
2

(
Ẽ

π

) 1
2

+ ρiΩf(Ẽ, t)

]
I(1)
A (β̃rε̃t, β̃rẼ, β̃rẼ

′) , (8.72)

R2(Ẽ, Ẽ ′) ≡ R z̃r

β̃
1/2
r

{
f(Ẽ ′, t)

[
2

(
Ẽ

π

) 1
2

+ ρiΩf(Ẽ, t)

]
− f(Ẽ, t)

[
2

(
Ẽ ′

π

) 1
2

+ ρiΩf(Ẽ ′, t)

]
e−β̃r(Ẽ

′−Ẽ)

}
× I(2)

A (β̃rε̃t, β̃rẼ, β̃rẼ
′) , (8.73)
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where the “rate constant” R has the expression

R =
2
√
π

βr0~

( a

λr0

)2

ρi

√
π/2

γ(3/2, ε̃t)
=

√
πγ(2, ε̃t)

8τcoll
, (8.74)

and the functions I(1)
A and I(2)

A are given by

I(1)
A (ε̃t, Ẽ, Ẽ

′) ≡
∫ 1

−1

du
α
(
e
−max

{
Ẽ

(
√
Ẽ′u−

√
Ẽ)2

Ẽ+Ẽ′−2
√
ẼẼ′u

, ε̃t−Ẽ′+Ẽ
}
− e−ε̃t

)
(
Ẽ + Ẽ ′ − 2

√
ẼẼ ′u

)1/2
, (8.75)

I(2)
A (ε̃t, Ẽ, Ẽ

′) ≡
∫ 1

−1

du
α
(
e
−Ẽ (

√
Ẽ′u−

√
Ẽ)2

Ẽ+Ẽ′−2
√
ẼẼ′u − e−(ε̃t−Ẽ′+Ẽ)

)
(
Ẽ + Ẽ ′ − 2

√
ẼẼ ′u

)1/2
. (8.76)

We note that the characteristic timescale in Eqs. (8.72) and (8.73) is τcoll. Thus we

expect τcoll to set the thermalization time scale.

The equation of motion for the condensate fraction f0(t) ≡ N~0(t)/N can be

obtained likewise:(
df0

dt

)r
1

= R
z̃r

β̃
1/2
r

(
1

l̃3d
+ ρiΩf0

)∫ ε̃d

0

dẼf(Ẽ, t)I(1)
A (β̃rε̃t, 0, β̃rẼ) , (8.77)(

df0

dt

)r
2

=

∫ ε̃d

0

dẼR0(Ẽ) , (8.78)

where

R0(Ẽ) ≡ R
z̃r

β̃
1/2
r

{
f(Ẽ, t)

(
1

l̃3d
+ ρiΩf0

)
− f0

[
2

(
Ẽ

π

) 1
2

+ ρiΩf(Ẽ, t)

]
e−β̃rẼ

}
× I(2)

A (β̃rε̃t, 0, β̃rẼ) . (8.79)

Similarly, the continuum limit of Eqs. (8.68)−(8.70) yields(
dfr
dt

)r
= −

(
df0

dt

)r
1

−
∫ ε̃d

0

dẼ

∫ ε̃d

Ẽ

dẼ ′R1(Ẽ, Ẽ ′) , (8.80)(
dẽr
dt

)r
1

= −R z̃r

β̃
3/2
r

{(
1

l̃3d
+ ρiΩf0

)
Cr(β̃r, ε̃t, 0, t)

+

∫ ε̃d

0

dẼ

[
2

(
Ẽ

π

) 1
2

+ ρiΩf(Ẽ)

]
Cr(β̃r, ε̃t, Ẽ, t)

}
, (8.81)(

dẽr
dt

)r
2

=

∫ ε̃d

0

dẼ ′
[
Ẽ ′R0(Ẽ ′) +

∫ Ẽ′

0

(Ẽ ′ − Ẽ)R2(Ẽ, Ẽ ′)

]
, (8.82)
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where ẽr ≡ er
(
γ(4, ε̃t)/γ(3, ε̃t)

)
[Eq. (8.5)] and

Cr(β̃r, ε̃t, Ẽ, t)

≡
∫ ε̃d

Ẽ

dẼ ′f(Ẽ ′, t)

∫ 1

−1

du
ξ
(
β̃rmax

{
Ẽ (
√
Ẽ′u−
√
Ẽ)2

Ẽ+Ẽ′−2
√
ẼẼ′u

, ε̃t − Ẽ ′ + Ẽ
}
, β̃rε̃t

)
β̃

1/2
r

(
Ẽ + Ẽ ′ − 2

√
ẼẼ ′u

)1/2
. (8.83)

8.8 Appendix C: Rate equations for three-body loss

Because of three-body loss the overall particle density decays as [Eq. (8.36)]

[10, 62, 63][
dn(~r)

dt

]l
= −L

[
n3

0(~r) + 9n2
0(~r)nex(~r) + 18n0(~r)n2

ex(~r) + 6n3
ex(~r)

]
, (8.84)

where n0(~r) and nex(~r) are the densities of the condensate and the excited-state

atoms respectively, and L denotes the loss coefficient which for 87Rb equals L =

1.8 × 10−29 cm6 s−1 [56]. The exponents in Eq. (8.84) arise from the number

of atoms participating in the recombination process: the first term results from

recombination of three condensate atoms, whereas the second term originates

from events where two condensate atoms recombine with a higher-energy atom

etc. Further, an excited-state atom can either be a member of the non-condensate

population in the dimple or reside in the reservoir. Thus nex(~r) = nnc(~r) + nr(~r)

with nr(~r) given in Eq. (8.6). Keeping these in mind we write down the decay

rates of the individual densities(
dn0

dt

)l
= −Ln0

(
n2

0 + 6n0nex + 6n2
ex

)
, (8.85)(

dnnc
dt

)l
= −3Lnnc

(
n2

0 + 4n0nex + 2n2
ex

)
, (8.86)(

dnr
dt

)l
= −3Lnr

(
n2

0 + 4n0nex + 2n2
ex

)
. (8.87)
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We model the densities in the dimple as n0(~r) = N f0/l
3
d = (ρiΩ/λ

