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Motivated by experiments on cold alkali atoms, I present a theoretical study of weakly

interacting quantum degenerate particles. These experiments observe a wide range

of phenomena and consequently this thesis has a broad scope, involving issues of

coherence, stability, superfluidity, and kinetics. I explore six topics which exemplify

the rich and exciting physics of cold alkali atoms: first, the effect of interactions on the

transition temperature of a dilute Bose gas; second, the connection between broken

non-gauge symmetries and the appearance of multiple condensates in a Bose gas;

third, the role of thermally activated “phase slip” events in destroying superfluidity

near the critical temperature of a Bose gas; fourth, mechanical instabilities in clouds

of attractive bosons; fifth, the kinetics of a gas of partially condensed atoms; and

sixth, the nonlinear optical properties of an atomic gases.
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δ(x) A Dirac delta function.

E An energy.
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k A momentum.

kB Boltzmann’s Constant; kB = 1.38 · 10−23J/K.

L The characteristic size of a system.

λ The thermal wavelength; λ =
√

2π~2/mkBT .

m A mass. Typically the mass of an atom.

N The number of particles in a system.

n The number density of particles.

ni The occupation of the i’th energy level.

O The order of. The statement f(x) = O(xn) as x → ∞
(x→ 0) means that f(x)/xn is bounded as x→ ∞ (x→ 0).

Ω The frequency of a harmonic trap.

p A momentum.

Qd(s) Lattice sums tabulated in table B.4.

Q′
d(0) Lattice sums tabulated in table B.5.

q A momentum.

xv



ρ(E) A density of states.

Σ(k, ω) A self-energy evaluated at momentum k and energy ω.

σ A scattering cross-section.

T The temperature, or the kinetic energy.

Tc The Bose-Einstein condensation phase transition tempera-

ture.

T∗ A cross-over temperature discussed in Sec. 2.3.3.

∆T The interaction induced shift in the phase transition tem-

perature.

U Potential energy.

M A scaled measure of the number of condensed particles de-

fined in Eq. (2.34).

µ A chemical potential.

V Potential energy.

v A velocity.

ξ The coherence length governing the fall-off of G.

ξMF The healing length of the condensate.

Z A partition function in the canonical ensemble. Also ZN ,

where N denotes the number of particles.

Z A partition function in the grand canonical ensemble.

ζ(ν) The Riemann zeta function, defined as the analytic continu-

ation of ζ(ν) =
∑

j j
−ν .

{. . . , . . .} Poisson brackets (see equation (6.10))

xvi



Chapter 1

General Introduction

1.1 Overview

In 1995 three groups of atomic physicists announced that they had observed Bose-

Einstein condensation in clouds of trapped alkali atoms [1, 2, 3]. These initial ex-

periments spawned a new field of study which combines atomic, laser and condensed

matter physics to explore the quantum mechanical behavior of matter. In this thesis

I present a series of theoretical studies motivated by these experiments. This intro-

ductory Chapter briefly describes each of these studies and provide an introduction

to the relevant experiments.

1.1.1 Phase transition

At sufficiently low temperatures, a Bose gas undergoes a phase transition to a state

in which a single mode (in free space the k = 0 mode) is macroscopically occupied.

Although this phase transition is well understood in a uniform non-interacting cloud

[4], it is much more difficult to understand the transition in atomic clouds where in-

homogeneities and interactions complicate the picture. In Chapter 2, I systematically

address these complications; first exploring the phase transition in a non-interacting,

but finite system, and then use perturbation theory to extend these results to an

interacting system.

As with all second order phase transitions, the Bose-Einstein condensation transi-

tion is associated with a diverging coherence length ξ, implying that long wavelength

modes determine the behavior of a system near the transition. Consequently, in

the thermodynamic limit perturbation theory is infrared divergent and breaks down,

making it prima facia impossible to use perturbation theory to understand the role of

interactions in the phase transition. I use finite size scaling to overcome this difficulty,
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and calculate the interaction shift of Tc.

1.1.2 Fragmentation

Quite surprisingly, several models of Bose gases have produced ground states with

more than one condensate [5, 6, 7]. In Chapter 3, I explain the origin of this “fragmen-

tation” of the condensate, demonstrating that it is related to degeneracies in the single

particle spectrum and that it only occurs in mesoscopic, not macroscopic, systems;

the necessary degeneracies arise from the presence of a strictly conserved symmetry

which is spontaneously broken in the thermodynamic limit. This Chapter describes

the experimental signatures of fragmentation, showing that with enough control of

initial conditions one can distinguish fragmented and singly-condensed states.

1.1.3 Persistent currents

Like 4He below the λ temperature, the condensed phase of a Bose gas is superfluid.

A consequence of superfluidity is that current set in motion in an annular trap would

have an extremely long lifetime. This lifetime is limited by rare “phase slip” events

triggered by quantum or thermal fluctuations. In Chapter 4, I calculate the rate of

dissipation due to thermal phase slips, showing that near the critical temperature

they can destroy superfluidity.

1.1.4 Attractive interactions

Attractive interactions in a gas of particles drive an instability towards “clumping up.”

Such instabilities are well studied in astrophysical contexts where they lead to the

formation of stars and galaxies [8]. In Chapter 5, I study the competition between such

attractive interactions and the stabilizing effects of quantum and thermal pressure

within a cloud of bosons. The central result of this Chapter is a finite temperature

phase diagram of an attractive gas, containing three phases; a normal phase, a Bose-

condensed phase, and an unstable region in which the cloud physically collapses to a

small volume. Using the techniques developed for this study of mechanical instabilities

I also examine the possibility of BCS-type “pairing” in the attractive Bose gas, finding

that the mechanical instability prevents any pairing.

The mechanical instability in a cloud with attractive interactions is very similar to

the instability towards phase separation in a mixture of two immiscible gases. Using

this analogy, I discuss the formation of domains in spinor condensate experiments at

MIT [9].
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1.1.5 Kinetic theory

In Chapter 6, I derive a kinetic theory for describing trapped alkali atoms at finite

temperature. Such a kinetic theory is needed to model non-equilibrium finite temper-

ature experiments where both quantum coherence and classical thermal fluctuations

are important. For example, one would like to understand experiments [10] where

a vortex is found to have a finite lifetime. Current theories suggest that the vortex

decays by transferring its angular momentum to the cloud of non-condensed atoms

which surround the condensate. Modeling this scenario requires a non-equilibrium

theory which simultaneously describes the coherent motion of the condensate and the

incoherent motion of non-condensed particles.

The kinetic theory derived here is quite complicated. I elucidate the essential

structure by applying this formalism to investigate a toy problem in which a uniform

gas experiences a sudden change of interaction strength. Looking at the excitations

formed during this process helps clarify the distinction between quasiparticles and

collective excitations. This distinction is unusual in a condensed gas since the con-

densate nominally hybridizes the two types of excitations.

1.1.6 Electromagnetically induced transparency

In Chapter 7, I give a detailed analysis of experiments that use a cold atomic gas

as a tunable non-linear media to control the behavior of light [11, 12]. By coupling

photons to a dark-state polarization wave, these experimentalists are able to slow

light, and even stop it. I analyze these experiments with two approaches, mean field

theory and equilibrium Green’s functions.

1.2 Experiments

Having outlined the main topics, I now give a brief review of the experiments which

have motivated this thesis. For further details I highly recommend several recent

reviews [13, 14, 15, 16], as well as an excellent elementary introduction by Carl

Wieman [17]. I limit my descriptions to the experiments referred to in the rest of this

thesis.
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1.2.1 Cooling and trapping

Quantum mechanics limits the precision with which one can know both the position

and momentum of a particle. This restriction is encapsulated in the Heisenberg un-

certainty principle, δx · δp ≥ ~, which states that the product of the uncertainties

in position and momentum are bounded below by the constant ~ ≈ 1.054 · 10−34Js.

At finite temperature, random thermal motion leads to a large uncertainty in mo-

mentum, and consequently there is very little uncertainty in the positions of the

atoms. For example, a room temperature a sodium atom has a root mean square

velocity of 500m/s, about 1.5 times the speed of sound in air, leading to a spread,

δx ≈ 6 · 10−12m, much smaller than the size of a sodium atom. Thus room temper-

ature atoms behave as classical particles. As they are cooled to lower temperatures,

T , the atoms slow down, and the thermal wavelength λ =
√

2π~2/mkBT , which

measures the uncertainty in the position of an atom of mass m, decreases. For Bose

Einstein condensation to occur, the particles must be cooled until λ is of order the

interparticle spacing (precisely, nλ3 = ζ(3/2) = 2.61 . . .). At this point the particles

lose their individual identity, and behave collectively.

The great experimental challenge of achieving Bose condensation with an atomic

vapor lies in the difficulty of cooling and compressing the vapor to the point where

nλ3 is of order unity. Liquid helium, with a number density comparable to water

n ∼ 2 · 1022cm−3 and a very low mass, Bose condenses at 2.17K. Alkali gases have

densities comparable to a good vacuum n ∼ 1012cm−3, and need to be cooled to

temperatures of order 100nK. The 1997 Nobel prize was awarded to Steven Chu,

Claude Cohen-Tannoudji, and Bill Phillips for developing laser cooling techniques,

which are necessary to cool to such unbelievably low temperatures.

Cooling is performed in several stages. The atoms, initially loaded into the appa-

ratus by boiling them off of a metallic filament, are first cooled by a series of optical

means, the most ingenious of which is the “optical molasses” consisting of six laser

beams focussed on a small point. This geometry is illustrated in Fig. 1.1. These

lasers are red detuned relative to an atomic transition. If an atom is moving towards

one of the six lasers, the light is blue-shifted into resonance and the atom absorbs a

photon. The recoil from absorbing the photon slows the atom down. This mechanism

can cool a gas to the recoil temperature, found by equating the thermal energy of an

atom with its recoil energy. For typical parameters, the recoil temperature is of order

10µK.

Further cooling relies on trapping the particles in a magnetic trap. The basic

principle is that alkali atoms, with one valence electron, have a magnetic moment
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Figure 1.1: Schematic drawing of the laser beam configuration for an optical mo-
lasses. Lasers are incident from all directions. These lasers are red-detuned relative to
an atomic transition so that light will only be absorbed from a beam which is doppler
shifted into residence. Consequently the atoms experience a drag which tends to slow
them down.
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and will therefore feel a force when placed in a magnetic field gradient. A magnetic

trap consists of a set of magnets which produce a field with a local minimum at

some point in space. Atoms are trapped near this minimum. Magnetic trapping is

demonstrated by the quadrupole trap illustrated in Fig. 1.2, which simply consists of

two magnets with their north poles facing each other. The resulting magnetic field

configuration has B = 0 at the center, and |B| increasing linearly as one departs from

that point. Simple quadrupole traps are rarely used in current experiments, as these

traps are “leaky.” Atomic spins can flip where B = 0, resulting in lost atoms. Adding

an extra “Ioffe” magnet to the quadrupole configuration produces a trap where the

field does not vanish at the minimum, thus eliminating these losses. A typical Ioffe

trap is illustrated in Fig. 1.3. In such traps |B| varies quadratically as one moves from

the center, and the particles feel a harmonic potential Vtrap(r) ≈ mΩ2r2/2, where m

is the atomic mass, and Ω is the frequency of oscillation in the trap. Typically Ω is

of order 100Hz.

The trap serves two important purposes. First, it compresses the atomic cloud,

increasing the density. Second, it allows for efficient evaporative cooling. Evaporative

cooling works by removing the most energetic atoms from the cloud. Upon rether-

malizing, the gas is at a lower temperature. In the magnetic trap, the most energetic

atoms are farthest away from the center of the trap. One selectively removes these

atoms to cool the cloud. To exclusively remove these atoms, one relies upon the fact

that they experience a larger magnetic field than the other atoms, and therefore the

Zeeman splitting between different hyperfine spin states is greatest in these atoms.

By tuning a radio-frequency field to the splitting of these energetic atoms, one can se-

lectively excite them, flipping their magnetic moment and causing them to be ejected

from the trap.

When the phase space density is sufficiently large (nλ3 ≥ 2.61), quantum statis-

tical mechanics predicts that the lowest energy state in the harmonic trap will be

macroscopically occupied. In typical experiments, there are 106 atoms in this con-

densate. In the absence of interactions, the characteristic size of the condensate, L,

is set by a competition between the kinetic zero-point energy for confining the atoms

T ≈ ~
2/mL2 and the trapping energy V ≈ mΩL2. For typical traps, this length is

L ≈ d =
√

~/mΩ ≈ 1µm. If 106 atoms were placed in such a small space, the number

density would be 1018cm−3 (just one order of magnitude less than the density of air at

standard temperature and pressure). In practice, the repulsive interactions between

atoms restrict this density to a much lower value, and one finds L by comparing

three energies; T , V and the interaction energy U ∼ ~
2Nas/mL

3. The scattering
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Figure 1.2: Schematic drawing of a quadrupole trap. Two magnets with their poles
facing each other create a quadrupolar field in the region between them. The small
ovoid represents an atomic cloud trapped at the minimum of the magnetic field.
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Figure 1.3: Ioffe-Pritchard trap, as used in current BEC experiments. All lines
represent wires carrying electric currents in the directions indicated by the arrows.
The Ioffe bars create an in-plane quadrupole field. The pinch coils turn this into a
3D quadrupole field, and the bias coils (or compensation coils) generate a non-zero
magnetic field at the center of the trap.
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length as parameterizes the interactions1 and, with a few notable exceptions, as is

positive and of order 5 nm, implying that U ≫ T , and that the size of the condensate

is determined by a competition between U and V . Comparing these energies gives

L ≈ (Nas/m
2Ω2)1/5 which is of order 10µm, resulting in a density n ∼ 1013cm−3

[18]. This density is much greater than the density of atoms above the condensation

temperature n = 1011cm−3, and the phase transition therefore coincides with the

appearance of a large spike in the density of atoms at the center of the trap. An

example of the experimental density profile is shown in Fig. 1.4. The density spike is

clearly visible at temperatures below Tc.

Figure 1.4: Density profile of trapped atoms above and below Tc, reproduced with
permission from the MIT group’s web site http://cua.mit.edu/ketterle_group/

Projects_1995/Three_peaks/3peaks%20gray1.jpg. These pictures are absorption
images of the cloud after ∼ 100ms of free expansion, the height representing the
optical depth (see Section 1.2.2).

1.2.2 Measurement procedures

In order to interpret the experimental data, one needs to understand the principle

techniques used to probe atomic clouds. These techniques have enabled experimental-

ists to produce pictures which beautifully illustrate the quantum mechanical nature

of atoms. All of the methods that I discuss can be used in two ways; either as in

situ measurements, in which the trapped atoms are directly probed, or as expansion

measurements, in which the trap is turned off and the cloud expands before the mea-

surement is made. The main advantage of in situ measurements is that one directly

measures the properties of the trapped gas. However, due to the small size of the

1For a detailed discussion of atomic scattering, see appendix F
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Atomic
Cloud

Laser

CCD
Figure 1.5: Illustration of optical absorption imaging. Resonant light is incident on
a cloud of atoms. The light is absorbed in proportion to the column density of the
cloud. The light that gets through is imaged on a CCD camera.

condensate, L ∼ 1µm, it is impossible to observe the internal structure using this sort

of measurement. In expansion experiments, such fine details are magnified and can

be investigated. Most data that I discuss is from expansion measurements.

Optical absorption imaging

Optical absorption imaging provides one of the simplest probes of an atomic gas.

The basic idea is that the attenuation of light resonant with an atomic transition is

proportional to the integrated atomic density along the path of the light. Therefore

if one positions a laser on one side of the cloud, and a piece of film on the other side

of the cloud, one will record a shadow which measures the column density of the gas

(see Fig. 1.5). In practice a CCD (video camera) is used rather than conventional

film.

The signal from optical absorption is proportional to the column density of the

cloud. The resolution of the image is primarily limited by the wavelength of light

λ ∼ 0.5µm. Since many photons are absorbed by the cloud, the measurement heats

the cloud and destroys the condensate. Absorption imaging is therefore a destructive

technique.

Phase contrast imaging

Phase contrast imaging is similar to absorption imaging, except that the light is

detuned from an atomic transition so that no absorption occurs. To this off-resonant

light the atomic cloud has an index of refraction which varies linearly with the atomic

density. By placing a wave plate in the Fourier plane of the imaging optics, the density

profile of the atomic cloud can be imaged. Since photons are not absorbed there is

very little heating from this form of imaging, making this a non-destructive method
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suitable for making “movies” of a single cloud.

RF spectroscopy

As an alternative to imaging the cloud, one can use spectroscopic probes to study an

atomic gas. One spectroscopic approach, currently restricted to hydrogen experiments

[19], takes advantage of the pressure shift of an atomic transition. The 1s-2s two-

photon transition in hydrogen is red shifted under increased pressure. The microscopic

basis for this shift is that atoms in the 2s state interact less strongly with 1s atoms

than 1s atoms interact with themselves. Thus the energy of the 2s state relative to the

1s state is reduced as the atomic density in increased. By measuring the frequency of

the 1s-2s transition one can determine the density of a uniform atomic cloud. More

importantly, in an inhomogeneous cloud, the 1s-2s line will be broadened, the line

shape giving a histogram of the density of the cloud.