3
r0)f0 and

nnc(~r) = N fnc/l3d = (ρiΩ/λ
3
r0)fnc. Outside the dimple we take n0(~r) = nnc(~r) =

0. In addition, since the dimple is many times smaller than the reservoir, the

reservoir density can be taken as uniform inside the dimple: nr(~r) ≈ nr(~0) =

(ρiz̃r/λ
3
r0β̃

3/2
r )[γ(3/2, β̃rε̃t)/γ(3/2, ε̃t)] for points inside the dimple [Eqs. (8.6) and

(8.7)]. Using these expressions in Eqs. (8.85) and (8.86) we find(
df0

dt

)l
= −Lρ

2
iΩ

2

λ6
r0

f0(f 2
0 + 6f0f

′ + 6f ′2) , (8.88)(
dfnc
dt

)l
= −3L

ρ2
iΩ

2

λ6
r0

fnc(f
2
0 + 4f0f

′ + 2f ′2) , (8.89)

where f ′ ≡ fnc+(z̃r/Ωβ̃
3/2
r )[γ(3/2, β̃rε̃t)/γ(3/2, ε̃t)]. In terms of the particle distri-

bution f(Ẽ, t) in the excited states of the dimple, fnc =
∫ ε̃d

0
dẼf(Ẽ, t). Under the

assumption that double or higher occupancy of the excited states in negligible,

it follows from Eq. (8.89) that[
∂f(Ẽ, t)

∂t

]l
= −3L

ρ2
iΩ

2

λ6
r0

f(Ẽ, t)(f 2
0 + 4f0f

′ + 2f ′2) . (8.90)

The three-body decay rate of the reservoir fraction fr = (1/N )
∫
d3rnr(~r) can

be obtained by substituting nr(~r) from Eq. (8.6) and the above expressions for

n0 and nnc into Eq. (8.87). This yields(
dfr
dt

)l
= − 3L

ρ2
i z̃rΩ

λ6
r0β̃

3/2
r

γ(3/2, β̃rε̃t)

γ(3/2, ε̃t)

[
f 2

0 + 4f0f
′ + 2f 2

nc + 4
fncz̃r

Ωβ̃
3/2
r

γ(3/2, β̃rε̃t)

γ(3/2, ε̃t)

]
− 48L

πγ(3, ε̃t)[γ(3/2, ε̃t)]2
ρ2
i z̃

3
r

λ6
r0β̃

6
r

∫ β̃r ε̃t

0

dx
√
xe−3x[γ(3/2, β̃rε̃t − x)]3.

(8.91)

The total energy in the reservoir (Er) also decays because of three-body loss.

We can find the decay rate as (dEr/dt)
l = −

∫
d3rur(~r)(dnr/dt)

l, where ur(~r)

denotes the average energy of a reservoir particle at position ~r. To calculate
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ur(~r) we integrate over the phase space, finding

ur(~r) =
1

βr

γ(5/2, βrεt − βrmω2r2/2)

γ(3/2, βrεt − βrmω2r2/2)
+

1

2
mω2r2 . (8.92)

When εt → ∞, this reduces to the familiar expression (3/2)kBTr +

(1/2)mω2r2. Using Eqs. (8.87) and (8.92) we obtain the decay rate of ẽr ≡

(Er/E)[γ(4, ε̃t)/γ(3, ε̃t)] as(
dẽr
dt

)l
= − 3L

ρ2
i z̃rΩ

λ6
r0β̃

5/2
r

γ(5/2, β̃rε̃t)

γ(3/2, ε̃t)

[
f 2

0 + 4f0f
′ + 2f 2

nc + 4
fncz̃r

Ωβ̃
3/2
r

γ(3/2, β̃rε̃t)

γ(3/2, ε̃t)

]
− 48L

πγ(3, ε̃t)[γ(3/2, ε̃t)]2
ρ2
i z̃

3
r

λ6
r0β̃

7
r

×
∫ β̃r ε̃t

0

dx
√
xe−3x[γ(3/2, β̃rε̃t − x)]3

[
γ(5/2, β̃rε̃t − x)

γ(3/2, β̃rε̃t − x)
+ x

]
. (8.93)
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CHAPTER 9

THERMALIZATION IN A QUASI-ONE-DIMENSIONAL TRAP

9.1 Abstract

We model thermalization in a quantum gas loaded into an array of weakly cou-

pled parallel one-dimensional tubes produced by turning on a lattice in the

transverse plane. We study quantum kinetic rate equations for the momentum

distribution along the tubes by analyzing binary elastic collisions. For small in-

tertube coupling J , the rate of thermalization grows as J2 ln J . We show that

the equilibration times in two recent experiments [Nature 467, 567 (2010)] and

[Nature 440, 900 (2006)] differ hugely from one another, which provides justifi-

cation for their apparently conflicting observations. We highlight the qualitative

differences in the approach to equilibrium after an adiabatic and a sudden turn

on of the lattice. In particular, we find that for a sudden turn on, the momen-

tum distribution develops isolated peaks at short times, which can be probed in

future experiments.

9.2 Introduction

The remarkable progress in trapping and cooling atoms in recent years has en-

abled the experimental study of many-body quantum systems in different di-

mensions [1]. In particular, using a suitable laser configuration it is now possi-

ble to trap atoms in highly elongated tubes, effectively confining their motion

to one dimension (1D) [2–7]. Reducing the dimensionality of a system enhances
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correlation effects among the particles, and can lead to exotic quantum phases

not present in higher dimensions. A prime example of such a phase is the modu-

lated superconducting phase (also known as FFLO) in a population-imbalanced

two-component Fermi gas with attractive interactions [5, 8–14]. When the two

spin components (↑,↓) have equal populations, an ↑ spin forms a Cooper pair

with a ↓ spin, leading to Bardeen-Cooper-Schrieffer (BCS) superconductivity

with a uniform order parameter. However, when they have unequal popula-

tions, their Fermi surfaces mismatch, which destabilizes the BCS phase. It was

predicted from theory that the ground state of such a system in 1D is a partially

spin-polarized superconducting phase with an order parameter that oscillates

in space. Such a partially polarized phase was indeed observed in a recent ex-

periment at Rice with 6Li atoms [5]. The experimental data fit very well with

the phase diagram calculated from the thermodynamic Bethe ansatz. However,

the theoretical model assumes that the system is in thermal equilibrium. But it

is well known that an isolated 1D system cannot thermalize due to kinematic

constraints [6, 15–18]. In higher dimensions, thermalization occurs via elastic

collisions among the particles, which redistribute their momenta, thus allowing

the system to ergodically sample all momentum states. However, in 1D, conser-

vation of both momentum and energy implies that particles can only exchange

momenta in a binary collision. Therefore no new momentum states are occu-

pied and the system fails to thermalize. This feature was observed in another

experiment [6], where Kinoshita et al. prepared bosonic 87Rb atoms in a highly

elongated trap in an out-of-equilibrium state. The system did not thermalize

even after thousands of collisions. The resolution to the apparent conflict be-

tween the two experiments rests in the fact that real setups are not perfectly 1D.

The particles still have some leftover degrees of freedom to move in the other
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two dimensions, which allows the system to thermalize at long times. Here we

model thermalization in such quasi-1D systems.

In a typical experiment such as [5], the experimentalists first prepare atoms

of mass m in a three-dimensional (3D) harmonic trap. Then they turn on a

deep lattice potential in the x-y plane. As a result, the atoms are captured in

an array of elongated tubes along the z direction. In a deep lattice, the potential

near a lattice site is well approximated by a harmonic well of frequency ω. This

transverse confinement frequency is typically 2-3 orders of magnitude larger

than the axial trapping frequency. Thus the particles are essentially free to move

along the tubes in the z direction. The state of the atoms after the lattice is

turned on depends on how fast the lattice is turned on compared to the collision

rate among particles. In both Refs. [5] and [6], the lattice turn-on time is large

compared to the collision time, allowing the system to relax to the lowest band.

Since the atom energies are much smaller than the band gap ~ω, the subsequent

dynamics are confined to the lowest band. We first discuss thermalization under

such conditions. One can also imagine experiments where the lattice is turned

on suddenly. Then the atoms will also populate higher bands. We model this

situation in the latter part of the paper and find that it gives rise to qualitatively

different dynamics en route to equilibrium.

We focus on thermalization resulting from the exchange of energy between

longitudinal and transverse degrees of freedom via two-body elastic collisions.

In particular, we do not model second-order virtual excitations which can also

contribute to thermal relaxation [19, 20]. We treat the interactions as a pertur-

bation which induces transitions among the single-particle states, and do not

model the mean-field energy shift of such states [21]. We also ignore three-
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body loss processes which can become important for strongly interacting bosons

[22, 23]. Thus, our formalism is valid when the interactions do not fundamen-

tally alter the nature of the dynamics [24]. Such interaction effects could be

explored in future studies.

9.3 Particles in the lowest band

When the particles are confined to the lowest band, the single-particle Hamil-

tonian reduces to the tight-binding model, which is characterized by a tunnel-

ing amplitude J that describes particle hopping between adjacent tubes. The

dynamics depend on the dimensionless ratio J̃ ≡ π2(J/ER), where ER is the

lattice recoil energy. J/ER decreases with the depth of the lattice. For an in-

finitely deep lattice, J̃ = 0, so the motion is strictly 1D and no thermalization

occurs. Here we study the case where J̃ is small but non-zero, which allows

the system to equilibrate. In our model, equilibration occurs through redistri-

bution of momenta resulting from two-body elastic collisions. In an ultracold

experimental setting, collisions are predominantly s-wave, parametrized by a

scattering length as that can be tuned via a Feshbach resonance [25]. We find

that, in units of mω2a2
s, the thermalization rate grows with J̃ as J2(a − b ln J̃),

where a and b are set by the initial occupations of the momentum states. For

the experimental conditions in [6], our numerics suggest a thermalization time

∼ 20 min, which is large compared to the duration of the experiment (∼ 0.4

s). This justifies the observed lack of thermalization. In the other experiment

[5], the tunneling parameter J̃ is much larger. We estimate an upper bound for

the thermalization time of a few µs, which is 3 orders of magnitude smaller than

the observation time scale, explaining why the measurements agree so well with
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thermodynamic calculations. Below we outline our analysis in further detail.

We consider a two-component Fermi gas (labeled by spin σ =↑, ↓) loaded

into a two-dimensional (2D) optical lattice potential with unit lattice spacing,

Vlat(x, y) = V0[sin2(πx) + sin2(πy)]. We consider a deep lattice with V0 � ER,

where ER is the recoil energy, ER = π2~2/(2m). The system is described by the

Hamiltonian

Ĥ = Ĥ0 + Ĥint , (9.1)

where the kinetic and interaction parts are given by

Ĥ0 =

∫
d3r
∑
σ

ψ̂†σ(~r)

[
− ~2

2m
∇2 + Vlat(x, y)

]
ψ̂σ(~r) , (9.2)

Ĥint =
4π~2as
m

∫
d3r ψ̂†↑(~r)ψ̂

†
↓(~r)ψ̂↓(~r)ψ̂↑(~r) . (9.3)

Here ψ̂σ(~r) denotes the fermion field operator, and Ĥint describes interactions

among the particles by a short-range pseudopotential characterized by the s-

wave scattering length as. We will treat Ĥint as a perturbation which induces

transitions among the single-particle eigenstates via two-body elastic collisions.