Atom detection

Experiments on gases of excited He atoms have made use of yet another measurement

scheme. Ground state He atoms cannot be magnetically trapped as they do not have

a magnetic moment. Using a long lived excited state, two groups of experimentalists

have successfully trapped a gas He atoms, and cooled them below the BEC transition

temperature [20, 21]. In the latter experiment [21], the system is probed by releasing

the atoms from the atomic trap and letting them fall onto a microchannel plate. At

the plate, the excited atoms drop into their ground state, each releasing an easily

measurable 20 eV of energy. A plot of the signal voltage versus time gives the density

profile of the cloud.

1.2.3 Fermions

Alkali gas experiments are performed with both bosonic and fermionic isotopes. Most

of this thesis is concerned with bosonic atoms, but experiments on fermions are quite

exciting [22] and much of the material in Chapters 5 and 6 is readily extended to

include fermions. Quantum degeneracy does not correspond to a phase transition

in a Fermi gas, just a cross-over from classical behavior to quantum behavior as

the Fermi surface becomes sharper. Fermionic atoms are cooled and imaged in the

same manner as bosons, with the caveat that evaporative cooling works poorly. The

problem is that in evaporative cooling, after the most energetic atoms are removed,

the remaining atoms must thermalize. As a Fermi surface develops the phase space

11



available for collisions becomes small, and the thermalization time becomes very long.

This difficulty is compounded by the absence of s-wave collisions between identical

fermions in the same spin state. These collisions are forbidden because the Fermi

wavefunction is antisymmetric.

To help circumvent these problems, some fermion experiments rely upon sympa-

thetic cooling, where a mixture of Fermi and Bose atoms are loaded into the magnetic

trap. The Bose atoms are easier to cool, and can be used as a buffer gas which absorbs

the heat from the fermions. In this manner temperatures as low as one third of the

Fermi temperature have been achieved. A major goal of these fermion experiments

is to achieve BCS pairing in a gas of alkali atoms.

1.2.4 Coherence experiments

A Bose condensate is to a normal gas as a laser is to a thermal light source. A

condensate has a high degree of coherence. This coherence can be seen in various

sorts of interference experiments. The simplest of these is an analogy of a double-slit

experiment [23], in which investigators create an atomic trap with two distinct minima

and an insurmountable barrier between them. They cool a cloud in this double-well

trap, forming two condensates. When the trap is turned off, the clouds expand and

overlap, as sketched in Fig. 1.6. Absorption images, reproduced in Fig. 1.7, revealed

a distinct interference pattern, reminiscent of the pattern seen in a classic two-slit

diffraction experiment. This interference pattern shows a form of coherence, and

would not occur in a non-condensed gas.

This experiment raises some very subtle issues. Suppose the two clouds were

formed completely independently. Bose condensation implies that there should be

coherence between any two points in the same cloud, such that if you split one of the

clouds it would interfere with itself. It is not clear, however, that the two independent

clouds would interfere with each other. A detailed analysis of why interference is seen

will be given in Section 3.2.2 (page 46).

1.2.5 Collapse of an attractive gas

Although most alkali atoms interact with repulsive interactions, there exist several

atoms with attractive interactions, most notably 7Li and 85Rb [24, 25]. A Bose gas

with attractive interactions is unstable towards a mechanical collapse. At zero tem-

perature stability can be understood through a simple dimensional argument where

one explores how the energy of a cloud varies as one changes the size of the system L.
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a)

b)

c)

Figure 1.6: Diagram to illustrate an atom wave interference experiment. a) Two
condensates are created in a double-well trap. b) The trap is turned off and the clouds
expand. c) The overlapping clouds interfere with one another to form a modulated
density pattern.
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Figure 1.7: Absorption image from an experiment where two atomic condensates are
allowed to overlap and interfere. Darker colors correspond to larger column densities.
Data reproduced from [23].
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As previously discussed, these three contributions to the energy are: kinetic energy

T ∼ ~
2/mL2, trapping energy V ∼ mΩ2L2, and interaction energy U ∼ ~

2asn/m.

Typical scattering lengths are as = −1.45 nm for 7Li and as = −20 nm for 85Rb. In

Fig. 1.8, I plot the total energy E ≡ K+U +V as a function of L for different values

of N0|as|. In the absence of interactions, E has an absolute minimum at L = d, where

d = (~/mω)1/2 is the characteristic length scale of the harmonic trap. Adding weak

interactions causes the global minimum of E to move to L = 0 but a local minimum

remains near L = d. This local minimum signifies that a metastable condensate can

exist. The barrier separating the two minima has a maximum near L = |asN0|. When

|asN0| is of order d the local minimum disappears and the cloud becomes strictly un-

stable. Thus for a given as and d there is a maximum number of particles which can

be in the condensate. More sophisticated calculations [26, 27] show that the point of

instability is given by

N0 = Nmax = 0.575d/|as|. (1.1)

In Li experiments [24], where d ≈ 1µm this maximum is of order Nmax ≈ 1000.

0.5 1 1.5 2
R

E

Figure 1.8: Energy E of a condensate of size L (measured in units of the trap
size d = (~/mω)1/2) with attractive interactions as < 0. Solid – noninteracting
(N |as|/d = 0), long dashes – N |as| ≈ d/5, short dashes – N |as| ≫ d. These curves
are based upon the simple dimensional estimates described in section 1.2.5.

Experimentally, this instability is observed in one of two ways. First, images of

clouds of Li atoms never show more than Nmax ≈ 1000 particles in the condensate
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[24]. Second, by using Feshbach resonances,2 the scattering length as of 85Rb atoms

can be tuned from positive to negative. With as > 0, a stable condensate is formed.

The scattering length is then gradually reduced until collapse occurs [25], and one

finds, as expected, that Nmax ∝ 1/|as|.

1.2.6 Spin relaxation

A very rich class of phenomena involve the hyperfine spin of a gas of alkali atoms.

The spin degree of freedom is frozen in magnetic traps, but can be accessed in optical

traps. In Section 5.6 I give a theoretical explanation of one experiment on spinor

condensates [9]. In this experiment a spinor cloud with ferromagnetic interactions is

placed in a state in which the magnetization is everywhere zero. This is an excited

state of the system and it relaxes to a state which is locally magnetized. Since

magnetization is conserved during the dynamics, a domain structure is formed where

each region is polarized in a different direction. In Section 5.6 I only discuss the

stability of the initial state. The formalism of Chapter 6 can be used to describe the

actual dynamics of the domain formation.

1.2.7 Electromagnetically induced transparency

In experiments at Rowland Institute [11] and at Harvard [12], experimentalists have

used a cold atomic gas as a nonlinear media to manipulate light. Their most striking

achievements have involved actually freezing a beam of light for several milliseconds.

I discuss the theory in Chapter 7. The basic idea is that light couples polarization

waves in an atomic gas. The small velocities of these polarization waves are inherited

by the hybridized excitations, and the light therefore propagates very slowly through

the media. Stopping the light involves adiabatically transforming the photons into

polarons, then reversing the process several milliseconds later.

1.2.8 Feshbach resonance

In recent experiments, experimentalists demonstrated the ability to tune the interac-

tion strength of a dilute gas [28]. This technique is used to explore the collapse of

attractive gases (see section 1.2.5). The interactions are controlled by using magnetic

fields to adjust the energy of a scattering resonance, bringing it near threshold. Scat-

2Feshbach resonances are magnetically induced scattering resonances, and are discussed in ap-

pendix F on page 183
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tering resonances are discussed in detail in appendix F, where the general theory of

atomic scattering is reviewed.

It would be extremely exciting to use this technique to study the highly correlated

state of matter that would be formed when the interactions are made very strong.

In particular one could study a regime where there is a distinct separation of length

scales, with the scattering length as much larger than the interparticle spacing n−1/3,

which in turn is much larger than the physical size of the atom. In such a limit one

expects both the scattering length and the size of the atom to drop out of the problem,

and a gas of such atoms should behave in some universal manor. Experiments in this

regime have been hampered by large inelastic losses which are not fully understood.
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Chapter 2

Theory of the BEC Phase

Transition

The dominant feature in the thermodynamics of cold Bose gases is the presence of

a phase transition to a Bose condensed state where a single-particle level is macro-

scopically occupied. Although Bose-Einstein condensation was predicted in 1925 [29],

some aspects of the phase transition have only recently been understood. In partic-

ular, it was not until the path integral Monte-Carlo calculations of Grüter, Ceperley

and Laloë [30] that the influence of interactions on the phase transition of a uniform

Bose gas was systematically explored.1 Their results, plotted in Fig. 2.1, show that

for small interaction strength the critical temperature increases with interactions,

while for larger interactions the opposite behavior occurs. The drop in Tc can be

qualitatively understood as an effective mass effect. An atom moving through the

fluid must drag other atoms with it, giving it a larger effective mass. Since Tc ∝ m−1,

the critical temperature is reduced.

The weakly interacting case has only recently been understood analytically [32,

33]. An intuitive argument is that repulsive interactions reduce density fluctuations

and therefore increase the occupation of the k = 0 mode, raising Tc. Quantifying this

argument is difficult, and the calculations of Tc [32, 33] rely upon very mathematical

arguments whose physical interpretations are not directly evident.

Here I use a novel approach to calculating the change in Tc, based upon pertur-

bation theory in powers of the interaction. One cannot directly use perturbation

theory to calculate Tc since the perturbation series suffers from infrared divergences

1As the phase transition temperature is of fundamental importance, many earlier works discussed

this topic [31], but the first systematic and authoritative review of the subject was due to Grüter,

Ceperley, and Laloë.
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Figure 2.1: Change of Critical temperature with interaction strength, reproduced
with permission from [30]. For na3 < 0.01 the transition temperature increases
with interaction strength, while for larger na3 the opposite occurs. The apparent
discontinuity of the slope at na3 ≈ 0.1 is an artifact of using a different scale for
∆T > 0 and ∆T < 0. The dashed line is a power-law fit to the small na3 data,
and the dotted line is a guide to the eye. In this chapter I discuss the regime where
na3 ≪ 1.
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at the critical point. These divergences are a common feature of second order phase

transitions where long wavelength properties dominate the behavior of the system.

I avoid these singularities by working in small systems where the finite system size

provides a low energy cutoff. Studying the scaling properties of these small systems

reveals the phase transition temperature.

Although this discussion of the phase transition of a uniform system is of extreme

fundamental importance, it is not particularly relevant to experiments on trapped

atoms. In a harmonic trap the dominant shift in the transition temperature is due to

the way in which interactions change the shape of the cloud. This shift is describable

within mean field theory, and has been experimentally verified [34].

This Chapter is organized as follows. First I review the elementary text-book level

description of Bose-Einstein condensation. Next I look at finite size effects, and inves-

tigate scaling in small systems. I then combine these results with perturbation theory

to calculate the first order shift in the critical temperature ∆T . Finally I give a brief

calculation of the shift in a harmonically trapped cloud. The work presented in this

Chapter was performed in collaboration with Gordon Baym and Markus Holzmann,

and has been accepted for publication [35].

2.1 Elementary description

To preface my discussion of the phase transition, I give an elementary review of Bose

condensation in an ideal gas [4] in the grand canonical ensemble. I begin by consider-

ing a cloud of non-interacting Bosons in an external potential. Special consideration is

given to the case where the particles are in a box of volume V with periodic boundary

conditions, and the case of a harmonic trap.

All thermodynamic quantities are determined by the grand free energy F , defined

in terms of the grand partition function,

Z = e−βF = Tr e−β(H−µN), (2.1)

where β = 1/kBT , H is the Hamiltonian operator, µ is the chemical potential, N

is the number operator, and the trace is taken over all possible states of the system

with any possible number of particles. I will use units where Boltzmann’s constant

kB, is equal to unity. As we are dealing with non-interacting particles, the states are

defined by occupation numbers ni, corresponding to the single particle energy levels
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εi. The trace is explicitly written as

Z =
∑

{ni}
e−β

P

i(ǫi−µ)ni , (2.2a)

=
∏

i

1

1 − e−β(ǫi−µ)
, (2.2b)

which implies that the free energy has the form

F = −T
∑

i

log
(

1 − e−β(εi−µ)
)

. (2.3)

To extract the structure of this free energy, I introduce the density of states

ρ(E) =
∑

i

δ(E − εi). (2.4)

Near the phase transition, infrared modes dominate the sum (2.3). Looking at this

low energy sector of Eq. (2.3), one can approximate log(1−e−β(E−µ)) ≈ log(βE−βµ),

yielding a free energy

F ≈ T

∫ Ec

0

dE ρ(E) [log(βE) + log(1 − µ/E)] . (2.5)

The cutoff, Ec, eliminates the high energy modes which are not correctly accounted

for by this approximation. In the exact expression (2.3), the temperature plays the

role of this cutoff;, thus Ec should be of order kBT . The phase transition occurs at

µ = 0, where either F , or one of its derivatives is singular. Assuming a power law

density states, ρ(E) ∼ Eα as E → 0, the k’th derivative ∂kF/∂µk is singular for all

k ≥ α. Since N = ∂F/∂µ, there exists a phase transition at finite density if and only

if α > 1.

For example, particles in d-dimensional free space have a power-law density of

states satisfying α = d/2− 1, and Bose condensation occurs in all dimensions greater

than 2. For harmonically trapped particles, α = d− 1, and Bose condensation occurs

in all dimensions greater than 1. In the following two subsections I explicitly calculate

the transition temperature in each of these examples.

2.1.1 Uniform gas

Most elementary textbooks, e.g. [4], describe the Bose condensation transition of

particles in a box of size L with periodic boundary conditions, where the single-

particles energies are ε = (2π2
~

2/mL2)(n2
x + n2

y + n2
z), with nν = 0,±1,±2, . . ., and
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m is the particle mass. To calculate the free energy it is convenient to expand the

logarithm in (2.3) and write the free energy as

F = T

∞
∑

j=1

1

j

∑

i

e−βj(εi−µ). (2.6)

Ignoring the discrete nature of the spectrum at hand, one finds

F = −T
∑

j

zj

j

(
∫

dn e
−βj

“

2π2
~
2

mL2

”

n2

)3

, (2.7a)

= −T V
λ3

∑

j

zj

j5/2
. (2.7b)

Here I have introduced the fugacity z = eβµ and the thermal wavelength λ =

(2π~
2β/m)

1/2
. The series gν(z) =

∑

j z
j/jν is known as either a “Bose” function,

or a polylogarithm. The latter name reflects the fact that g1(z) = − log(1 − z).

These functions are discussed at length in Appendix A.1. Replacing the sum over n

with an integral is equivalent to replacing the discrete density of states with a smooth

function ρ(E) ∝ E1/2.

To calculate the number of particles one differentiates (2.7b) to find

N = −∂F
∂µ

=
V

λ3
g3/2(z), (2.8)

which is bounded above by Nc = V/λ3ζ(3/2), where ζ(3/2) = g3/2(1) ≈ 2.61 . . . is

the Riemann zeta function. Thus this semiclassical approximation is incapable of

describing a Bose gas at a temperature below

Tc =
2π

mkB

(

n

ζ(3/2)

)2/3

. (2.9)

This approximation breaks down because the lowest energy state becomes macro-

scopically occupied below Tc. By removing this one state from the integral one avoids

this problem, finding

F = T log(1 − z) − T
V

λ3

∑

j

zj

j5/2
. (2.10)

Unless |βµ| < λ3/V , the first term in negligible compared to the latter. Within this

extended theory,

N =
z

1 − z
+
V

λ3
g3/2(z). (2.11)
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We now take the thermodynamic limit N → ∞, and V → ∞, with n = N/V fixed.

If n < ζ(3/2)/λ3 the thermodynamic limit is reached at fixed z, and the density is

given by Eq. (2.8). If n > ζ(3/2)/λ3, one must scale z with the system volume such

that βµ ∼ V −1 as V → ∞, giving for T < Tc,

n̄ = n̄0 + ζ(3/2)/λ3, (2.12)

where n̄0 = N̄0/V = (−βµV )−1 is the density of condensed particles.

2.1.2 Harmonically trapped gas

As discussed in Section 1.2, in recent experiments the particles are trapped in har-

monic potentials V (r) = mΩ2r2/2. The energy levels in a harmonic trap are of the

form εi = ~Ω(nx + ny + nz + 3/2), where nν = 0, 1, 2, . . .. The zero point energy

(3/2)~Ω plays no role in the following arguments and I will neglect it. The free en-

ergy of the harmonically trapped gas has the same structure as the gas in free space,

and I jump to the equivalent of Eq. (2.10),

F = T log(1 − z) − T
∑

j

zj

j

(∫ ∞

0

dn e−β~Ωnj

)3

, (2.13a)

= T log(1 − z) − T

(β~Ω)3

∑

j

zj

j4
, (2.13b)

giving a mean number of particles,

N̄ =
z

1 − z
+

1

(β~Ω)3
g3(z). (2.14)

In the trap, the thermodynamic limit is approached by letting N → ∞ and Ω → 0

such that Ω3N is constant, which keeps constant the density at the center of the

trap. As in the analysis of Eq. (2.11), at fixed z the number of particles is bounded

by N̄ ≤ ζ(3)/(β~Ω)3, equality representing the Bose-Einstein condensation phase

transition. If one treats the µ→ 0 limit in a similar fashion to Section 2.1.1 one finds

for T < Tc,

N̄ = N̄0 +
ζ(3)

(β~Ω)3
. (2.15)

2.2 Finite size effects

Although statistical mechanics tells us that there are no phase transitions in finite

systems, we apparently see phase transitions all around us. Conventionally, this con-

tradiction is resolved by stating that the finite system possesses a crossover between

23



two distinct behaviors. As the system size increases, the crossover becomes sharper

and mimics a phase transition.