When the dynamics are confined to the lowest band, we can label the single-

particle eigenstates by quasimomenta kx and ky in the x–y plane and momentum

kz along the z direction:

ψkx,ky ,kz(~r) =
1√
L
eikzzφkx(x)φky(y) (9.4)

=
1

N
√
L
eikzz

∑
jx,jy

ei(kxjx+kyjy)wjx(x)wjy(y) (9.5)

Here L denotes the length over which the particles can move along the z direc-

tion and φk denotes the Bloch state with momentum k, which we have expanded

in terms of theN Wannier states wj localized at theN lattice sites j. We will con-

sider the limit L → ∞. For deep lattices, the Wannier state wj(x) is a Gaussian
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centered at site j: wj(x) = π−1/4d−1/2 exp (−(x−j)2/(2d2)), where d ≡
√

~/(mω),

ω being the transverse confinement frequency, ω = (2ER/~)
√
V0/ER. The

single-particle state in Eq. (9.4) has energy

ε(kx, ky, kz) = −2J(cos kx + cos ky) + ~2k2
z/(2m) , (9.6)

where J is the tunneling amplitude in the tight-binding model corresponding

to the Hamiltonian H0. The tunneling decreases exponentially with V0/ER for

large lattice depths, J ≈ (4ER/
√
π)(V0/ER)3/4 exp(−2

√
V0/ER) [26].

We consider the growth of the ↑-spin population n↑(~k) in state ψ~k, where ~k

denotes (kx, ky, kz). This occurs by means of elastic collisions between an ↑ spin

and a ↓ spin, which scatter the ↑ spin into the state ψ~k. In such a process, the

total energy and z-momentum are conserved and quasimomenta along x and

y are conserved up to one reciprocal lattice constant, 2π. The rate of such a

process is proportional to the populations of the initial states n↑(~k1) and n↓(~k2).

In addition, the exclusion principle for fermions prohibits the process if the final

states ψ~k and ψ~k3 are already occupied by an ↑ spin and a ↓ spin respectively.

This gives rise to the Pauli blocking factors 1−n↑(~k) and 1−n↓(~k3). The collision

rate is also proportional to the transition probability between the initial and the

final states. We calculate this probability using Fermi’s golden rule, which yields

the factor |〈ψ~k1ψ~k2 |Ĥint|ψ~kψ~k3〉|2. Combining all these terms, we arrive the kinetic
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rate equation

dn↑(~k)

dt
=

16π

~
mω2a2

s

∫ ∞
−∞

dkz1
2π

∫ ∞
−∞

dkz2
2π

∫ π

−π

dkx1
2π

∫ π

−π

dky1
2π

∫ π

−π

dkx2
2π

∫ π

−π

dky2
2π

×
{
n↑(~k1)n↓(~k2)

[
1− n↑(~k)

][
1− n↓(~k1 + ~k2 − ~k)

]
−
[
1− n↑(~k1)

][
1− n↓(~k2)

]
n↑(~k)n↓(~k1 + ~k2 − ~k)

}
× δ
(
k2
z + (kz1 + kz2 − kz)2 − k2

z1
− k2

z2

+ 2J̃
[

cos kx1 + cos kx2 − cos kx − cos (kx1 + kx2 − kx)

+ cos ky1 + cos ky2 − cos ky − cos (ky1 + ky2 − ky)
])
. (9.7)

Hereafter we assume that the energy distribution of the particles has a width

much larger than J , so that all quasimomentum states are equally populated,

i.e., nσ(kx, ky, kz) ≈ nσ(kz). This is a valid approximation in most quasi-1D

experiments [5, 6] and significantly reduces the computational cost. Then the

integral
∫
nσ(kz)dkz gives the linear density of spin-σ particles along the z direc-

tion at each lattice site. For simplicity, we limit our analysis to the case where

the ↑- and ↓- spins are equally distributed among the momentum states, i.e.,

nσ(kz) = n(kz). We have studied the case of unequal populations and found

that the main features remain unaltered as long as the imbalance is not too large.

In addition, making this assumption also allows us to apply our formalism to

spinless bosons [6]. As opposed to fermions, bosons have a greater likelihood

of scattering into a state kz that is already occupied. Hence, we will have a Bose

enhancement factor [1 + n(kz)] in place of the Pauli blocking factor [1 − n(kz)].

With these considerations, we can simplify Eq. (9.7) to obtain (see Appendix 9.6
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for details)

dn(k)

dτ
=

∫ ∞
−∞

dp

∫ ∞
−∞

dq f(pq)

×
{
n
(
k+ J̃

1
2p
)
n
(
k+ J̃

1
2 q
)[

1+ζn(k)
][

1+ζn
(
k+ J̃

1
2 (p+q)

)]
−
[
1 + ζn

(
k+ J̃

1
2p
)][

1+ζn
(
k+ J̃

1
2 q
)]
n(k)n

(
k+ J̃

1
2 (p+q)

)}
, (9.8)

where τ = 2mω2a2
s/(π~), k ≡ kz, and ζ = +1 for bosons and −1 for fermions.

The function f results from integrating out the delta function in Eq. (9.7) over

the quasimomenta and is given by

f(ξ) =
1

2π

∫ ∞
−∞

du eiξu
[

2F3

(
1

2
,
1

2
; 1, 1, 1;−4u2

)]2

, (9.9)

where 2F3 is a hypergeometric function. Plotting the right-hand side of Eq. (9.9)

reveals that f(ξ) is peaked about ξ = 0 and vanishes for |ξ| > 8.

Since we are interested in quasi-1D experiments where J̃ is small, it is useful

to expand Eq. (9.8) in powers of J̃ . However, a direct Taylor expansion proves

difficult because although the product J̃pq is restricted to small values, either of

J̃1/2p or J̃1/2q can be very large. Physically, this means that there are two kinds

of energy-conserving collisions which populate state k: (i) collisions where both

particles have momenta close to k and (ii) collisions where one particle has mo-

mentum very different from k and the other particle has momentum ≈ k. The

difficulty in obtaining an asymptotic expansion is bypassed if one transforms

Eq. (9.8) into the Fourier domain ñ(x). We carry out the expansion in the Fourier

domain and then perform an inverse transform to get the following expressions

(see Appendix 9.7 for details)

ṅ(k) =
[
ṅ(k)

]
cl +

[
ṅ(k)

]
qu +O(J̃4 ln J̃) , (9.10)
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with

[
ṅ(k)

]
cl = J̃2

{[
(3− ln J̃)I2 − I2l

]
F1[n(k)] + I2F2[n(k)]

}
, (9.11)[

ṅ(k)
]

qu = ζJ̃2
{[

(3− 2γ + ln 4− ln J̃)I2 − I2l

]
F3[n(k)] + I2F4[n(k)]

}
. (9.12)

Here ṅ(k) ≡ dn(k)/dτ , I2 =
∫∞

0
dξ ξ2f(ξ) ≈ 2, I2l =

∫∞
0
dξ ξ2 ln ξ f(ξ) ≈ 2.18,

and γ denotes the Euler’s constant ≈ 0.577. Equation (9.10) shows that the net

dynamics can be broken up into a classical part
[
ṅ(k)

]
cl and a quantum part[

ṅ(k)
]

qu. Here ζ = +1 for bosons, −1 for fermions, and 0 for distinguishable

particles. The expressions for the functionals Fi[n(k)], i = 1, 2, 3, 4 are given in

Eqs. (9.25)–(9.28) in Appendix 9.7. We have simulated the dynamics using both

the full rate equation [Eq. (9.8)] as well as the asymptotic expressions in Eqs.

(9.10)–(9.12), and found excellent agreement between the two for J̃ . 0.01.

From Eqs. (9.11) and (9.12) we see that the thermalization rate, in units

of mω2a2
s/~, grows with J̃ as J̃2(a − b ln J̃) where the coefficients a and b are

set by n(k). In Fig. 9.1 we show how n(k) evolves with time for J̃ = 0.001,

after starting from a double-peaked nonequilibrium profile n(k, t = 0) =

1
2

[
exp ( − 8(k + 1)2) + exp(−8k2) + exp ( − 8(k − 1)2)

]
, corresponding to a lin-

ear density of ≈ 0.47 in units of the lattice spacing. We plot n(k, t) for bosons

and fermions. We see that bosons thermalize faster than fermions. This trend

is expected since bosons experience Bose enhancement which assists two-body

collisions, whereas fermions experience Pauli blocking which reduces the colli-

sion rate. However, for states with occupation . 0.5, we find that both classes of

particles exhibit similar dynamics. To quantify the approach toward a thermal

state, we calculate the mismatch between the momentum distribution n(k, t)

and its thermal fit nth(k, t), δ(t) ≡
∫

[n(k, t)− nth(k, t)]2/[
∫
n(k)dk]2. We plot this

mismatch in Fig. 9.2. We find that the particle distribution monotonically ap-
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Figure 9.1: Time evolution of the momentum distribution n(k) for J̃ = 0.001.
The blue, red, and green curves correspond to t/t0 = 0, 200, and 4500, respec-
tively, where t0 = π~/(2mω2a2

s). Solid lines: bosons, dashed lines: fermions.
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Figure 9.2: Mismatch δ (defined in text) between n(k) and its thermal fit, plotted
as a function of time. Blue curve: bosons, red curve: fermions.

proaches a thermal state at long times. Taking a cutoff of 0.01 for δ, we obtain a

thermalization time tth ∼ 5× 103t0, where t0 = π~/(2mω2a2
s).

We now estimate the thermalization times for the experimental setups in

Refs. [5] and [6]. In Ref. [6], Kinoshita et al. prepare a gas of 87Rb atoms having
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scattering length as = 5.3 nm in highly elongated tubes with a transverse con-

finement frequency ω = 2π× 67 kHz, which gives t0 ≈ 0.23 ms. They use a deep

lattice in the x–y plane with a lattice spacing a = 386.5 nm. Using ω and a we

can calculate V0/ER = [~ω/(2ER)]2 ≈ 76 and therefore the tunneling amplitude

J̃ ≈ 4π3/2(V0/ER)3/4 exp(−2
√
V0/ER) = 1.5 × 10−5. The linear density of 87Rb

atoms in the experiment is ∼ 5 × 106m−1 ≈ 1.93/a. Comparing these values

with the ones used in Figs. 9.1 and 9.2, we find that although the linear density

is about 4 times larger in the experiment, the tunneling amplitude J̃ is about

66 times smaller. Since we have seen that for small J̃ , the thermalization rate

grows as J̃2 ln J̃ [Eqs. (9.10)-(9.12)] and we expect the rate to grow linearly with

the density, we conclude that the thermalization time tth for the experimental

system in Ref. [6] would be much larger than 5× 103t0 = 1.15 s. As a rough esti-

mate, we get tth ∼ (1/4)(662)(1.15 s) ∼ 20 min, which explains why no signature

of thermalization was observed within the experimental duration of ∼ 0.4 s.

On the other hand, in Ref. [5], Liao et al. load 6Li atoms into a 2D array of

elongated tubes with a transverse confinement frequency ω = 4π×105 Hz. They

perform their experiment close to a Feshbach resonance. Hence, the 6Li atoms

have a large scattering length, as ≈ −484 nm. Using these parameters, we get

t0 ≈ 45 ns. The lattice spacing in the x–y plane is a = 532 nm, which yields

V0/ER ≈ 11.6, and J̃ ≈ 0.15. The linear density of particles along the tubes near

z = 0 is ∼ 107 cm−1 ≈ 5/a. We see that both the density and the tunneling

amplitude are much larger than those used in Figs. 9.1 and 9.2. Therefore, the

thermalization time tth would be much smaller than 5 × 103t0 = 0.22 ms. Since

the experiment occurs in the strongly interacting regime, one would need to

modify our kinetic equations to get an accurate measure for tth. However, based

on the order of magnitudes involved, we can safely say that that the system
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would equilibrate within a few µs, which is about a thousand times smaller than

the time scale of observations. Thus, it is not surprising that the measurements

agree with thermodynamic calculations.