A rather sophisticated understanding of finite size effects comes from studying the

renormalization group [36]. In these studies, one imagines an abstract space param-

eterized by all the possible couplings which could exist in the model being studied

– for instance temperature, interaction strength, and system size. The renormaliza-

tion group (RG) is a mapping of this space onto itself where each model is coarse

grained and reduced in scale. Under this mapping, systems will flow to various fixed

points. Each stable fixed point represents a different phase of matter. Critical points

are associated with unstable fixed points – the system flows in different directions

depending upon which side of the critical point it starts on. A schematic depiction

of the RG flow for a Bose gas is portrayed in Fig. 2.2, where two of the couplings,

the temperature and the system size, are shown. Two fixed points are depicted, the

critical fixed point and a low temperature fixed point corresponding the the Bose

condensed phase. A few sample flow lines are drawn as well as two regions, a critical

region and a finite size scaling region, both of which are discussed below.

In this thesis I do not calculate any RG flows, however I will use one of the

generic results; namely that if a system is in the critical region near a fixed point, its

behavior is dominated by that fixed point, and physical quantities obey a set of scaling

relationships. In particular, the finite size scaling hypothesis holds. This hypothesis

states that all physical quantities scale as functions of the ratio of the correlation

length ξ to the system size L. The correlation length ξ is a measure of the fall off of

the two-point function 〈ψ†(r)ψ(0)〉, and diverges at the critical point. An example of

this scaling is the prediction that the number of condensed particles should scale as

〈N0〉
V

∼ L−yΦ(L/ξ), (2.16)

where y = β/ν = 1 is the ratio of the critical exponents for N0/V and the correlation

length, and Φ is a scaling function. As L/ξ → ∞, this function must diverge as

Φ(L/ξ) ∼ (L/ξ)y, while as L/ξ → 0, Φ approaches a constant. The region where

L << ξ is the finite size scaling regime, and the scaling law (2.16) can be used to

systematically find the critical point (ξ → ∞) by looking solely at the properties of

a finite system.

As an example of using Eq. (2.16) to find the critical point, consider the numerical

calculations of Grüter et al. [30] discussed in the introduction of this Chapter. In that

calculation, the authors used a Monte-Carlo technique to find the superfluid density

ρs (which on dimensional grounds scales as N0/V ) as a function of temperature and
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Figure 2.2: Schematic renormalization group flow diagram for a Bose gas. Points
on this graph represent Bose gases of a given temperature T and system size L.
The dashed arrows show how a system changes under the renormalization group – a
coarse graining and rescaling procedure. Two fixed points of this operation are shown
as large dots; the critical point and the BEC fixed point. A critical regime, where
physical quantities obey power law scaling relationships is shown. Also depicted is the
finite-size scaling regime where the coherence length is large compared to the system
size, ξ ≫ L. In this regime the finite size scaling laws apply.

system size for various small systems. Curves of Lyρs as a function of temperature

for different L all crossed at a temperature T∗. According to Eq. (2.16) this is the

temperature at which the coherence length diverges, which is by definition the critical

temperature.

In the following sections I use elementary means to explicitly verify the scaling

relation (2.16) for the non-interacting gas. I then use this relationship to calculate

the phase transition temperature of an interacting gas.

2.2.1 Scaling in the ideal gas

Here I identify the BEC phase transition in a non-interacting gas from the scaling

of the number of condensed particles. This simple example illustrates the technique

which I use to calculate Tc for the interacting system. I first perform this calculation in

the grand canonical ensemble, and then in the canonical ensemble. In the presence of

a condensate the thermodynamics of an ideal gas are sensitive to the ensemble used.

This sensitivity is demonstrated by looking at the distribution function P (N0) for

the number of condensed particles. Within the grand canonical ensemble, P (N0) ∝
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e−β(ε0−µ)N0 , is exponentially decaying at all temperatures. On the other hand, at zero

temperature in the canonical ensemble, P (N0) = δN,N0 is a delta function, as all of

the particles are in the condensate. Thus P (N0), a macroscopic observable, behaves

qualitatively differently depending on the ensemble. Any observable which depends

on fluctuations in the number of condensed particles (like the compressibility) will

likewise be sensitive to the ensemble.

Despite these differences, the phase transition temperature is expected to be in-

dependent of the ensemble. It turns out that it is easier to perturbatively calculate

∆T within the canonical ensemble than within the grand canonical ensemble.

Grand canonical results

Here I calculate the phase transition temperature of the ideal gas within the grand

canonical ensemble. My general strategy is to fix the average density n = N/V and

the temperature T , and look at how the number of condensed particles N0 varies

with the system size L. To carry out this approach one needs an expression for the

chemical potential µ as a function of n, T , and L; requiring that one inverts Eq.

(2.11). The inversion is performed by expanding (2.11) in powers of βµ. Using the

expansion of the polylogarithm given in Appendix A.1, one finds

n =
1

λ3

[

ζ(3/2) +
λ

L

(

− 1

βµL2/λ2
− 2
√

−πβµL2/λ2

)

+ · · ·
]

; (2.17)

the neglected terms are of higher order in βµ, and are negligible near the transi-

tion temperature as long as N ≫ 1. The terms proportional to 1/βµ and
√
−βµ

are respectively the contributions from the condensed and non-condensed particles.

Finding βµ as a function of n, T , and L, requires solving a cubic equation. I define

the function F (x), plotted in Fig. 2.3, as the solution to

1

F (x)
− 2
√

πF (x) − x = 0, (2.18)

so that the chemical potential can be expressed as,

βµ = −λ2

L2
F

(

L

λ

(

λ3n− ζ(3/2)
)

)

. (2.19)

The positive, monotonic F (x) has the properties

F (0) = (4π)−1/3 (2.20)

F (x) −→
x→−∞

x2/4π (2.21)

F (x) −→
x→+∞

1/x. (2.22)
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Thus, as L→ ∞, the order parameter N0 ≈ −1/βµ, has three distinct behaviors, cor-

responding to non-condensed, critical, and condensed regimes, depending on whether

n is less than, equal to, or greater than ζ(3/2)/λ3. In the non-condensed regime, N0 is

microscopic, in the condensed regime, N0 is extensive, and at the critical temperature,

N0 scales as L2, i.e.,

n < ζ(3/2)/λ3, N0 ∼ L0 (2.23)

n = ζ(3/2)/λ3, N0 ∼ L2 (2.24)

n > ζ(3/2)/λ3, N0 ∼ L3. (2.25)
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FHxL

Figure 2.3: The function F (x), defined as the solution to Eq. (2.18), which relates
the chemical potential and density of a non-interacting Bose gas via Eq. (2.19). The
asymptotic expressions (2.21) and (2.22) are plotted as dashed lines.

This scaling behavior is illustrated by Fig. 2.4, which shows the condensate fraction

N0/N as a function of N for different values of the reduced temperature t = T/Tc.

The various power laws can be read directly from the graph. Note that for small N ,

the critical regime where N0 ∼ N2/3 has a finite width. This width is estimated by

linearizing the chemical potential (2.19) about the point n = ζ(3/2)/λ3 to find

N0 =
L2

λ2
(4π)1/3 +

L3

λ3

2

3

(

λ3n− ζ(3/2)
)

+
L2

λ2
O
(

L

λ
(λ3n− ζ(3/2))

)2

. (2.26)
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The number of condensed particles scales as L2 over a temperature range δT/Tc ≈
λ/L, and then crosses over to the asymptotic behavior described in Eqs. (2.23) and

(2.25).
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Figure 2.4: Condensate fraction N0/N versus N for various values of the reduced
temperature t = T/Tc. The three scaling regimes for t < 1, t = 1, and t > 1,
correspond to the condensed, critical, and non-condensed regimes, in which N0 ∼ N ,
N0 ∼ N2/3, and N0 ∼ N0.

2.2.2 Scaling in the canonical ensemble

I now repeat the calculation of Section (2.2.1) in the canonical ensemble. As previ-

ously mentioned, in the presence of the condensate, thermodynamic properties of an

ideal Bose gas are sensitive to the ensemble used.

In this section I look at scaling in P (N0) rather than just at N0, as was done

in Section (2.2.1). Generalizing Eq. (2.16), one expects that at Tc the probability

distribution function can be written as

P (N0) =
λ2

L2
ψ(N0λ

2/L2), (2.27)

with some scaling function ψ. As I demonstrate here, this relationship holds for the

non-interacting gas.
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The canonical distribution function can be expressed as

P (N0) =
1

ZN
Tr

N,N0 fixed
e−βH =

1

ZN
e−βF (N,N0), (2.28)

where the trace is taken at fixed N and N0, and β is the inverse temperature. This

equation defines the free energy F (N,N0), and uses the partition function, ZN =
∑

N0
e−βF (N,N0), to normalize the probability distribution. In the non-interacting gas,

F (N,N0) is only a function of Nex = N −N0 and is identifiable as the free energy of

the non-condensed particles,

F (N,N0) = Fex(Nex). (2.29)

Although the condensate’s behavior depends crucially on the ensemble, one expects

that the properties of the non-condensed particles will be insensitive to the ensemble,

and one should be able to calculate Fex via a Legendre transformation of the grand

free energy,

Fex(Nex) = Fex(µ(Nex)) + µ(Nex)Nex, (2.30)

where µ(Nex) = ∂Fex/∂Nex is a chemical potential which represents the free-energy

cost of exchanging particles between the condensate and the non-condensed particles.

Intuitively, the condensate acts as a particle bath for the non-condensed system. The

chemical potential varies with Nex since as one depletes the condensate the cost of

removing particles from the condensate changes.

As in Section 2.2.1, I need to relate Nex and µ. The approximation of Eq. (2.17)

is not sufficient, since I will need to take the limit µ → 0. The relevant asymptotics

are evaluated in Appendix B, where according to Eq. (B.13), µ and Nex are related

by

Nex = f1 =

(

L

λ

)3

ζ(3/2) +

(

L

λ

)2

h

(

βµL2

λ2

)

+ O(L/λ), (2.31)

h(x) =
∞
∑

k=0

xk

k!
C3(k + 1). (2.32)

The coefficients C3(k + 1) are tabulated in Table. B.1. Inverting the series, and

replacing Nex with N −N0 gives

βµ =
λ2

L2

(

− 1

C3(2)
M − C3(3)

2(C3(2))2
M2 + · · ·

)

, (2.33)

M = N0
λ2

L2
+ C3(1) − λ2

L2

(

N − L3

λ3
ζ(3/2)

)

, (2.34)
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from which the free energy is

βF (N,N0) = −
∫

dN0 (βµ) (2.35)

= βF̄ (N) +
1

2C3(2)
M2 +

C3(3)

6(C3(2))2
M3 + · · · (2.36)

≡ βF̄ (N) + g(M), (2.37)

where F̄ (N) is an extensive function which is independent of N0, and g(M) is defined

by Eqs. (2.36,2.37). If n = N/V = ζ(3/2)/λ3, then M depends on L only through

the variable N0λ
2/L2, implying that P (N0) is of the form

P (N0) =
λ2

L2
ψ(N0λ

2/L2), (2.38)

where the scaling function ψ is found by exponentiating (2.35). For any other value

of the density, M has additional L dependence, and P (N0) does not scale like (2.38),

implying that the scaling holds only at Tc. In Fig. 2.5 I plot P (N0) at the critical

point. The Gaussian approximation, where only the term proportional to M2 is kept,

is also plotted, and agrees quite well with the full result.
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Figure 2.5: Probability distribution P (N0) for the number of condensed particles at
the critical temperature in a non-interacting Bose gas within the canonical ensemble.
Dashed line is a Gaussian approximation. At the critical point, P has the scaling
form (2.38).
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2.3 Perturbative calculation of ∆T .

In this section I use first order perturbation theory to calculate the critical temper-

ature of a weakly interacting Bose gas. In Section 2.3.1 I present the structure of

perturbation theory, demonstrating that due to infrared divergences it breaks down

in the thermodynamic limit. In Section 2.3.2 I use the techniques of Section 2.2.2 to

circumvent these difficulties and calculate the transition temperature.

Here I work in the canonical ensemble. Within the grand canonical ensemble, first

order perturbation theory changes the energy of each momentum state by the same

amount. This shift can therefore be absorbed into the chemical potential, leaving the

transition temperature unchanged. The first effects start at higher order; exploring

how higher order perturbation theory in conjunction with finite size scaling can be

used to calculate the shift of Tc in the grand canonical ensemble is beyond the scope

of this thesis.

2.3.1 Perturbation theory

A cloud of bosons that interact through a short range potential is described by a

Hamiltonian

H =
∑

q

~
2q2

2m
b†qbq +Hint, (2.39)

where

Hint =
2π~

2as

mV

∑

pkq

b†pb
†
qbq−kbp+k, (2.40)

and as is the scattering length, bq is the annihilation operator for particles with

momentum q, m is the particle mass, and V ≡ L3 is the volume of the system.

As in Section 2.2.2, the function of interest is the probability distribution for the

number of condensed atoms. P (N0) ∝ e−βF (N,N0). Expanding F (N,N0) to first order

in the interaction,

F (N,N0) = F0(N,N0) + 〈Hint〉N,N0, (2.41)

where the expectation value is in the free ensemble, and F0 ≡ F (a = 0) is the free

energy of the non-interacting system.

It is straightforward to calculate 〈Hint〉 using the approximation of Section 2.2.2.

The expectation value involves the sum

∑

pqk

〈b†pb†qbq−kbp+k〉 = 2N2 −
∑

p

〈Np(Np + 1)〉, (2.42)

31



where Np = b†pbp. Using the assumption that for a fixed N0 the non-condensed

particles are grand-canonically distributed,

∑

p

〈Np(Np + 1)〉 = N0(N0 + 1) +
∂Nex

∂µex

. (2.43)

At Tc, each of these terms scale as (L/λ)4. The first order correction to F (N,N0)

therefore scales as

∆F (N,N0) ∼ kBT asL/λ
2 ≡ kBT η, (2.44)

which defines η. Higher order terms in the expansion of the free energy involve addi-

tional powers of βHint. Successive terms are of relative size 〈(βHint)
m〉/〈(βHint)

m−1〉 ∼
η. Thus the perturbation expansion is valid only for sufficiently small η. Since η in-

volves the product as × L, the limits as → 0 and L→ ∞ are not interchangeable.

2.3.2 Calculation of ∆T

Here I calculate ∆T , the interaction induced change in Tc. My strategy is to find the

temperature at which the first order expression (2.41) has the scaling form (2.27).

This temperature should be close to the transition temperature of the ideal gas T
(0)
c ,

so I write, T = T
(0)
c + ∆T , and expand to first order in ∆T . The resulting expression

is

βF (N,N0, T ) = βF0(T
(0)
c ) + ∆T

∂F0

∂T
+ ∆F (T 0

c ), (2.45)

where for clarity I have omitted the arguments N and N0 on the right hand side. The

first order correction ∆F is given in Eq. (2.41). If one substitutes Eq. (2.36) for F0,

this free energy can be expressed as

βF (N,N0, T ) = βF̄0 + g(M0) −
∆T

T

λ2

L2
N0g

′(M0) (2.46)

+
3

2

∆T

T

L

λ
ζ(3/2)g′(M0) −

2π~
2as

mV T

(

N2
0 + 2

∑

k 6=0

Nk(Nk + 1)

)

,

where the argument M0 = N0(λ
2/L2) + C3(1) is the scaled condensate number mea-

sured from the peak of the distribution. The first two terms are the free energy of

the non-interacting gas at T
(0)
c , while the remaining terms give the first order correc-

tions in ∆T and as. These corrections are only small if η = asL/λ
2 ≪ 1. The sum

∑

k 6=0Nk(Nk + 1) can be identified with ∂Nex/∂(βµ0), and expressed as a series in
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βµ0L
2/λ2 via Eq. (2.31). Equation (2.33) can be used to eliminate µ, yielding,

F (T ) = F0(T
(0)
c ) − ∆T

T

λ2

L2
N0g

′(M0) (2.47)

+
L

λ

[

3ζ(3/2)

2

∆T

T

(

1

C3(2)
M0 +

C3(3)

2C3(2)2
M2

0 + · · ·
)

−2π~
2as

mλ3T

(

C3(1)2 + 2C3(2) − 2

(

C3(1) +
C3(3)

C3(2)

)

M0

+

(

1 +
C3(2)C3(4) − C3(3)2

C3(2)3

)

M2
0 + · · ·

)]

.

Scaling of the form in Eq. (2.27) holds if and only if the factor multiplied by L/λ

is independent of M0. Eliminating the coefficient of the first power of M0 enforces

scaling near the peak of P (N0), in which case

∆T

T
= − 8π~

2as

3mλ3Tζ(3/2)
(C3(1)C3(2) + C3(3)) (2.48)

≈ 1.6asn
1/3. (2.49)

The coefficient 1.6 should be compared with the numerical value 2.3 calculated by

Holzmann and Krauth [37]. The discrepancy lies within the accuracy expected of my

approximations. The important point to note is that the coefficient is positive and of

order unity.