In summary, a finite tunneling amplitude J̃ allows the particles to hop be-

tween adjacent tubes. This motional degree of freedom in the x–y plane allows

the redistribution of the z-momenta via two-body elastic collisions, eventually

leading to thermalization. In the limit of small J̃ , the momentum occupations

evolve in a diffusive manner [Eqs. (9.8)–(9.12)]. The initial nonequilibrium pro-

file “spreads out” gradually and monotonically approaches a thermal distribu-

tion, as in Figs. (9.1)–(9.2). The thermalization rate is proportional to mω2a2
s and

increases with J̃ and the particle density. It vanishes at J̃ = 0 and grows as

J̃2(a− b ln J̃) +O(J̃4) for small J̃ , where a and b are set by n(k).

9.4 Particles in discrete energy levels

In the last section, we considered the situation where the particles are free to

move along each tube in the z direction, but their transverse motion is confined

to the lowest band of the lattice in the x–y plane. Such a scenario arises in ex-

periments where the lattice is turned on adiabatically, i.e, slowly compared to

the rate of collisions between the particles. This is true in both Refs. [5] and [6].

However, one can envision an experiment where the particles are first collected

in a 3D harmonic trap, then a lattice potential is turned on suddenly in the x–y

plane. Here, the particles would not have sufficient time to relax to the lowest

band during the turn on. In the following, we model the subsequent dynamics

toward thermalization under such conditions.
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We consider a situation where the lattice depth is large, V0/ER � 1, so the

low-lying energy bands reduce to a series of equispaced energy levels. This

amounts to assuming zero tunneling between adjacent tubes and replacing the

lattice potential at each tube by a harmonic trap with frequency ω. The atoms

will then populate several of these harmonic oscillator states after the lattice

is turned on. The reason for making the harmonic approximation is two fold.

First, it simplifies the analysis and keeps the problem computationally tractable.

Second, it allows us to study the qualitative differences in the approach to equi-

librium between two limits, one where the transverse degrees of freedom origi-

nate from a set of discrete energy levels and the other where they originate from

a continuum set of states within a band.

We label the single-particle states by nx, ny, and kz, where (nx, ny) denotes

the eigenstates of a 2D harmonic oscillator and kz labels the z-momentum.

The wave function φ and energy ε of such a state are given by φnx,ny ,kz(~r) =

(Ld2)−
1
2 χnx(x/d)χny(y/d) exp (ikzz) and εnx,ny ,kz = (nx + ny + 1)~ω + ~2k2

z/(2m),

where d is the harmonic oscillator length, d ≡
√
~/(mω) and χn(x) =

e−x
2/2Hn(x)/

√
2nn!
√
π, Hn being the Hermite polynomial of degree n.

By analyzing the rate of two-body elastic collisions in the same way as pre-

sented in the last section, we arrive at a rate equation for the state occupations:

dn~n(k)

dτ
=
∑

~n1,~n2,~n3

C(nx, nx1 , nx2 , nx3) C(ny, ny1 , ny2 , ny3)×∫ ′dp
q

{
n~n1(p+ q)n~n2(p− q)

[
1 + ζn~n(k)

][
1 + ζn~n3(2p− k)

]
−
[
1 + ζn~n1(p+ q)

][
1 + ζn~n2(p− q)

]
n~n(k)n~n3(2p− k)

}
, (9.13)

where ~n ≡ (nx, ny), k ≡ kzd, τ = [4mω2a2
s/(π

3~)]t,

q =
√

(p− k)2 + nx+ nx3− nx1− nx2+ ny+ ny3− ny1− ny2 , (9.14)
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and the prime over the integration symbol restricts the integral over regions

where q is real. The coefficient C is defined as the overlap C(n, n1, n2, n3) ≡

2π2
∣∣ ∫∞
−∞ dxχn(x)χn1(x)χn2(x)χn3(x)

∣∣2, which vanishes if n+ n1 + n2 + n3 is odd

and otherwise has the expression

C(n, n1, n2, n3) =
1

n!n1!n2!n3!

[
Γ(n+n3+n1−n2+1

2
)Γ(n−n3+n1+n2+1

2
)

Γ(n−n3+n1−n2+1
2

)

]2

×

3F2

 −n, −n1,
−n+n3−n1+n2+1

2
;

−n−n3−n1+n2+1
2

, −n+n3−n1−n2+1
2

;
1




2

. (9.15)

As before, ζ = +1 for bosons, −1 for fermions, and 0 for distinguishable par-

ticles in Eq. (9.13). In the following we limit our consideration to fermions.

As we discussed in the last section, the qualitative features do not change with

statistics unless the occupation numbers are large.

We simulate the dynamics using Eq. (9.13) from out-of-equilibrium initial

states where the k distribution is narrow compared to 1/d. This is because in

experiments, prior to the lattice turn on, the trapped atoms are at a temperature

T which is small compared to the band gap ~ω. We find three different time

scales in the resulting dynamics. The different states within a given energy level,

nx + ny = M , attain equal populations within a few collision times. It takes

longer for the total populations in different energy levels to reach a thermal

distribution. The slowest time scale in the dynamics is the equilibration of the z-

momentum states (k), which takes several hundred collision times. We calculate

the collision time τcoll by fitting the initial distribution to a thermal one and using

the thermal fit to compute τcoll = 1/(4πa2
snv), where n and v denote the average

3D density and the average speed of the particles, respectively.

Since the states within a given energy level quickly reach equal population,

we can simplify the full dynamics in Eq. (9.13) by assuming that they are always
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Figure 9.3: Evolution of the total populations in different energy levels of the
transverse harmonic trap. The dotted black line shows the thermal distribution
with the same total energy and particle number, and τcoll is the collision time.

equally populated, i.e., n~n(k) = nM(k), where nx + ny = M . Thus, we obtain the

following rate equation for nM(k):

dnM(k)

dτ
=

1

M + 1

∞∑
M1,M2,M3=0

F (M,M1,M2,M3)×∫ ′dp
q

{
nM1(p+ q)nM2(p− q)

[
1+ζnM(k)

][
1+ζnM3(2p− k)

]
−
[
1+ζnM1(p+ q)

][
1+ζnM2(p− q)

]
nM(k)nM3(2p− k)

}
, (9.16)

where

F (M0,M1,M2,M3) =
3∏
j=0

Mj∑
nj=0

C(n0, n1, n2, n3) C(M0−n0,M1−n1,M2−n2,M3−n3).