The neglect of terms of higher order in as during the calculation is based on the

assumption that they do not change the structure of the scaling function. (Note that

recent calculations of φ4 theory on a lattice [39, 40] may indicate that this assumption

is not valid.) A more involved study, where these higher order terms are explicitly

calculated would help verify whether perturbation theory is valid within finite size

scaling.

2.3.3 Connection with other approaches

The calculation of the phase transition temperature in Section 2.3.2 was motivated

by a perturbative calculation performed by Wilkens, Illuminati, and Krämer [38].

Unlike my calculation, these authors did not use finite size scaling to extrapolate

to the thermodynamic limit, and derived an incorrect result; namely that the tran-

sition temperature decreases with interaction strength. This result contradicts not

only Eq. (2.49), but also the results of [32, 33]. It is instructive to reproduce their

calculation and see where their method breaks down.

Wilkens et al. found Tc by looking for the temperature, T∗, at which the distri-

bution function P (N0) becomes flat at N0 = 0. As seen by Fig. 2.5 in an ideal gas at
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Tc, P (N0) has a positive slope at N0 = 0, and consequently T∗ > Tc. These authors

neglect the difference T∗ − Tc, noting that it vanishes in the thermodynamic limit.

For the rest of this section, I will likewise ignore this difference.

In terms of F (N,N0), Wilkens et al.’s criterion for Tc gives an implicit equation

for the critical temperature of the interacting system T
(a)
c ,

∂F (N,N0)

∂N0

∣

∣

∣

∣

N0=0,T=T
(a)
c

= 0. (2.50)

As in Fermi liquid theory, ∂F/∂N0 is the energy of a k = 0 quasiparticle measured

from the chemical potential [41], and can therefore be expressed as

∂F

∂N0

= Σ(k = 0, ω = 0) − µ, (2.51)

where Σ(k, ω) is the self-energy at momentum k and energy ω (cf. Appendix C). Thus

this criterion for the critical temperature is essentially that used by Baym et al. [33] in

the grand canonical ensemble. An important difference between the two approaches

is that in the present calculation only quantities at N0 = 0 are involved. As seen

in Section 2.2.2, the fluctuations in N0 are very large at the critical temperature,

〈N2
0 〉 − 〈N0〉2 ∼ N4/3 [42]. The criterion (2.50) yields a qualitatively different shift in

the transition temperature if the derivative is evaluated at the expectation value of

N0 rather than at N0 = 0.

I now expand the criterion (2.50) for Tc in powers of a, to calculate perturbatively

the transition temperature, T
(a)
c , of the interacting system. Since ∂F/∂N0 is evaluated

at T = T
(a)
c , we must consider not only the explicit variation of F with a, but also the

implicit contribution due to the dependence of T on a. It is convenient to decompose

the free energy as F (a) = F0 + ∆F (a), where F0 is the free energy of the non-

interacting gas and ∆F (a) is the correction due to interactions. In the free system,

the condensate only contributes to the free energy by reducing the occupation of other

modes, i.e.,
∂F0(N,N0)

∂N0
= −∂F0(N,N0)

∂N
≡ −µ0, (2.52)

which defines the free chemical potential µ0, a function of N , N0 and T . By construc-

tion, when N0 = 0 this chemical potential vanishes at the transition temperature of

the non-interacting gas, T
(0)
c , and to first order in the interaction,

∂F0

∂N0

∣

∣

∣

∣

N0=0,T=T
(a)
c

= −µ0(N0 = 0, T = T (a)
c ) (2.53)

= −∆Tc
∂µ0

∂T

∣

∣

∣

∣

N0=0,T=T
(0)
c

+ O(a2). (2.54)
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The derivative is taken at fixed N and N0, and ∆Tc = T
(a)
c − T

(0)
c is the shift in the

transition temperature for scattering length a. Thus, to first order in a, the left hand

side of Eq. (2.50) becomes ∂(∆F )/∂N0 − ∆Tc ∂µ0/∂T , evaluated at T = T
(0)
c and

N0 = 0. Solving for ∆Tc, we have

∆Tc =
(∂(∆F )/∂N0)

(∂µ0/∂T )

∣

∣

∣

∣

N0=0,T=T
(0)
c

. (2.55)

Aside from the use of continuous derivatives in place of Wilkens et al.’s discrete

derivatives, this is the result of [38]. Correctly evaluating these functions for a finite

sized system is challenging. I estimate their magnitude by using the approximations

of Section 2.2.2; i.e. replacing the canonical expectation values in Eq. (2.42) by the

grand canonical result 〈Nk(Nk + 1)〉 = 2〈Nk〉(〈Nk〉 + 1), and approximately write

〈Nk〉 ≈ (eβ(ǫk−µ0) − 1)−1. This assumption provides a simple relationship between

N = N0 +
∑

k〈Nk〉 and µ0, and yields an expression,

∂(∆F )

∂N0

= −∂(∆F )

∂Nex

= −
(

∂(∆F )

∂µ0

)(

∂µ0

∂Nex

)

(2.56)

=

(

∂(∆F )

∂µ0

)(

∂µ0

∂T

)

Nex

(

∂T

∂Nex

)

µ0

. (2.57)

Since all quantities are evaluated in the free ensemble, the derivatives are straightfor-

wardly evaluated, leading to

∆Tc

Tc

≈ − 8π~
2a

3mNV kBT

∑

k 6=0

〈Nk〉3, (2.58)

where 〈Nk〉 is evaluated at µ0 = 0. The sum is infrared divergent, scaling as V 2,

and yielding a finite temperature shift proportional to −an1/3, where n = N/V . The

constant of proportionality is of the same order of magnitude as the one calculated in

[38] using a sophisticated series of asymptotic expansions; its exact numerical value

is unimportant here. The key observation is that contrary to the expected behavior,

the temperature shift predicted by this argument is negative.

This negative temperature shift depends crucially upon the constraint N0 = 0.

At finite N0, the numerator of Eq. (2.55) has an additional contribution due to the

derivative of the first term of Eq. (2.43). This contribution has the opposite sign,

and dominates when N0 ∼ N2/3, yielding a positive temperature shift. As already

emphasized, at the critical temperature, the expectation value of N0 is of order N2/3.
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2.4 ∆T in a harmonic trap

In free space, interactions change Tc by reducing density fluctuations, encouraging

occupation of the low k modes. In a harmonic trap, interactions not only reduce dy-

namical density fluctuations, but also change the shape of the cloud, making it flatter

and more homogeneous. This flatter density profile implies that at a given tempera-

ture more particles must be added to reach the same central density. Condensation

occurs when the central density n(0) equals ζ(3/2)/λ3. Thus at fixed particle num-

ber the transition temperature of a harmonically trapped gas is reduced by repulsive

interactions.

Following Giorgini et al. [43], one can estimate this temperature shift via a

Hartree-Fock approximation to the density,

n(r) =

∫

d3p

(2π)3

(

1

eβ(ǫp+V (r)+2gn(r)−µ) − 1

)

, (2.59)

where g = 4π~
2as/m parameterizes the interactions, ǫp = p2/2m is the free parti-

cle dispersion, and V (r) = mΩ2r2/2 is the trapping potential. At Tc the chemical

potential equals 2gn(0), so that modes at the center of the trap start becoming macro-

scopically occupied. In the absence of interactions, the density is

n(r) =
1

λ3
g3/2(e

−βV (r)). (2.60)

The first order shift is

∆n(r) =
2βg

λ6
(ζ(3/2) − g3/2(e

−βV (r))). (2.61)

Integrating over all space gives the shift in the number of particles at Tc,

∆N =

∫

d3r∆n(r) =
2βgζ(3/2)ζ(2)

λ3(β~Ω)3
(1 − S), (2.62)

where

S =
1

ζ(3/2)ζ(2)

∑

jk

1

j1/2k3/2(j + k)3/2
≈ 0.281. (2.63)

Since N ∝ T 3, the shift in the transition temperature at fixed N is

∆T

T
= −1

3

∆N

N
= −N

1/6as

d

(

4ζ(3/2)ζ(2)

3
√

2πζ(3)7/6

)

(1 − S) (2.64)

= −1.33
asN

1/6

d
, (2.65)

where d =
√

~/mΩ is the characteristic size of the trap. The slow N dependence is

a consequence of the slow dependence of the shape of the interacting cloud on the
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number of particles. In 1996, the experimental group at JILA attempted to measure

this shift [34]. Using 40000 rubidium atoms (as = 5nm) in a trap with Ω = 1200s−1,

their trap had a characteristic trap size of d = 560nm, for which equation (2.65)

predicts a 5% shift.

With such a small number of particles one finds a comparable shift from corrections

to the semiclassical approximation used in Eq. (2.13a). These corrections are easily

calculated by writing

F = T
∑

j

zj

j
(Fj)

3 , (2.66)

where

Fj =

∞
∑

n=0

e−jβ~Ωn (2.67)

=
eβ~Ωj

eβ~Ωj − 1
(2.68)

≈ eβ~Ωj

β~Ω
(1 + β~Ω/2 + · · · ) . (2.69)

Keeping the first term gives Eq. (2.13a), while keeping the first two terms gives,

F = T

(

1

(β~Ω)3
g4(z) +

3

2

1

(β~Ω)2
g3(z) + · · ·

)

. (2.70)

Calculating the number of particles shows that the critical temperature is shifted by

∆T

T
= − ζ(2)

2N1/3ζ(3)2/3
. (2.71)

For the Ensher experiment [34] this is a 2% shift. The experimental data is shown in

Fig. 2.6. The solid and dashed lines are the ideal gas predictions with and without

the finite size correction (2.71). The difference between the non-interacting theory

(2.71) and experiment is consistent with interactions (2.65). Recently, Arnold and

Tomasik [44] calculated the shift in the transition temperature to second order in as.
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Figure 2.6: Total number N (inset) and ground-state fraction N0/N as a func-
tion of scaled temperature T/T0. The presence of fewer particles at lower temper-
atures is a consequence of evaporative cooling. The scale temperature T0(N) =
~Ω/kB(N/ζ(3))1/3 is the predicted critical temperature, in the thermodynamic limit,
for an ideal gas in a harmonic potential [cf. Eq. (2.15)]. The solid (dotted) line
shows the infinite (finite) N theory curves. At the transition, the cloud consists
of 40 000 Rb atoms at 280 nK. The dashed line is a least squares fit to the form
N0/N = 1 − (T/Tc)

3 which gives Tc = 0.94(5)T0. Each point represents the average
of three separate images. Figure reprinted with permission from [34]. Copyright 1997
American Association for the Advancement of Science.
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Chapter 3

Fragmentation

3.1 Introduction

In the standard paradigm of Bose-Einstein condensation a single particle mode is

macroscopically occupied [45, 46]. Here I address Boson systems where more than

one such mode is macroscopically occupied. These multiply condensed, or fragmented,

systems are rather novel and there is great interest in experimentally producing one of

these states. In this Chapter I explain the origin and consequences of fragmentation.

By definition, fragmentation occurs when two or more single-particle modes are

macroscopically occupied with no coherence between the separate condensates. Here

I am interested in fragmentation in an equilibrium setting. Distinct issues are raised

by non-equilibrium fragmented systems where the bosons are carefully manipulated

to produce the desired state. These issues go beyond the scope of this thesis and will

be discussed in future work. As a simple example of creating a non-equilibrium con-

densate, one could condense atomic clouds in two separate traps, trivially producing

two condensates with no phase coherence between them.

In a weakly interacting setting, equilibrium fragmentation requires that the im-

portant modes are nearly degenerate, for otherwise a condensate would simply form

in the lowest energy modes. Interactions soften this degeneracy requirement, as in-

teraction energy may be saved by occupying the higher energy state. (Furthermore,

for sufficiently strong interactions this single particle picture breaks down.) This re-

liance on degeneracies makes fragmentation extremely delicate, as an arbitrarily small

perturbation will lift the degeneracy.

Degeneracies are often related to symmetries of the Hamiltonian. For example,

in a spherically symmetric potential the eigenfunctions, labeled by quantum numbers
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n, ℓ,m, are degenerate if they share the same n and ℓ. An arbitrarily small symme-

try breaking perturbation will lift these degeneracies and destroy the possibility of

equilibrium fragmentation. It is important to note that if one destroys a fragmented

state by adding a symmetry breaking perturbation, then the singly-condensed state

which is formed will break the symmetry. These observations can be summed up by

saying that fragmentation occurs in the symmetry unbroken state of a system with a

spontaneously broken symmetry.

Although I focus on atomic gases, fragmentation can occur in more general meso-

scopic superfluids and superconductors. Fragmentation is unlikely to be observed

in macroscopic systems where stray couplings inevitably lead to a singly condensed

state. For example, early studies of fragmentation [47, 48, 49] focussed on bulk 4He

and found that fragmentation never occurs. Alkali gases, with their small number of

particles (103 to 107), and highly controllable environments make the ideal setting for

experimental studies fragmentation.

In this Chapter I develop a coherent framework for understanding fragmented

systems, and in the context of alkali gases discuss the detection and creation of such

states. To extract the generic features of fragmentation I give a detailed discussion

of the properties of a simple two level model. I then apply these concepts to present

unified descriptions of a series of other physically relevant models. Much of the work

presented in this Chapter was performed in collaboration with Gordon Baym, Jason

Ho, and Masahito Ueda, and will be submitted for publication [50].

3.1.1 Bose-Einstein condensation and fragmentation

Bose-Einstein condensation is characterized in terms of the single particle density ma-

trix ρI(r, r
′) = 〈ψ†(r′)ψ(r)〉 =

∑

ν nνφ
∗
ν(r

′)φν(r), where nν and φν(r) are respectively

the eigenvalues and eigenfunctions of this matrix, and ψ(r) is the annihilation operator

for a particle at position r. The eigenfunctions are normalized by
∫

d3r |φ(r)|2 = 1,

and the eigenvalues sum to the number of particles
∑

ν nν = N . Physically, each

eigenfunction φν(r) is a single-particle mode occupied by nν particles. In terms of the

many-body wave function ψ(r1, . . . , rn), where ri represents the position of the i’th

particle, the single particle density matrix is found by tracing over all but one of the

particles,

ρI(r, r
′) =

∫

dr2 · · · drn ψ
∗(r′, r2, . . . , rn)ψ(r, r2, . . . , rn). (3.1)

In a non-condensed state, each of the eigenvalues nν are of order unity. In a singly

condensed state, one eigenvalue n0 is of order N , while in a fragmented state, several
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eigenvalues are of order N . Since these characterizations involve large N asymptotics,

they are only precisely defined in the limit N → ∞. Furthermore, some systems do

not fit neatly into this framework, for example, a one dimensional gas of hard core

bosons has a density matrix which is diagonal in momentum space, and has a power

law distribution of occupation numbers: nk ∼ (n/k)1/2 as k → 0, where n = N/L

is the linear density [51]. In a finite size system the lowest accessible k modes have

k ∼ 1/L, implying that these modes have occupation of orderN1/2, which lies between

the values found in condensed and non-condensed systems.

Although throughout this Chapter I only consider the above definition of Bose-

Einstein condensation, it is useful to connect this description to the idea of spon-

taneously broken gauge symmetry, as often used in condensed matter physics [52].

In this latter formalism the field operator is coupled to a fictitious field, η(r), via

a Hamiltonian Hη =
∫

d3r[η(r)ψ∗(r) + η∗(r)ψ(r)]. If 〈ψ〉 ≡ limη→0〈ψ〉η 6= 0, the

system is said to be condensed, with order parameter 〈ψ〉. If in the absence of η

the single particle density matrix has a single large eigenvalue n0 with eigenfunc-

tion φ0, this procedure yields 〈ψ〉 =
√
n0φ0. If, instead, the single particle density

matrix has m large eigenvalues, λ1, . . . , λm, eigenfunctions φ1, . . . , φm, then the re-

sult is slightly different. The coupling field can be written in terms of the modes

η = (
∑m

i |ηi|eiθiφi), with phases θi. In the limit where each of the ηi → 0, one should

find 〈ψ〉 =
∑m

i

√
nie

iθiφi, which is a linear combination of all the modes in which the

relative phases between the various condensates are set by the phases in η. When

the modes φ1, . . . , φm have disparate symmetries, choosing the phases φi breaks those

symmetries. For example, if one of these states is an s wave state and another a p

wave state, the combination breaks rotational symmetry.

The η construction produces a single condensate because the phases between all

of the states are specified. If these phases were averaged over, the resulting state

would be fragmented. This will be illustrated later.

A concept closely related to fragmentation is the notion of a quasicondensate,

where the correlation function 〈ψ†(r)ψ(r′)〉 falls off as a power law as |r−r′| becomes

large. Such quasicondensation occurs in lower dimensions [53, 54] or when a Bose gas

is rapidly cooled below the BEC temperature [55]. In Section 3.5 I give an example

of a finite temperature vortex lattice which also has this quasicondensate structure,

where thermal fluctuation of vortex lines destroy long range ordering of the phase. In

a quasicondensate one generally has a power law distribution of occupation numbers

nk.
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3.1.2 An illustrative example

To illustrate the nature of fragmentation I review a simple model, proposed by

Nozières [6], consisting of N bosons which can be in one of two single particle modes.