(9.17)

Figure 9.3 shows how the band populations NM(t) = (M + 1)
∫
nM(k, t)dk

evolve, starting from nM(k, t = 0) = 0.4
M+1

[
tanh (20(k+0.1))− tanh (20(k−0.1))

]
for M = 0, 1, 2, and zero otherwise. Note that k is expressed in units of 1/d. In

Fig. 9.4, we plot the evolution of the total momentum-state occupations N(k) =

363



0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

k

N
(k
)

t/τcoll = 0
t/τcoll = 4
t/τcoll = 15
t/τcoll = 50
t/τcoll = 200

Figure 9.4: Evolution of the z-momentum distribution along each tube, N(k).
As in Fig. 9.3, the dotted black line shows the thermal distribution with the
same total energy and particle number, and τcoll denotes the collision time.

∑
M(M+1)nM(k). We see thatNM reaches a thermal profile within∼ 30 collision

times, whereas it takes ∼ 200 collision times for N(k) to thermalize. We have

tested different initial distributions and found that the equilibration times do

not vary appreciably as long as more than one energy level is populated initially.

More interestingly, we see from Fig. 9.4 that the nature of thermalization

for N(k) is qualitatively different from all the other cases discussed so far. In

contrast to the slow diffusion-like behavior Fig. 9.1, here we find that at short

times, N(k) develops a secondary peak around k =
√

2. As time passes, this

peak grows gradually and new tertiary peaks appear at k ≈ 0.87 and k ≈ 2.3.

With time, these peaks spread out in either directions and overlap with one an-

other, leading eventually to a thermal profile. We can explain the appearance

of these peaks by examining the redistribution of momenta in two-body elastic

collisions. Let us consider a collision between two particles with initial states

(M1, p + q), (M2, p − q) and final states (M,k), (M3, 2p − k). We can write the
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conservation of energy, in units of ~ω, as k2 + (2p − k)2 = 2(p2 + q2) + 2∆M ,

where ∆M = M + M3 −M1 −M2. The index ∆M quantifies the exchange of

energy between longitudinal and transverse directions. It can only assume even

integer values, 0,±2,±4, . . . , as the overlap factor F in Eqs. (9.16)–(9.17) van-

ishes unless M + M1 −M2 −M3 is even. This selection rule originates from the

alternating parity of the successive harmonic oscillator levels. Initially, all par-

ticles in the trap have momenta close to zero. Thus, p, q ≈ 0 and the dominant

process which populate high-momentum states comes from ∆M = 2, for which

we get k =
√

2. This process gives rise to the secondary peak at short times in

Fig. 9.4. Once a particle has scattered into the k =
√

2 state, it can then collide

with a k = 0 particle. The dominant redistribution process for such a collision

again comes from ∆M = 2, which yields the new set of momenta at k ≈ 0.87

and 2.3. Thus, we find tertiary peaks around these values in Fig. 9.4. These

peaks are small because the population at k =
√

2 is much smaller than at k = 0.

The distinct momentum values generated in binary collisions soon proliferate,

which cause the different peaks to overlap and eventually form a thermal pro-

file. Future experiments can probe this multi-peaked momentum distribution

which can be resolved for a duration of about 50τcoll.

9.5 Conclusions

We have modeled thermalization in a quantum gas loaded in a quasi-1D trap

using kinetic rate equations. In such an experiment, particles are captured in

an array of elongated tubes oriented along the z direction by turning on a deep

lattice in the x–y plane. We have considered two different scenarios. In one, the

lattice is turned on adiabatically, as in Refs. [5, 6], and in the other, it is turned
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on suddenly. In the first case, the particles are confined to the lowest band.

Here, thermalization occurs because the different Bloch states within the band

have slightly different energies, measured by the the tunneling amplitude J̃ .

In a binary elastic collision, the colliding particles can change their z-momenta

by small amounts by scattering into different Bloch states. This redistribution

allows the particles to reach all momentum states after sufficiently many colli-

sions, which leads to thermal equilibrium. In the limit of small J̃ , we find that

the momentum occupations evolve according to a diffusion-like equation [Eqs.

(9.10)–(9.12)] and gradually approaches a thermal profile (Fig. 9.1). The ther-

malization rate is given by mω2a2
sJ̃

2(a− b ln J̃) + O(J̃4 ln J̃) where m is the par-

ticle mass, ω is the transverse confinement frequency, as is the scattering length,

and the coefficients a and b grow with the particle density. From our numer-

ics we estimate that the equilibration times in the experiments [5] and [6] are,

respectively, much smaller and much larger than the measurement time scales,

which explains the agreement with thermodynamic calculations in the former

and the lack of thermalization observed in the latter.

If instead the lattice potential is turned on suddenly, the particles will be ex-

cited to several higher bands. We consider the case of a deep lattice and model

the subsequent dynamics by replacing the bands by discrete energy levels of a

2D harmonic confinement. We find three different time scales in the dynamics.

The degenerate states within a level attain equal populations within a few col-

lision times (τcoll). The different energy levels thermalize with one another in

∼ 30τcoll and the z-momentum states take the longest to equilibrate (∼ 200τcoll).