Depending upon the couplings between the modes, the ground state can be frag-

mented or singly condensed. This model generically describes systems that can frag-

ment into two condensates. Nozieres model is readily generalized to systems with

more condensed modes.

This model is most easily described in second quantization where the operators

a and b annihilate bosons in the two modes. As a concrete example to motivate the

model, suppose, as in Fig. 3.1a, that the two modes are momentum eigenstates eik·r

and e−ik·r, and that the particles interact via a short range interaction. In the two

mode approximation, the field operator is ψ(r) = (aeik·r + be−ik·r)/
√
V . Assuming

local interactions of strength g, this system is described by a Hamiltonian

H = (gV/2)

∫

d3r ψ†ψ†ψψ (3.2)

= (g/2)N(N − 1) + ga†b†ba.

As defined, g has dimensions of energy and scales as the inverse of the system vol-

ume. Translational invariance implies that momentum is conserved, and therefore the

occupation numbers na = 〈a†a〉 and nb = 〈b†b〉 are constants of motion. Attractive

interactions encourage particles to clump, giving the gas a tendency to break transla-

tional invariance. As I demonstrate below, this clumping implies that the symmetry

unbroken state is fragmented. Adding a local impurity that breaks translational in-

variance adds a term −t(a†b + b†a) to the Hamiltonian, and will result in a singly

condensed ground state.

A second concrete example of the two state model is a “Josephson junction”

formed by a gas of bosons in a double well potential (see Fig. 3.1). If only a single

mode in each of the two wells is occupied, the Hamiltonian is

H = −t(a†b+ b†a) + (gJ/2)(a†a†aa+ b†b†bb) (3.3)

= (gJ/2)N(N − 1) − t(a†b+ b†a) − gJa
†b†ba,

where a and b annihilate bosons in the individual wells, and where t parameterize the

tunneling and gJ the interactions. For a very large barrier t vanishes, and by iden-

tifying gJ with −g from (3.2), one sees that aside from an inconsequential constant,

Eq. (3.3) with t = 0 is the same as Eq. (3.2). For t = 0 and repulsive interactions I

will show that it is energetically favorable to incoherently occupy each of these two
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Figure 3.1: Schematic picture of systems which can be truncated to a two state
model with a fragmented ground state. In a) I model an attractive gas in free space
by considering two momentum states eik·r and e−ik·r. In b) I model particles in a
double-well potential by considering the lowest energy modes in the left and right
wells.

modes. The tunneling is analogous to a local impurity in the last model, and for t 6= 0

a singly-condensed state is favored. The immediate discussion focuses on t = 0.

The two level model has qualitatively different behavior depending on whether

g > 0 or g < 0 (equivalently, gJ < 0 or gJ > 0). When g > 0 the ground state of N

particles is singly condensed, with all of the particles in the a state or in the b state.

For g < 0 the ground state is

|na = N/2, nb = N/2〉 = (a†)N/2(b†)N/2|vac〉, (3.4)

where |vac〉 is the vacuum containing no particles, leading to a single particle density

matrix,
(

〈a†a〉 〈a†b〉
〈b†a〉 〈b†b〉

)

=

(

N/2 0

0 N/2

)

(3.5)

which clearly has two large eigenvalues, and is by definition fragmented.

The state (3.4) is a condensate of pairs, (a†b†)N/2|vac〉, and has off-diagonal order

in the 2-particle density matrix, but not in the 1-particle density matrix. As discussed

by Yang [56], and later by Kohn and Sherrington [57], order in the n-particle density

matrix implies order in the (n + 1)-particle density matrix, but the converse is false.

When the two states involved are momentum eigenstates, the implications of this

result are particularly transparent. The pair created by the operator a†b† has a wave-

function ψ(r1, r2) ∝ cos k(r1 − r2), in which the two particles are bunched up, but

their center of mass is spread uniformly throughout space.

Further insight into this fragmented ground state is gained by studying Eq. (3.2)

within mean field theory. For a Bose gas, mean field theory is conveniently imple-
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mented as a variational method using singly condensed wavefunctions; here the most

general singly-condensed wavefunction takes the form |α, β〉 = (αa† + βb†)N |vac〉.
For g < 0 the energy is minimized by setting |α|2 = |β|2 = 1/2, with the phases

φα = Arg(α) and φβ = Arg(α) completely arbitrary, resulting in a huge degeneracy.

Again considering the case where a and b correspond to momentum eigenstates,

each of the states with |α|2 = |β|2 = 1/2 has a density 〈ψ†(r)ψ(r)〉 = (N/2V ) cos2(k ·
r+ (φα − φβ)/2) which is inhomogeneous. Averaging over the position of the density

peak restores the ground state,

∫

dφ(a†e−iφ/2 + b†eiφ/2)N |vac〉 ∝ (a†b†)N/2|vac〉. (3.6)

Generically one finds that fragmented ground states are expressible through averaging

over a family of degenerate singly-condensed states.

As already emphasized, adding a symmetry breaking term to the Hamiltonian will

favor single condensation over fragmentation. In fact, only an infinitesimal pertur-

bation is needed to break the symmetry, making this an example of a spontaneously

broken symmetry. One understands the strong susceptibility to the perturbation as

due to the continuous degeneracy of the states with different φ.

In this simple two level model one can explicitly calculate the crossover between

singly condensed and fragmented ground states when a symmetry breaking pertur-

bation is added. The mathematical details are discussed in Section 3.7.1, here I

just review the major results and sketch the crossover. This crossover is typically

discussed in the context of a Josephson junction, Eq. (3.3), where three regimes are

identified [16]. For t≪ gJ/N one is in the Fock regime, where tunneling rarely occurs,

and the ground state is fragmented. For gJ/N ≪ t ≪ NgJ one is in the Josephson

regime, where tunneling occurs at a rate governed by the Josephson plasma frequency

ω2
J = 2tgJN , and the ground state is singly condensed with sub-Poissonian fluctua-

tions in the number of particles in each well. For NgJ ≪ t one is in the Rabi regime,

where the system behaves as a collection of non-interacting particles undergoing Rabi

oscillations between the two wells, and the ground state is singly condensed with

Poissonian fluctuations in the number of particles in each well.

The key observation is that a tunneling of strength t ∼ gJ/N is large enough

to break the relative phase symmetry between wells. Note that a crude energet-

ics argument of comparing the mean-field states |α, β〉 with the fragmented state

(a†b†)N/2|vac〉, incorrectly predicts a crossover at much stronger tunneling, t ∼ gJ .

I conclude this Section with a few remarks about experimental realizations of this

model. First, as presented in Eq. (3.2), Nozières’ model can be applied to a uniform
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Bose gas. Although it is a crude model and cannot be used to make quantitative pre-

dictions, it provides a qualitative picture which does stand up to more sophisticated

analysis. Namely, the ground state of an attractive gas is localized, and averaging

over all possible positions for the localized gas results in a fragmented state [59].

When applied to spatially separated modes, as in Eq. (3.3), this model can make

quantitative predictions. By theoretically studying clouds of atoms in double-well

traps, Zapata, Sols and Leggett [58] found that the parameters g and t should scale

as

g ∝ N−3/5(as/d)
2/5

~ω (3.7a)

t ∝ N−2/3(as/d)
−2/3

~ω
exp(−S0)

tanh(S0/2)
, (3.7b)

where as is the scattering length, ω is the frequency of each of the traps, d =
√

~/mω,

and S0 is the classical action for the path joining the two wells. Within a WKB

approximation, and assuming a quartic barrier V (r) = V0(1 − (r/r0)
2)2 of height V0

and width r0 = mω2/8V0, the action is S0 ∝ (V0 − µ)/~ω, where µ is the chemical

potential. Thus t is exponentially sensitive to the barrier height, and experimentalists

should be able to tune from the singly condensed regime t≫ g/N to the fragmented

regime t≪ g/N .

3.2 Discussion and generalization

In this Section I extract the general features of the two level model previously in-

troduced. These features are generic, as all systems with fragmented ground states

can be mapped onto models similar to (3.2). In Section 3.3 I present a large num-

ber of systems with fragmented ground states and explicitly demonstrate the wide

applicability of this analysis.

3.2.1 Spontaneous symmetry breaking

As already emphasized, in addition to the spontaneously broken global gauge symme-

try which singly condensed systems possess, the Hamiltonians (3.2) and (3.3), have

an additional broken symmetry corresponding to the relative phase of the two states.

This is a generic feature of fragmentation, and this broken symmetry can take on

many forms. In Section 3.3, I present models where fragmentation is associated with

translational, rotational, and parity symmetries. These models also share the feature
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that the fragmented ground state can be recovered from symmetry broken states by

averaging over all values of the broken symmetry [cf. Eq. (3.6)].

3.2.2 Measurement

Here I ask the question “Can fragmented states be distinguished from singly con-

densed ones?”. The answer is “yes”, but in many cases, such an investigation is

difficult. Our discussion focuses on the two level system, but our conclusions are

more general.

Measuring the Broken Symmetry

In the two level system, the definitive difference between a condensed and a frag-

mented state is that in the fragmented state the expectation value 〈a†b〉 vanishes,

while in the singly condensed state 〈a†b〉 = (N/2)eiφ, for some phase angle φ (for the

choice of tunneling given in equation (3.3) this phase is φ = 0). That is, the relative

phase symmetry is broken in the singly condensed state. Clearly one can distinguish

the fragmented and singly condensed states by measuring 〈a†b〉.
An impediment to detecting this broken symmetry is that 〈a†b〉 can not be mea-

sured by making successive single particle measurements on a given state. As shown

by Javanainen and Yoo [60] and by Castin and Dalibard [61], sequential single particle

measurements project the system into a singly condensed state (this result is anal-

ogous to how measuring the momentum of a particle projects it into a momentum

eigenstate). Consequently, in order to measure 〈a†b〉, multiple copies of the quantum

state must be created and a single particle measurement must be made on each of

them.

For concreteness, consider the MIT interference experiment [23] described on page

12 of the Introduction. In this experiment two spatially separated clouds (modes a

and b), are allowed to expand towards each other, overlapping in some region. In

the overlap region, the two modes are momentum eigenstates, eikx and e−ikx, and

the density 〈ψ†(r)ψ(r)〉 is proportional to 〈a†a〉 + 〈b†b〉 + 〈a†b〉e−ikx + 〈b†a〉eikx. By

measuring the Fourier transform of the density one can therefore measure 〈a†b〉. In

these experiments photographs were taken of the overlapping clouds, and beautiful

interference fringes were seen (Fig. 1.7). Counter-intuitively, these pictures do not

imply that 〈a†b〉 is non-zero since the photography process involves a sequence of

single particle measurements on a single realization of the state. To measure 〈a†b〉
one would need to repeat the experiment on multiple copies of the state, averaging

46



over the density pattern seen. If the initial state was fragmented, each run of the

experiment would feature a different position for the density fringes. Averaging over

multiple runs would result in a featureless density pattern. This phenomenon is

schematically depicted in Fig. 3.2.

b)

a)

c)

Figure 3.2: Schematic picture of interference pattern formed when the fragmented
state (3.4) is imaged. Figures a and b, represent individual runs of the experiment,
each dot represents the position of a single atom. Interference fringes are clearly
visible, though the phase of the interference pattern shifts between runs. Figure c
illustrates the pattern formed when several individual runs of the experiment are
superimposed, and a uniform distribution of particles is observed.

The presence of fringes in a single run of the experiment can be understood without

relying on measurement theory. The central observation is that although the expec-

tation value of the density is uniform in the fragmented state, the density-density

correlation function 〈ρ(r)ρ(r′)〉 is modulated at wave-vector k. This modulation of

the density-density correlation function means that if a particle is detected at posi-

tion r, one is more likely to find another particle at a position r + 2πn/k, for any

integer n. Consequently, when particles are sequentially detected (i.e. the cloud is

photographed) fringes are seen. The position of the fringes will be random from run

to run.

The requirement of averaging over several runs of an experiment brings up a sec-

ond caveat. Suppose one is in the regime where stray fields break the symmetry

and the ground state is condensed. If these fields are systemic, and do not change

from run to run, then one will find that the ensemble average 〈a†b〉 is non-zero and

correctly reflects the singly condensed nature of the state. Conversely, if the fields

fluctuate, then the ensemble average 〈a†b〉 will vanish, as if the system had a frag-

mented condensate. Generalizing this observation, one expects that a fragmented
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state is indistinguishable from an appropriate ensemble of singly condensed states.

This statement can be made mathematically precise: in Section 3.7.2 I prove that up

to terms of order n/(N − n), the n-particle reduced density matrix of an N particle

system, is identical for an ensemble of singly condensed states and for a fragmented

state. The only property that this proof requires is that the fragmented state can be

expressed as a sum over the symmetry-broken condensed states which make up the

ensemble.

Other Measurement strategies

Given the experimental difficulty of using the broken symmetry to distinguish frag-

mented and singly condensed states, it is useful to ask if there are any other possible

ways to distinguish these states. One very useful, though indirect, approach is to

infer the state of the system by its dynamics. In the Fock regime, where the ground

state is fragmented, it takes an energy g to excite the system. In the Josephson

regime, where the ground state is singly condensed, an analogous excitation has en-

ergy ωJ =
√

2tNg. Measuring the excitation energy tells you which regime you are

in.

A third possibility for detecting fragmentation is to look at the number fluctua-

tion in each of the states a and b. In the fragmented state, these fluctuations vanish.

Unfortunately, in the Josephson regime there exist condensed states with arbitrar-

ily small number fluctuations δN2 ∼ O(N0), making it impossible to distinguish

fragmented and singly condensed states on this basis. These “squeezed” states are

explicitly constructed in Section 3.7.1.

3.2.3 Commensurability

The arguments of Section 3.1.2 require an even number of particles. For an odd

number of particles N = 2m + 1, the ground state of Eq. (3.2) is degenerate, of the

form (αa†+βb†)(a†b†)m|vac〉, for arbitrary α and β. Adding an infinitesimal tunneling

of the form Ht = −t(a†b+b†a), breaks this degeneracy, leading to a ground state with

α = β = 1/
√

2. This state has two eigenvalues of size 3N/4 + 1/4 and N/4 − 1/4. It

is remarkable that a single particle tunneling between the two wells can increase the

coherence to such a great extent.

Many other models have the property that the degree of fragmentation is depen-

dent on the value of N . This result is intuitive, and is best illustrated by a model

of bosons restricted to a lattice. This model is discussed at length in Section 3.3.4.
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Suppose one has N particles on M lattice sites with very strong repulsion between

particles on the same site. If N/M is integral, the particles will be localized in the

wells, the energy cost of a density fluctuation outweighing the kinetic energy cost of

localizing the particles. With an incommensurate number of particles, there is no

energy cost for moving the excess particles around and therefore some particles will

be delocalized, reducing the extent of the fragmentation.

Similar behavior is seen in an asymmetric Josephson junction discussed in Ap-

pendix 3.7.1, where instead of changing the number of particles one changes the

asymmetry between the two wells. Consider an even number of particles. When the

wells are degenerate and the tunneling is weak the ground state is (a†)N/2(b†)N/2|vac〉.
Gradually lowering the energy of state a relative to state b the ground state will even-

tually become (a†)N/2+1(b†)N/2−1|vac〉, where one particle has jumped from the b well

into the a well. At some intermediate value of the asymmetry these two states will

become degenerate. An infinitesimal tunneling will at that point allow a single par-

ticle to tunnel back and forth, greatly increasing the size of the largest eigenvalue of

the single particle density matrix.

Such sensitivity to the parameters of the Hamiltonian and to the exact number of

particles in the system further demonstrates the fragility of fragmented states.

3.3 Other models

To demonstrate that the physics of the two level model occurs in more general cir-

cumstances I give a list of various systems which have fragmented ground states. I

verify that all of these models have the generic characteristics discussed in Section 3.2.

3.3.1 Spin 1

After the Josephson Junction, the simplest Bose-gas model with a fragmented ground

state is a gas of spin-1 atoms. Such a gas is realized in experiments at MIT [62],

and has received a great deal of theoretical attention. Notably, theoretical studies

of the spin 1 system have demonstrated that the ground state of the system with

antiferromagnetic interactions is fragmented [7, 63, 64]. As demonstrated here, this

fragmentation is a associated with a spontaneously broken rotational symmetry.

Looking only at the spin degree of freedom, the Hamiltonian for a gas of atoms,

each with spin si is

H = JS · S, (3.8)
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where S =
∑

i si is the total spin of the system. For J < 0 the interaction is ferro-

magnetic and the ground state is singly condensed. I will concentrate on antiferro-

magnetic interactions, J > 0. The exact ground state of this Hamiltonian is a singlet

(S = 0). For systems with an even number of particles, the simplest way to create

a singlet is to form a condensate of singlet pairs. To this end, I introduce operators

{ai, i = −1, 0, 1}, which annihilate particles with spin projection i along the z axis.

From these operators one produces Cartesian creation operators {Aν , ν = x, y, z} de-

fined by a±1 ≡ (Ax ∓ iAy)/
√

2 and ao ≡ Az. I use the symbol A for the vector with

components Aν . The operator which annihilates a singlet pair is A · A = a2
0−2a1a−1.

One constructs a singlet state by placing pairs of particles into singlet states,

|S = 0〉 =
1

√

(N + 1)!

(

A† · A†)N/2 |vac〉. (3.9)

For spin 1 particles, this state is the unique S = 0 state (uniqueness is demonstrated

in [64] via a state counting argument). On symmetry grounds, the single particle

density matrix {〈A†
iAj〉; i, j = x, y, z} is N/3 times the identity matrix, and has 3

large eigenvalues. This ground state is fragmented. As the particles are all paired,

this state has order in the two particle density matrix.

For comparison, consider the lowest energy mean field state of the form [65]

|ν〉 =

(

1
∑

j=−1

ζja
†
j

)N

|vac〉, (3.10)

which has a single condensate for all choices of the coefficients ζj . The expecta-

tion value of the Hamiltonian in this state is 〈H〉 = JN(N − 1)〈s〉2 + 2NJ , where

〈s〉 = 〈ν|S|ν〉/N is the magnetization per particle. The states with lowest energy

are therefore those with 〈s〉 = 0. The states with this property are rotations of

|ν〉 = a†N0 |vac〉/
√
N !. These rotated states are conveniently parameterized by a unit

vector n̂ which represents the axis along which the spin and all its moments vanish,

|n̂〉 =
(n̂ · A†)N

√
N !

|vac〉. (3.11)

The mean field states |n̂〉 principally differ from the singlet state |S = 0〉 in that

a particular direction in space is selected; i.e. they break rotational symmetry. In

analogy to Eq. (3.6), one constructs the exact ground state from these mean-field

states by averaging over the broken symmetry. Representing an element of solid
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angle by dΩ and integrating, one finds that the symmetry restored state, |SR〉, is

|SR〉 ∝
∫

dΩ

4π
|n̂〉, (3.12a)

=

∫ 1

−1

d cos θ

2

(
√

A† · A† cos θ)N

√
N !

|vac〉, (3.12b)

= (A† ·A†)N/2|vac〉/(N + 1)
√
N !, (3.12c)

which is the singlet state. In the intermediate step I formally treated A as a c-number

vector, and θ is the angle between this vector and n̂.

By choosing an appropriate weight factor in Eq. (3.12a) one constructs states with

finite magnetization,

|m〉 ∝
∫

dθ d cosφ Y ∗
mm(θ, φ)|n̂〉 (3.13a)

∝ (a†1)
m ·
(

A† · A†)(N−m)/2 |vac〉. (3.13b)

The spherical harmonic Ymm = (sinφ eiφ)m projects out a state with total angular

momentum
√

m(m+ 1), and projection m.

Like the phase symmetry in the two well example, the rotational symmetry of

the spin-1 antiferromagnet can be broken by an infinitesimal field t. Including the

symmetry breaking field, the Hamiltonian is

H = JS · S − t(m̂ · A†)(m̂ · A) (3.14)

where m̂ is a unit vector which explicitly breaks rotational symmetry. In the lab-

oratory, the term proportional to t will be produced by unavoidable magnetic field

gradients [7], and can also be engineered using atomic techniques. Without loss of

generality, I take m̂ to point in the ẑ direction. In terms of the operators ai,

H = −ta†0a0 + J
[

a†1a
†
1a1a1 + a†−1a

†
−1a−1a−1 (3.15)

−2a†1a−1a1a−1 + 2a†1a
†
−1a0a0 + 2a†0a

†
0a1a−1

+2a†0a0(a
†
1a1 + a†−1a−1)

]

.

For large enough t, the state with m = 0 will be macroscopically occupied. Fol-

lowing Bogoliubov [66] I replace a0 and a†0 with the c-number
√
n0, and expand the

Hamiltonian to quadratic order in the fluctuations,

H = −tN + (t+ 2JN)(a†1a1 + a†−1a−1) (3.16)

+2JN(a†1a
†
−1 + a1a−1) + · · · ,
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where the neglected terms are of higher order in the depletion. A Bogoliubov trans-

formation diagonalizes the Hamiltonian, and, in the limit of larger N , the number of

excited particles is

Nex/N = (J/Nt)1/2. (3.17)

Thus if t≫ J/N , the depletion is small, and the ground state is singly condensed. If

t ≪ J/N the standard Bogoliubov theory breaks down. In this regime perturbation

theory about the state |S = 0〉 converges, and the ground state is fragmented. A

modified version of the Bogoliubov approach can be used in this latter regime [67].

There has been recent interest in distinguishing the mean field state |n̂〉 from

the singlet state |S = 0〉 [68]. As only the latter of these is rotationally invariant,

any experiment which is capable of measuring anisotropies (such as a series of Stern

Gerlach experiments with different axes) would suffice to distinguish these states. As

pointed out in Section 3.2.2, distinguishing the state |S = 0〉 from an ensemble of

mean field states |n̂〉 with random n̂’s is impossible.

3.3.2 Rotating attractive cloud

There have been several recent papers investigating the eigenstate of a rotating har-

monically trapped Bose gas with infinitesimal interactions (see [5, 69] and references

therein). As a superfluid, the flow within a Bose condensate is strictly irrotational.

A condensed gas can therefore only carry angular momentum if either it contains

quantized vortices or it deforms its shape, breaking rotational invariance. The latter

occurs for attractive interactions, and results in a fragmented ground state. For weak

enough interactions, the most favorable deformation is a translation of the cloud from

the rotation axis.

Consider a cloud of atoms in a harmonic trap with weak attractive interactions.

The exact form of the interaction is unimportant and commonly either a point in-

teraction or a harmonic interaction is used (for example Wilkin et al. [5] consider

both of these, while Huang [69] gives general arguments about the equivalence of any

rotationally invariant interaction). Although unphysical, the harmonic interactions

are easier to handle, and I will consider them here.

This model consists of N bosons with positions ri and momenta pi, trapped in

a harmonic well with frequency ω. These particles interact harmonically with a

frequency
√
κ, resulting in a Hamiltonian

H =
∑

i

(

p2
i

2m
+
mω2r2

i

2

)

+
mκ

4

∑

i,j

(ri − rj)
2. (3.18)
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I take attractive interactions κ > 0. Since the Hamiltonian (3.18) is harmonic, it can

be diagonalized exactly. The center of mass mode is unaffected by the interactions

and remains at frequency ω. All other modes are shifted to a higher frequency Ω =√
ω2 + κN . This result is seen by explicitly constructing the canonical transformation

that diagonalizes (3.18).

This transformation is described by a change from coordinates r1, r2, ...rN , to

r̃1, r̃2, ...r̃N , via a mapping r̃i = Xijrj , with XijXkj = δik. The only restriction placed

on X is that XNj = 1/
√
N , which forces r̃N =

∑

i ri/
√
N to be proportional to the

position of the center of mass. One applies the same transformation to the momenta of

the particles, producing new momenta πi. The commutation relationships are clearly

maintained by this canonical transformation, and the transformed Hamiltonian is

H =

(

π2
N

2m
+
mω2r̃2

N

2

)

+

N−1
∑

i

(

π2
i

2m
+
mΩ2r̃2

i

2

)

, (3.19)

yielding, as expected, one mode with frequency ω (the center of mass mode) and

N − 1 modes with frequency Ω = ~
√
ω2 + κN , which is greater than the energy of

the center of mass mode. The transformation X is not unique, one (arbitrary) choice

is,

X =



















1√
2

−1√
2

0 · · · 0
1√
6

1√
6

−2√
6

0 · · · 0
1√
12

1√
12

1√
12

−3√
12

0 · · · 0
...
1√
N

1√
N

1√
N

1√
N

· · · 1√
N

1√
N



















. (3.20)

The lowest energy state with L~ units of angular momentum has all of the angular

momentum carried by the center of mass co-ordinate, and in dimensionless units is

Ψ =

√

N

πNL!
(z̃N )L exp

(

−
∑

i

r2
i /2

)

. (3.21a)

=
1√
πNL!

(

N
∑

i=1

zi

)L

exp

(

−
∑

i

r2
i /2

)

, (3.21b)

where the symbol zi = xi + iyi represents the position of the particle in the x − y

plane. For L ∼ N , the single particle density matrix has
√

L/N large eigenvalues of

size N
√

N/L, and is therefore fragmented.

This fragmented state can be understood in terms of singly condensed states which

break rotational invariance. A particularly simple demonstration of this connection
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involves writing

(

N
∑

i=1

zi

)L

∝ 1

2π

∫ 2π

0

dφ e−iLφ
∏

i

exp(aeiφzi), (3.22)

for any real number α. Using this decomposition, the lowest energy state with L

units of angular momentum can be expressed as a sum of condensed states,

Ψ ∝
∫

dφ
∏

i

exp(αeiφzi)e
−r2

i /2. (3.23)

The integrand is a Gaussian shaped condensate displaced a distance α from the origin

along a ray which makes an angle φ to the x axis. This state also has momentum

α per particle in the direction perpendicular to its displacement, and therefore has

angular momentum Nα2. Setting α =
√

L/N , yields a state with angular momentum

L. A similar analysis was carried out by Pethick and Pitaevskii [70].

3.3.3 Toroidal clouds

Like the attractive condensate in a harmonic trap, an attractive condensate in a

toroidal trap will spontaneously break rotational symmetry when given sufficient an-

gular momentum. For sufficiently strong confinement an atomic cloud in a toroidal

trap of radius R can be modeled by a one dimensional Hamiltonian,

H =
∑

ℓ

~
2ℓ2

2mR2
a†ℓaℓ +

g

2

∑

ℓ1+ℓ2=ℓ3+ℓ4

a†ℓ1a
†
ℓ2
aℓ3aℓ4 (3.24)

The annihilation operator aℓ acts on a particle in the state which has ℓ~ units of

angular momentum. Once again g parameterizes the interactions. The characteristic

length associated with the interactions is Lg = m/~2g.

Before proceeding I should caution that one dimensional systems can act in pe-

culiar ways. For instance, unlike three dimensions, where a gas with attractive in-

teractions collapses to a point, the one dimensional gas forms a stable soliton. This

behavior can be understood from energetic arguments. Consider an attractive con-

densate (g < 0) in d dimensions with a characteristic length L. The kinetic energy

per particle associated with confining the cloud is of order ~
2/mL2. The interactions

provide a potential energy per particle of −|g|(N/Ld). For d > 2, the energy is min-

imized by making L as small as possible, while for d = 1, the minimum energy is at

finite L given by L = Ls ≈ Lg/N ∼ 1/|g|N . My analysis will start from the extremely

dilute limit, where the soliton length scale Ls is larger than the system size. In such

a situation the ground state of Eq. (3.24) is uniform.
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One dimensional systems also have a density of states which is very large at low

energies, making the system particularly susceptible to both thermal and quantum

mechanical fluctuations. Consequently there is no long-range order in one dimension

[71]. Such considerations are only important in the thermodynamic limit, and are

not a concern here.

Under rotation at frequency Ω the Hamiltonian in Eq. (3.24) transforms as H →
H−Ω

∑

ℓ(~ℓ)a
†
ℓaℓ. In the absence of interactions the ground state is then (a†ℓ)

N |vac〉,
where ℓ is the closest integer to Ω/Ω0, with Ω0 = ~

2/mR2. Weak interactions will

principally mix the two lowest energy states. It is therefore reasonable to truncate

Eq. (3.24) to two levels. Without any loss of generality I will limit the discussion to

0 < Ω < Ω0, where these two states have ℓ = 0 and ℓ = 1, so that

Heff = ~(Ω0/2 − Ω)a†1a1 (3.25)

+
g

2
(a†0a

†
0a0a0 + a†1a

†
1a1a1 + 4a†0a

†
1a1a0).

Angular momentum is conserved, so within this truncated model both n0 = a†0a0

and n1 = a†1a1 are conserved, implying that the eigenstates are of the form |n0〉 =

(a†0)
n0(a†1)

n−n0|vac〉, with energies

E(n0) = gn2/2 + (gn0 + ~Ω0 − ~Ω)(n− n0). (3.26)

For repulsive interactions E is concave down, and the ground state is always n0 = 0

or n0 = n, depending on whether Ω is greater or less than Ω0/2. Note that for

|Ω − Ω0/2| < 2g/~ there is an energy barrier separating n0 = 0 and n0 = n, leading

to metastable persistent currents, the topic of Chapter 4.

For attractive interactions, E is concave up, and when |Ω − Ω0/2| < 2|g|/~ the

ground state is fragmented. In terms of symmetry breaking, one can understand the

fragmented state as the result of the formation of a large soliton at some particular

place along the ring. Averaging over all possible locations of the soliton gives rise to

the fragmented state. As I have reduced the system to a two well model, all of the

previous discussion of two level systems is directly applicable.

A more sophisticated analysis of this model for weak interactions has been per-

formed by Ueda and Leggett [72]. Additionally, for arbitrary interactions one can

solve for the ground state of a one dimensional Bose gas with periodic boundary

conditions using the Bethe ansatz [59], and one finds that this symmetry breaking

picture remains accurate for strong interactions.

If the toroidally trapped Bosons have an internal degree of freedom, a spin texture

can play the role of rotation, producing similar results [73].
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3.3.4 Multiple wells

The obvious generalization of a two well Josephson junction is a Josephson array,

featuring multiple wells with weak tunneling between neighbors. Such a system is

realized in experiments involving atoms trapped in optical lattices [74], and is depicted

in Fig. 3.3.

Figure 3.3: Schematic of an atomic Josephson junction array. The atoms are trapped
in a standing-wave light field, and can hop from one minima to another. The hopping
is controlled by a parameter t.

This system boasts a localization-delocalization transition, where for weak enough

tunneling the atoms in each well are localized. In this regime the condensate is

fragmented into M pieces, where M is the number of wells. For stronger tunneling

the system is singly condensed and superfluid. The model used to describe this system

is the boson Hubbard model,

H = −t
∑

〈ij〉
c†icj +

U

2

∑

i

c†ic
†
icici. (3.27)

The operator ci annihilates a particle in the ith well, and 〈ij〉 denotes a sum over

nearest neighbors only. The parameter t controls the tunneling, while U > 0 controls

the interaction strength. In the absence of tunneling the ground state simply consists

of a separate condensate in each of the M wells, (
∏

i c
†
i)

N/M |vac〉. This state has M

condensates and is fragmented. Within standard mean field theory one breaks the

phase symmetry between each pair of wells. In the absence of tunneling these phases

φi are arbitrary, and all wavefunctions of the form

ψ =
1√
N !

(

1√
M

∑

i

c†ie
iφi

)N

|vac〉, (3.28)

are degenerate. The tunneling term locks these phases.
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An ingenious method of finding the phase boundary between localized and delo-

calized regimes was introduced by Fisher et al. [75] and recently revisited by Oosten

et al. [76]. This phase boundary also separates the fragmented and singly condensed

regimes. Fisher’s approach is based upon the observation is that in the localized

regime the interactions dominate over tunneling, and one cannot used approxima-

tions where the interactions are treated as small. In this approach, one instead

approximates the hopping term c†icj , expanding the field operators in this term as

ci = ψ + δci, where ψ = 〈ci〉 is the superfluid order parameter, which I take to be

real. In the localized state ψ = 0, while in the superfluid state |ψ|2 approximates the

density of particles. To first order in the fluctuation the kinetic term is

c†icj ≈ ψ2 + ψ(deltacj + δc†i ) = ψ(cj + c†i) − ψ2. (3.29)

Introducing a chemical potential µ the effective mean-field Hamiltonian reads

H =
∑

i

[

−2tdψ(ci + c†i ) − µc†ici + (U/2)c†ic
†
icici

]

(3.30)

+2dtψ2M

where d is the number of nearest neighbors, and M is the number of sites. Note that

the different sites are decoupled. Self-consistency requires that ψ = 〈ci〉.
This approximate Hamiltonian can be analyzed much like the asymmetric Joseph-

son junction in Section 3.7.1. Each site i decouples, and the wavefunction of the i′th

site is |f〉 =
∑

j fj(c
†
i)

j |vac〉/
√
j!. The coefficients fi obey a difference equation with

constraints,

(E + µj − Uj(j − 1)/2)fj + 2tdψ
√

j + 1fj+1 (3.31a)

+ 2tdψ
√

jfj−1 = 0
∑

j

|fj |2 = 1 (3.31b)

∑

j

j|fj |2 = N/M (3.31c)

∑

j

(f ∗
j fj+1

√

j + 1) = ψ. (3.31d)

Within this approximation the single particle density matrix is

〈c†icj〉 = δij(N/M) + (1 − δij)|ψ|2, (3.32)

which has one eigenvalue of size N/M + (M − 1)|ψ|2, and M − 1 eigenvalues of size

N/M − |ψ|2. As expected, the state is singly condensed when |ψ|2 ∼ N/M .
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For U ≫ 4tdN/M the tunneling is exponentially suppressed and at most two fj’s

are non-zero. Writing N/M as n+ y where n is integral and 0 ≤ y < 1, the non-zero

fj ’s are fn =
√

1 − y and fn+1 = y, yielding |ψ|2 = y(1− y)(n+ 1). Assuming n≫ 1

the largest eigenvalue of the single particle density matrix is N [y(y − 1) + O(1/M)].