The evolution of the momentum distribution N(k) in this case is qualitatively

different from that in an gradual turn on. Instead of slowly spreading out like a

diffusion, N(k) develops isolated peaks which grow and eventually merge with
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one another to form a thermal profile (Fig. 9.4). This behavior originates from

the discreteness of the energy levels which causes the z-momenta of the col-

liding particles to change in a discontinuous manner. Future experiments can

probe this nonequilibrium multi-peaked momentum distribution.
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9.6 Appendix A: Simplifying the rate equation

When the particles are confined to the lowest band, the full rate equation gov-

erning the occupations of the momentum states is given by Eq. (9.7). With

nσ(~k) = n(k), we can write

dn(k)

dτ
=

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

dn(~k)

dτ

=
1

J̃

∫ ∞
−∞
dp

∫ ∞
−∞
dq
{
n(k + p)n(k + q)

[
1 + ζn(k)

][
1 + ζn(k + p+ q)

]
−
[
1 + ζn(k + p)

][
1 + ζn(k + q)

]
n(k)n(k + p+ q)

}
×
∫ π

−π

dkx
2π

∫ π

−π

dkx1
2π

∫ π

−π

dkx2
2π

∫ π

−π

dky
2π

∫ π

−π

dky1
2π

∫ π

−π

dky2
2π

δ
(pq
J̃

+ cos kx1 + cos kx2 − cos kx − cos (kx1 + kx2 − kx)

+ cos ky1 + cos ky2 − cos kx − cos (ky1 + ky2 − ky)
)
, (9.18)
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where τ = 2mω2a2
s/(π~). Using the integral representation of the delta function

we can write the six-dimensional integration over the quasimomenta as

f
(pq
J̃

)
=

1

2π

∫ ∞
−∞

ei
pq

J̃
u[g(u)]2, (9.19)

where

g(u) =

∫ π

−π

dx

2π

∫ π

−π

dy

2π

∫ π

−π

dz

2π
eiu[cosx+cos y−cos z−cos(x+y−z)]

=

∫ π

−π

dx

2π

∫ π

−π

dy

2π

∫ π

−π

dz

2π

∫ ∞
−∞

dα

2π

∫ ∞
−∞

dβ ei[β(x+y−z−α)+u(cosx+cos y−cos z−cosα)]

=

∫ ∞
−∞

dβ
∞∑

n=−∞

e2πinβ

∣∣∣∣∫ ∞
−∞

dx

2π
ei(u cosx+βx)

∣∣∣∣4
=

∫ ∞
−∞

dβ
∞∑

n=−∞

δ(β − n)

∣∣∣∣∫ ∞
−∞

dx

2π
ei(u cosx+βx)

∣∣∣∣4
=

∞∑
n=−∞

∣∣∣∣∫ ∞
−∞

dx

2π
ei(u cosx+nx)

∣∣∣∣4 =
∞∑

n=−∞

[Jn(u)]4 = 2F3

(1

2
,
1

2
; 1, 1, 1;−4u2

)
.

(9.20)

Here, Jn denotes the Bessel function and 2F3 is a hypergeometric function. Sub-

stituting Eq. (9.20) into Eq. (9.18) and rescaling the momenta p and q to J̃
1
2p and

J̃
1
2 q, respectively, yield the expressions in Eqs. (9.8) and (9.9).

9.7 Appendix B: Aysmptotic expansion of the rate equation

Fourier transforming both sides of Eq. (9.8) we get

˙̃n(x) =
[

˙̃n(x)
]

cl +
[

˙̃n(x)
]

qu , (9.21)
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where ˙̃n(x) ≡ dñ(x)/dτ and

[
˙̃n(x)

]
cl

=
2

π

∫ ∞
−∞
dξ

∫ ∞
−∞
dy f(ξ) ñ(y) ñ(x− y) Re

[
K0

(
2

√
ξJ̃y(x− y)

)
−K0

(
2

√
ξJ̃y2

)]
,

(9.22)[
˙̃n(x)

]
qu =

ζ

π2

∫ ∞
−∞
dξf(ξ)

∫ ∞
−∞
dx1

∫ ∞
−∞
dx2 ñ(x1) ñ(x2) ñ(x− x1 − x2)

× Re

[
K0

(
2

√
ξJ̃x1x2

)
+K0

(
2

√
ξJ̃(x− x1)(x− x2)

)
−2K0

(
2

√
ξJ̃x1(x− x2)

)]
.

(9.23)

Here, K0 denotes the modifies Bessel function and Re denotes the real part.

Since we have assumed that the momentum distribution n(k) has a width large

compared to J̃
1
2 , its Fourier transform ñ(x) will have a width smaller than 1/J̃

1
2 .

In addition, we note that J̃ is small and the function f(ξ) is significant only for

−8 . ξ . 8. Therefore, all arguments of K0 in the above equations are small.

Thus, we can expand Eq. (9.23) in powers of J̃ using

K0(
√
z) + ReK0(i

√
z) = −2γ− ln(z/4) + (z2/64)[3−2γ− ln(z/4)] +O(z4) (9.24)

for small positive z, where γ is the Euler’s constant. We then perform an in-

verse Fourier transform to obtain the asymptotic expansion in Eqs. (9.10)–(9.12),
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where the functionals Fi[n(k)] (i = 1, 2, 3, 4) are given by

F1[n(k)] = [n′′(k)]2 − n(k)n(4)(k) , (9.25)

F2[n(k)] = n(k)

∫ ∞
0

dp ln p
[
n(5)(k + p)− n(5)(k − p)

]
− n′′(k)

∫ ∞
0

dp ln p
[
n(3)(k + p)− n(3)(k − p)

]
, (9.26)

F3[n(k)] =− n(k)

3

{
6[n′′(k)]2 + 16n′(k)n(3)(k) + 5n(k)n(4)(k)

}
, (9.27)

F4[n(k)] = 2(ln 2− γ)∂2
k

{
[n(k)]2n(3)(k)− 2 [n′(k)]3 − 2n(k)n′(k)n′′(k)

}
+ ∂2

k

{
[n(k)]2

∫ ∞
0

dp ln p
[
n(4)(k + p)− n(4)(k − p)

]
− n′(k) ∂3

k

∫ ∞
0

dp ln p
[
(n(k + p))2 − (n(k − p))2

]}
, (9.28)

where ∂k denotes the derivative with respect to k and n(i)(k) ≡ ∂ikn(k).
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