Thus with even an infinitesimal tunneling, there will be a single condensate if the

number of particles is incommensurate (y 6= 0, 1).

For U ≪ 4tdN/M the difference equation, Eq. (3.31a) can be replaced by a

differential equation, and the ground state is always singly condensed. One advantage

of a multiple well system over a single Josephson junction is that the symmetry

breaking is readily detected here. This point is illustrated by considering bosons in

an optical lattice. An experimentalist can look for the symmetry breaking by turning

off the lattice and observing the density pattern formed when the clouds overlap.

In the singly condensed regime all of the wells have the same phase, so the density

pattern will be characteristic of multi-slit diffraction. That is it will be a periodic

array of very narrow spikes, the width of the spikes scaling as 1/M . The fragmented

state will also yield a periodic density pattern, but within each period there will be

no definite structure. Such behavior was seen by Anderson and Kasevich [74].

3.4 Further examples

In addition to the examples given in Section 3.3, there are a large number of Bose

systems which, within mean field theory, are found to break a symmetry. Although

the exact ground states are not known for these systems, from our general arguments

I expect that the ground states are fragmented. Here I give two such examples.

3.4.1 Phase separation

Depending upon the interaction parameters, mixtures of bosons in a trap can be mis-

cible or immiscible. The various particles could be different hyperfine states of a single

atom [77], different isotopes, or even different chemical species. Immiscible species

will phase separate, generically breaking some spatial symmetry. The ground state

here will be fragmented, and the symmetry broken states will be singly condensed.

A particular simple example of this phenomenon was discussed by Esry [78], who

considered a cigar-shaped trap containing 85Rb and 87Rb. Atomic 85Rb has an ex-

tremely large negative scattering length, implying an attractive interaction. Con-

versely the interaction between 87Rb atoms is repulsive, as is the interspecies scatter-
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ing. Thus it is energetically favorable for the two atoms to phase separate, maximizing

the scattering between 85Rb atoms, and minimizing the interspecies scattering.

By solving the Gross-Pitaevskii equation, Esry was able to show that for suffi-

ciently large number of 87Rb atoms, the mean field ground state broke parity sym-

metry, with all of the 87Rb atoms at one end of the cigar and all of the 85Rb atoms

at the other. The true ground state involves a linear superposition of both symmetry

breaking states. More detailed discussion of this phenomena can be found in [79] and

references within.

3.4.2 Vortex structures

As observed experimentally, a rotating Bose condensate may contain vortices [10, 80].

Except in the case of a single straight vortex line, rotational invariance is broken by

the presence of these vortices, and the true ground state will be fragmented. The

fragmentation of finite temperature vortex arrays is discussed in Section 3.5

3.5 Finite temperature

Fragmentation is more prevalent at finite temperature than at zero temperature. The

basic reason is that when the temperature is larger than the tunneling energy, the

phases between different condensates are randomized by thermal fluctuations. This

notion is easily demonstrated by a non-interacting Josephson junction, governed by

the Hamiltonian

H = −t(a†b+ b†a). (3.33)

This Hamiltonian is diagonal in the basis of symmetric and asymmetric states, for

which the creation operators are (a† + b†)/
√

2, and (a†− b†)/
√

2, so the single particle

density matrix will be diagonal in this basis. At zero temperature only the symmet-

ric state is occupied, and there is a single condensate. At very large temperature

each of these states will be equally occupied so the system will be fragmented. For

intermediate temperatures, the occupation of each of these states is

ns
a

=

∑N/2
m=−N/2(N/2 ±m)e2tβm

∑N/2
m=−N/2 e

2tβm
(3.34)

=
N

2
∓
(

N + 1

2
coth(βt(N + 1)) − 1

2
coth(βt)

)

. (3.35)

The upper and lower signs are used for the symmetric and antisymmetric states.

There is a smooth crossover between a singly condensed state at T = 0, and a
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Figure 3.4: Eigenvalues of non-interacting Josephson junction at finite temperature.
The temperature is scaled by the tunneling t. At zero temperature there is one large
eigenvalue, while at high temperature both eigenvalues are of the same size.

fragmented state at T ≫ Nt/kB. These eigenvalues are plotted in Fig. 3.4.

A qualitatively different example of how finite temperature effects fragment a

condensate is a vortex lattice. Imagine a bucket of 4He rotating at frequency Ω. The

ground state of the system will contain a triangular array of vortices with nv vortices

per unit area. At finite temperature the vortex lattice will be thermally excited,

giving rise to a decay in the phase correlations across the sample. Let ψ(r) be the

superfluid order parameter coarse grained on a scale large compared to the vortex

spacing. According to [81], for large separations |r − r′|, the correlation function

〈ψ∗(r′)ψ(r′)〉 decays as |r−r′|−η, where η = 1/(3π2ρrvΛ
2) is proportional to the ratio

of the distance between particles to the distance between vortices. This expression is

correct as |r − r′| becomes large. Here the particle number density is ρ, the thermal

wavelength is Λ =
√

2π/mkbT and the distance between vortices is rv. This algebraic

decay of correlations in real space corresponds to an algebraic decay in momentum

space. For η < 3, the occupation of the k = 0 mode scale as N0 ∼ L3−η, and as as

k → 0 the k 6= 0 modes scale as Nk ∼ kη−3. Thus the number of macroscopically

occupied modes scale as Lη.

For a typical helium experiment, η < 10−8, and the depletion caused by this effect

is negligible. Experiments on alkali gases at MIT [82] create a vortex lattice with

rv ∼ 5µm and a particle density ρ ∼ 1014cm−3, giving a rough estimate of η ∼ 10−3,

which is also a minor correction. Experiments with smaller vortex lattices in Paris
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[10] have a similar vortex spacing rv ∼ 2µm, and density ρ ∼ 1014cm−3, yielding

a comparable value for η. Although vortex lattices in current experiments are not

thermally fragmented, there does not appear to be any fundamental impediment to

making η larger.

3.6 Summarizing remarks

Bose condensation is a very robust phenomenon. The fragmentation of a singly con-

densate into many condensates is therefore a surprising and unexpected phenomenon.

In all cases that I have explored, the root cause of fragmentation is the presence of

a symmetry which can be broken by an infinitesimal perturbation. Consequently,

fragmentation is ubiquitous, but also very fragile and difficult to detect.

3.7 Mathematical details

3.7.1 Josephson junctions

In this Section I present an analysis of both symmetric and asymmetric Josephson

junctions. Many of these results can be found elsewhere (for example, [16, 83, 84]),

but it is useful to revisit them in a manner which is tied into the present discussion.

Symmetric junctions

Here I analyze the crossover of a symmetric Josephson Junction from a singly con-

densed to a fragmented ground state. The Hamiltonian of an ideal junction is

H = −t(a†b+ b†a) − ga†b†ba, (3.36)

where a and b are annihilation operators for two spatially separated wells, t is a

tunneling matrix element, and g parameterizes the interactions. I focus on repulsive

interactions, g > 0.

As discussed by Leggett [16], the system described by Eq. (3.36), has three distinct

behaviors. For t≪ g/N , the Fock regime, no tunneling occurs. For g/N ≪ t≪ Ng,

the Josephson regime, tunneling occurs at a rate governed by the Josephson plasma

frequency ω2
J = 2tgN . For Ng ≪ t, the Rabi regime, the system behaves as a

collection of non-interacting particles undergoing Rabi oscillations between the two

wells.
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I now derive this structure and investigate the single particle density matrix using

two methods. First I explicitly calculate the ground state wavefunction in the form,

|f〉 =
∑

m

fm|N/2 +m,N/2 −m〉, (3.37)

where the state |na, nb〉 contains na particles in well a and nb particles in well b. The

eigenvalue equation H|f〉 = E|f〉 is a matrix equation

[g(N2/4 −m2) + E]fm + t[(N/2 −m)(N/2 +m+ 1)]1/2fm+1 (3.38)

+ t[(N/2 +m)(N/2 −m+ 1)]1/2fm−1 = 0.

In both the Fock and Josephson regimes, fm is sharply peaked at m = 0 with width

δm≪ N1/2, and this equation may be approximated as

[g(N2/4 −m2) + E]fm + [tN/2]fm+1 + [tN/2]fm−1 = 0. (3.39)

This assumption about the width of fm is readily verified a posteriori. In the Fock

regime, t ≪ g/N , perturbation theory converges, and the ground state has fm =

δm0 +O(tN/g). The single particle density matrix is fragmented with two eigenvalues

of size (N/2)(1 +O(tN/g)). In the Josephson limit, a semiclassical approximation is

valid and the discrete eigenvalue equation can be replaced by a differential equation

(E + gN2/4)f(m) = −(tN/2)∂2
mf(m) + gm2f(m), whose ground state is f(m) ∝

exp(−m2/2ξ2), with ξ4 = tN/2g. In the Josephson limit the off-diagonal matrix

element is given by 〈a†b〉 = (N/2) exp(−1/4ξ2), implying that up to exponentially

small corrections, the single particle density matrix has a single large eigenvalue

of size N , and the state is singly condensed. Note that the number fluctuations

〈(na − nb)
2〉 − 〈(na − nb)〉2 are sub-Poissonian, and this regime corresponds to a

squeezed state in number-phase space. Finally, in the Rabi regime, perturbation

theory about the state (a† + b†)N |vac〉/N !2N/2 converges, and once again the state is

singly condensed.

This same structure can be understood from within Bogoliubov theory, where the

field operators a and b are expressed as a mean field plus fluctuations, a =
√

N/2+ ã,

b =
√

N/2 + b̃. Adding a chemical potential µ to the Hamiltonian, and expanding to

second order in the fluctuations,

H =
(

g(N/2)2 − (µ+ t)N
)

+
√

N/2(N/2 − (µ+ t))(ã+ ã† + b̃+ b̃†) (3.40)

+(gN − µ)(ã†ã + b̃†b) + (gN/4)(ãã + ã†ã† + b̃b̃+ b̃†b̃†) − t(ãb̃† + b̃†ã).

Setting µ = N/2 − t eliminates the linear terms, and the quadratic terms are diago-

nalized via a Bogoliubov transformation. The resulting depletion is Nd = (ǫ−E)/2E,
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where ǫ = 2t+ gN/2, and E2 = ǫ2 − (gN/2)2. For t≫ Ng the depletion is negligible,

Nd ≪ 1. This vanishing depletion characterizes the Rabi regime. For Ng ≫ t≫ g/N

the depletion is Nd =
√

gN/32t+O((t/gN)0), which is much greater than 1 but much

less than N , as one expects in the Josephson regime. For g/N ≫ t the depletion is of

order 1, signalling a breakdown of the Bogoliubov theory, and the system enters the

Fock regime.

Asymmetric junctions

In Section 3.7.1 I briefly describe how fragmentation appears in a double well system.

A crucial point in that example is that the two levels are degenerate. Here I extend

the model to that of an asymmetric double well, finding that as long as the energy

difference between the two states is less than the interaction energy gN , then the

asymmetry plays a minor role, and the system possesses the same three regimes:

Rabi, Josephson, and Fock. When the energy difference between the two states is

greater than gN , the system is always singly condensed. The Fock regime of the

asymmetric well shows additional structures as one changes the bias.

The asymmetric double-well system is described by a Hamiltonian

H = −t(a†b+ b†a) + ǫ(a†a− b†b)

+(g/2)(a†a†aa+ b†b†bb). (3.41)

The wells are split by an energy 2ǫ and there is a tunneling of strength t between

them. I will assume repulsive interactions g > 0, and with no loss of generality take

ǫ ≥ 0.

For small asymmetries, ǫ≪ g/N , the analysis performed for the symmetric system

works without modification, and one has three regimes: Rabi, Josephson, and Fock,

their boundaries unaffected by ǫ. Larger asymmetries are more complicated; one

has the same three regimes, but their boundaries are shifted, and the Fock regime

contains extra structure. I will first address this extra structure, and then consider

the boundaries of these regimes.

Writing the wavefunction as Eq. (3.37), the f ’s obey the discrete eigenvalue equa-

tion

[g(N/2 −N2/4 −m2) − 2ǫm+ E]fm + t[(N/2 −m)(N/2 +m+ 1)]1/2fm+1

+ t[(N/2 +m)(N/2 −m+ 1)]1/2fm−1 = 0.

(3.42)
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The extreme limit of the Fock regime is when t = 0. In this limit, the eigen-

states are of the form fm = δmm̄, for any integer m̄, corresponding to the state

(a†)N/2+m̄(b†)N/2−n̄|vac〉. When ǫ < gN/2, the ground state has m̄ equal to the clos-

est integer to −ǫ/g. This state is degenerate when −ǫ/g is half integral.

Adding a sufficiently small t will only change this structure near the degeneracy

points. To find the implications of t 6= 0, I take ǫ = (n+ 1/2 + δ)g, where n < N/2 is

an integer, and δ is a small number with |δ| < 0.5. In this case the only non-zero f ’s

will be f−n and f−n−1, and in this restricted space the eigenvalue equation becomes

(

Ē − gδ ∆

∆ Ē + gδ

)(

f−n

f−n−1

)

= 0, (3.43a)

∆ = t
√

(N/2 − n)(N/2 + n+ 1), (3.43b)

where Ē = E + gn + gn2 + gN/2 − gN2/4 + gδ + 2gnδ. The ground state energy

is given by Ē2 = (gδ)2 + t2(N/2 − n)(N/2 + n + 1). This state has the form ψ =

α|N/2+n,N/2−n〉+β|N/2+n+1, N/2−n−1〉, with single-particle density matrix

elements

〈a†a〉 = N/2 + n+ |β|2 (3.44a)

〈a†b〉 = βα
√

(N/2 − n)(N/2 + n + 1) (3.44b)

〈b†a〉 = βα
√

(N/2 − n)(N/2 + n + 1) (3.44c)

〈b†b〉 = N/2 − n− |β|2. (3.44d)

The system has its greatest level of coherence when δ = 0, where the coefficients α

and β are equal and the two eigenvalues are

EV = N/2 ± (1/4)
√
N2 + 2N + 12n2 + 12n+ 4. (3.45)

For large N and small n this leads to an eigenvalue of size 3N/4 and another of N/4.

It is startling that the tunneling of a single particle leads to such a large increase in

the coherence of the single particle density matrix.

The system has its lowest level of coherence when δ = −1/2, where the coefficient

β vanishes, and the two eigenvalues are

EV = N/2 ± n. (3.46)

The structure discussed here is clearly seen in Fig. 3.5 where I plot the size of the

largest eigenvalue of the single particle density matrix as a function of t and ǫ. In

this plot, N = 10 particles are used, and the energy scale is set by taking g = 1.
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Darker colors correspond to a smaller eigenvalue. This figure was constructed by

numerically diagonalizing the Hamiltonian in the 11× 11 dimensional space of all 10

particle wavefunctions.

The boundary of the Fock regime corresponds to the breakdown of perturbation

theory in powers of t. To zeroth order in t, the ground state is fm = δmm̄, with

m = −ǫ/g (the discreteness of the variables is irrelevant for an order of magnitude

estimate). To first order in t, fm̄±1 are non-zero; for example

fm̄+1 = (t/g)
√

(N/2 + m̄+ 1)(N/2 − m̄). (3.47)

As long as fm̄+1 ≪ 1 the original calculation is consistent. Thus in order to be in the

Fock regime one needs t≪ g/
√

N2/4 − ǫ2/g2.

Similarly, the boundary of the Rabi regime is characterized by the breakdown of

perturbation theory in powers of g. An order of magnitude estimate of this boundary

is found by comparing the interaction energy gN with a typical excitation energy,

E = (t2+ǫ2)1/2. When these energies are comparable, one is at the boundary between

the Rabi and Josephson regime.

3.7.2 Proof of indistinguishability of an ensemble of singly

condensed states and a fragmented state

I conclude this Chapter by showing that up to terms of order n/(N−n), the n-particle

reduced density matrix of an N particle system is identical for an ensemble of singly

condensed states and for a fragmented state. The required assumption is that the

fragmented state can be expressed as a sum over the symmetry-broken condensed

states which make up the ensemble. The consequence of this result is that it is very

difficult to distinguish condensed and fragmented states.

To emphasize these consequences, consider a particularly simple fragmented state

consisting of a coherent superposition of N particles in state a, and N particles in

state b;

|ψ〉 =
1√
2N !

(

(a†)N + (b†)N
)

|vac〉. (3.48)

This state is a “Schrödinger Cat” state, consisting of a quantum superposition of two

macroscopically distinct wavefunctions, and the single particle density matrix has two

large eigenvalues. If one takes n < N particles out of this state, they will either all be

a atoms, or all be b atoms. So as far as any n particle measurements are concerned,

one can imagine that instead of having a highly correlated state, one has an ensemble

of singly condensed states, half of the states consist of N particles in state a, and
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Figure 3.5: Density plot of the largest eigenvalue λmax of the single particle density
matrix of a system of N = 10 particles in an asymmetric double well where the
interactions are characterized by g = 1, the tunneling by t and the asymmetry by
ǫ [see Eq. (3.41)]. Black corresponds to the minimum value λmax = 5, while white
corresponds to the maximum value λmax = 10. There are three distinct regimes,
the Fock regime (darker area) where t is perturbative, the Rabi regime where g is
perturbative, and an intermediate Josephson regime. The boundary between the
Josephson and Rabi regime lies within the white area of the plot. The plateaus in
the Fock regime are understood by setting t = 0, in which case there are a fixed
integral number of particles in each well. As one tilts the wells it becomes favorable
to increase the number of particles in the lower well. At the boundaries between the
plateaus there is a marked increase in the size of the largest eigenvalue coincident
with an avoided crossing of energy levels.
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the other half of N particles in state b. One must perform a huge conceptual leap to

replace Eq. (3.48) with a classical ensemble of condensed states. Such a replacement

means that as far as any individual run of our experiment is concerned, the state is

condensed into either (a†)N |vac〉 or (b†)N |vac〉.
In a more generic situation one begins with a fragmented state of the form

|f〉 ∝
∑

g∈G

|g〉. (3.49)

The states |g〉 are singly condensed, and are labeled by elements of the symmetry

group G. For example, Eq. (3.6) is a fragmented state of this form. The normalization

of |f〉 is not important. The (many particle) density matrix corresponding to this

state is

ρf = |f〉〈f | ∝
∑

g,g′

|g〉〈g′|. (3.50)

The n-particle reduced density matrices ρ
(n)
f are formed when all but n of the particles

are traced over. All n particle properties of the system are encoded in ρ(n). These

reduced density matrices are most familiar in a position basis, where they are given

by

ρ
(n)
f (r1, . . . rn, r

′
1 . . . r

′
n) (3.51)

∝
∑

g,g′

〈g|ψ†(rn) · · ·ψ†(r1)ψ(r1) · · ·ψ(rn)|g′〉.

In this equation, ψ(r) is the field operator, which annihilates a particle at position r.

I have neglected the normalization of this density matrix, as it can be simply restored

by equating the trace of ρ(n) to n!.

I now compare this fragmented state to an ensemble of condensed states, with a

density matrix

ρi ∝
∑

g∈G

|g〉〈g|. (3.52)

The index i is chosen to indicate that this is an incoherent (classical) sum of condensed

states. Analogous to Eq. (3.51), the reduced density matrices are

ρ
(n)
i (r1, . . . rn, r

′
1 . . . r

′
n) ∝ (3.53)

∑

g

〈g|ψ†(rn) · · ·ψ†(r1)ψ(r1) · · ·ψ(rn)|g〉.

Depletion plays no role in my argument, so for simplicity I take

|g〉 = (N !)−1/2

(
∫

d3r ψ†(r)φg(r)

)N

|vac〉 (3.54a)

= (N !)−1/2(ψ†
g)

N |vac〉, (3.54b)
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where φg(r) is the wavefunction for the single particle state which is macroscopically

occupied, and ψ†
g is the operator which creates a particle in this state. Using this

ansatz,

ρ
(n)
f ∝

∑

g,g′

〈vac|(ψg)
Nψ†(rn) · · ·ψ†(r1)

×ψ(r1) · · ·ψ(rn)(ψ†
g′)

N |vac〉
(3.55a)

∝
∑

g,g′

(

φ∗
g(rn) · · ·φ∗

g(r1)

× φg′(r1) · · ·φg′(rn)) [Dgg′ ]
N−n .

(3.55b)

Generically the overlap Dgg′ = [
∫

d3rφ∗
g(r)φg′(r)] is peaked about g = g′, and for

N ≫ n, the factor (Dgg′)
N−n can be replaced by a Gaussian of width O(1/

√
N − n).

Consequently, I can expand the rest of the sum, [φ∗
g(rn) · · ·φ∗

g(r1)φg′(r1) · · ·φg′(rn)],

to quadratic order about g = g′. This quadratic term is at most of order n, yielding

ρ
(n)
f ∝

∑

g

(φ∗
g(rn) · · ·φ∗

g(r1)φg′(r1) · · ·φg′(rn) (3.56)

+O (n/(N − n)) ,

which to leading order equals ρ
(n)
i .
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Chapter 4

Persistent Currents

The ability to support metastable current carrying states in multiply connected

settings is one of the prime signatures of superfluidity. In this Chapter I calculate

the stability of these currents against decay via thermal fluctuations, finding that the

lifetimes of metastable currents can be tuned from much longer to much shorter than

experimental time scales. The research presented in this Chapter was performed in

collaboration with Paul Goldbart and Yuli Lyanda-Geller, and is published in Physical

Review A [85].

4.1 Introduction

Multiply connected superfluid and superconducting systems can support states in

which a persistent macroscopic particle current flows. While not truly eternal, these

states can have extraordinarily long life times, their decay requiring the occurrence

of certain relatively infrequent but nevertheless topologically accessible (quantum or

thermal) collective fluctuations [86, 87, 88, 89]. The purpose of this Chapter is to

address, theoretically, the ability of BEC alkali gas systems in multiply connected

settings to support metastable current carrying states, and to address the stability

and decay of such states via thermal fluctuations.

From a theoretical perspective, superfluidity is naturally addressed in a multiply

connected setting, particularly that of a thin torus where the fluid can be treated in

a quasi one dimensional manner. Thus there are a fairly large number of theoretical

works looking at Bose gases in a toroidal trap [72, 73, 90, 91]. Several proposals

for experimental multiply connected structures have been suggested. Figure 4.1 il-

lustrates the toroidal geometry which I study here. A similar geometry has been

realized at JILA, in a disk magnetic trapped filled with two hyperfine states of ru-
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Figure 4.1: Envisaged geometry of a trap supporting metastable current carrying
BEC states. The condensate healing length ξMF is regarded as being small, compared
with the circumference of the torus L (= 2πr̄), but larger than its thickness R.

bidium [92]. One of the species migrates to the center of the trap, leaving a toroidal

volume for the other species, as depicted in Fig. 4.2. Another mechanism for creating

a toroidal trap is to take a conventional simply connected trap, and shine a narrow

laser beam through its center. When blue detuned from an atomic transition, such

a laser beam presents a repulsive dipole force which restricts the atoms to a toroidal

region. Microfabricated toroidal traps [94] and all optical toroidal traps [93] have also

been suggested.

4.2 Gross Pitaevskii functional

I adopt a phenomenological description in which the state of the BEC system is

characterized by a macroscopic wavefunction Ψ(r, t), in terms of which the condensate

density n and current density j are given by

n(r) = |Ψ(r)|2 , (4.1a)

j(r) =
~

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗) . (4.1b)
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a

b

Figure 4.2: A multiply connected trap realized at JILA [92]. In a) a standard
disk shaped harmonic trap is shown. In b) one sees the trap filled with two atomic
hyperfine states. Due to their relative buoyancies, one state migrates to the center
leaving a toroidal volume for the second species.
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The energy F of the state is given by the Gross Pitaevskii form

F =

∫

d3r

{

~
2

2m
|∇Ψ|2 + (V (r) − µ) |Ψ|2 +

g

2
|Ψ|4

}

, (4.2)

where m is the mass of an individual atom, V (r) is an effective external potential

describing the magnetic and optical confinement of the atoms, µ is the chemical po-

tential, and g (≡ 4π~
2a/m) represents the interatomic interaction, with a being an

effective scattering length. Equation (4.2) can be derived from the microscopic equa-

tions of motion by making the variational ansatz that all of the condensed particles

are in a state with wavefunction Ψ(r, t) (see Appendix C.4.1). This equation ignores

the presence of noncondensed particles, which play the important role of a bath of

energy and angular momentum that will enable the persistent currents to decay. The

techniques of Chapter 6 provide kinetic equations to describe these noncondensed

particles, but the problem at hand is dominated by energetics and not kinetics, so

these detailed equations are not needed.

I consider trap potentials V (r) that confine the gas to a cylindrically symmetric

toroidal region (Fig. 4.1). Hence, V depends only on r and z, where {r, φ, z} are

the usual cylindrical polar coordinates. Moreover, I restrict my attention to systems

in which the circumference of the torus L (= 2πr̄) is considerably greater than the

condensate healing length ξMF [≈ (~2/mgn̄)1/2, where n̄ is related to the maximum

particle-density], and the thickness of the torus R is comparable to or smaller than

ξMF. This corresponds to a regime of low condensate-density. There are two main

reasons for considering this setting: (i) there would be no locally-stable current-

carrying states if L were comparable to or smaller than ξMF; (ii) for thicker samples

(i.e. R > ξMF), the relevant dissipative processes by which the persistent current

decays become significantly more complicated (ultimately involving the nucleation of

vortex rings) [95].

4.3 Thermally activated processes

This Chapter is concerned with events in which the system decays from some metastable

current-carrying state Ψm (which is a local minimum of F) to a lower-energy (and

typically more stable) state via a thermal fluctuation.1 The current decays through a

dissipative process during which the condensate density shrinks in magnitude over a

1 In the temperature regime considered here (i.e. T ∼ Tc), quantum fluctuations contribute less

significantly than thermal fluctuations, and will therefore be disregarded.
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region whose length is comparable to ξMF. Dynamically, one can envisage this process

as occurring via the passage of a vortex across the sample (Fig. 4.3): a free-energy

barrier must be overcome for this event to occur. The height of this barrier δF is given

by the difference between the free energy of (the metastable state) Ψm and that of the

transition state Ψt, i.e. the lowest possible free-energy high point en-route through

configuration space between the initial and final metastable states. A schematic draw-

ing of the free energy landscape is shown in Fig. 4.4. This thermally activated process

should occur at a rate ω0e
−δF/kT , where, as shall be discussed later, the attempt fre-

quency ω0 does not contribute significantly to the temperature-dependence of the

rate.

4.3.1 Metastable states

In order to calculate the barrier heights, I first identify the collection of metastable

current carrying states {Ψm} and the intervening saddle point states {Ψt}. Both

families of states are stationary points of F , and therefore satisfy the time independent

Gross Pitaevskii equation

δF
δΨ∗ = − ~

2

2m
∇2Ψ + (V (r) − µ)Ψ + g|Ψ|2Ψ = 0, (4.3)

subject to periodic boundary conditions in the coordinate φ.

Near Tc, where the thermal fluctuations are most important, the number of con-

densed particles is small, and it is reasonable to assume that the interaction energy

is small compared to the transverse level spacing. This is the quasi 1D limit where

the wavefunction may be written as

Ψ(r, φ, z) = F (φ)R(r, z). (4.4)

The transverse wavefunction R is the lowest energy solution of the eigenproblem,

− ~
2

2m

(

r−1∂rr ∂r + ∂2
z

)

R + V (r, z)Rν = λR. (4.5)

Inserting the ansatz (4.4) into (4.3) gives a one dimensional Gross Pitaevskii equation

for the wavefunction F (φ),

F ′′ + αF − βΓ|F |2F = 0, (4.6)

where primes denote derivatives with respect to φ, and the coefficients are

α ≡ 2mr̄2 (µ− λ) /~2, (4.7a)

β ≡ 2mr̄2g/~2, (4.7b)

Γ ≡
∫

dz

∫

r dr |R|4. (4.7c)
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a)

b)

Figure 4.3: The phase slip event can be thought of as occurring when a “virtual”
vortex crosses through the toroidal condensate. In a) one sees a toroidal cloud with
two units of circulation per particle. This circulation can be thought of as due to the
presence of two vortices in the center of the ring. In b) one of the vortices attempts
to cross the condensate. This phase slip event reduces the angular momentum of each
particle by ~. There is a barrier to this process because the density has to vanish at
the point where the vortex crosses, requiring a larger density elsewhere. This density
buildup costs energy.
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Figure 4.4: Schematic drawing of free energy landscape. The vertical axis shows the
energy of a state. The horizontal axis is a relevant reaction coordinate (for example,
the mean angular momentum per particle). Phase slip events take the system from one
minima to another. The extrema are labeled by pictures which depict the positions of
the “virtual vortices.” The number of such vortices gives the circulation each particle
in the toroidal trap carries. In the transition states, a vortex is escaping.
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Corrections to this simple approximation are discussed in [85].

The uniform current carrying states are described by (4.4) with F (φ) = fme
iSM ,

with fm constant, and SM winding uniformly,

f 2
m = Nm/2π = (α− n2

m)/βΓ, (4.8a)

Sm = nmφ, (4.8b)

with integral nm. In these expressions, Nm is the number of condensed particles.

Physically, Γ−1 is R2L, the volume occupied by the condensate. By considering the

second variation of F it can be readily shown that these states are local minima (and

hence metastable) provided nζm ≤ 1, where ζm ≡ (4π/βΓNm)1/2 ≈ 2πξMF/L is the

dimensionless coherence length. (This limit on the maximum stable value of nm is

the same as one would find using Landau’s criterion for the critical velocity.)

4.3.2 Transition states

As is readily verified [85], the transition states Ψt = ft e
iStR are given by

f 2
t = (Nt/2π)

(

1 − ∆2sech2(∆φ/ζt)
)

, (4.9a)

f 2
t ∂φSt = (Nt/2π)nt. (4.9b)

Far from a region of length ξMF, the amplitude ft is constant (f 2
t ∼ Nt/2π) and the

phase St winds uniformly (St ∼ ntφ). The coefficients in Eq. (4.9) appear simplest

when expressed in terms of the dimensionless coherence length ζt ≡ (4π/βΓNt)
1/2:

Nt/2π = (α− n2
t )/βΓ, (4.10a)

nt = n− π−1 cos−1(nt ζt), (4.10b)

∆2 = 1 − (nt ζt)
2. (4.10c)

As Nm and Nt differ only by quantities of order ξMF/L, either of them may be used to

characterize the number of condensed particles. A typical transition state is depicted

in Fig. 4.5. The transition states must have the property that they are saddle points

of F with only one direction of negative curvature. (This unstable direction is the

relevant reaction coordinate.) Within the quasi 1D approximation this condition is

always true. In [85] I consider corrections to this approximation and show that this

condition remains true as long as ξMF > R.

Having found the relevant states, I now calculate the free energy barrier for dis-

sipative fluctuations. Straightforward substitution shows that states, Ψ = f eiSR,
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Re Y

Im Y

Φ

Figure 4.5: The real and imaginary parts of ΨT , plotted versus the angle φ. The
length of the dip in the density is roughly the coherence length ξMF, which is exag-
gerated to bring out the structure of the phase slip. In reality, this length is always
shorter than the distance over which the phase changes by 2π.

satisfying Eq. (4.3) have a free energy

F = −gΓ
2

∫

dφ |f(r)|4. (4.11)

Using this expression, along with Eq. (4.8) and Eq. (4.9), one finds that

δF =
1

2
δF0

[

∆
(

2 + (nt ζt)
2
)

− 3nt ζt cos−1(nt ζt)
]

, (4.12)

where δF0 is the long wavelength (i.e. nt → 0) value of δF , i.e.,

δF0 =
~

2

m

(

32N3
t a

9R2L3

)1/2

. (4.13)

4.4 Decay rates

I now develop order of magnitude estimates for the decay rates of metastable states via

thermal fluctuations in realistic atomic traps. Consider 87Rb, for which the scattering

length as is 5.8nm. I take a harmonic trapping potential V (r) = (1/2)mω2[(r −
r̄)2 + z2], whose ground state width

√

~/mω can be identified with the width of the

condensate R. To estimate Tc I consider N noninteracting atoms in the potential

V (r). By virtue of the geometry (i.e. R ≪ L) one can ignore the curvature of the

torus, giving a density of states ρ(E) = (4/3)(1/~ω)2(mL2/2π2
~

2)1/2E3/2. Integrating

this with the Bose occupation factor reveals that Tc ≈ 1.28(~2/m)(N/R4L)2/5. For
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example, if one assumes that N ≈ 106, Nt ≈ 2.5 × 104, R ≈ 1µm, and L ≈ 100µm

then δF0 /kB = 3.2µK, and Tc = 0.28µK. The barrier height is sensitive to changes

in Nt, and can therefore be manipulated by heating or cooling the sample.

The Arrhenius formula for the decay rate in terms of the barrier height is Γ ≈
ω0e

−δF/kT . The attempt frequency ω0 can be estimated by using the value of the

microscopic relaxation time τ , together with the assumption that each coherence

volume in the sample fluctuates independently [86]. A realistic estimate for τ is the

classical collision time for a dilute gas [i.e. τ−1 ∼ σnv ∼ a2(N/V )(kBT/m)1/2 ∼
5 × 104 Hz], giving lifetimes for the metastable states on the order of seconds. Even

beyond the limits of validity of this calculation, one expects δF to be a monotonically

increasing function of the density. Hence, the barriers can be extremely large at low

temperatures, allowing a continuous tuning of the metastable state lifetime from

microseconds to times longer than the lifetime of the condensate.

4.5 Detection and creation

I now discuss two of the issues necessary for the experimental testing of the predictions

presented in this Chapter. First, how does one create a current carrying state? The

most promising techniques for creating persistent currents are those that have been

used to create vortices [10, 80, 82]. The simplest approach is to stir the condensate

by deforming and rotating the trap that contains the atoms. The other method is to

use a phase imprinting technique. Since the superfluid velocity is proportional to the

gradient of the phase, by changing the phase one can give angular momentum to the

condensate. The phase is shifted by illuminating the condensate with off resonant light

through an appropriate mask. Detailed numerical simulations of creating persistent

currents with this technique are found in [96].

The second important experimental matter is how to detect a current carrying

state. Perhaps the least difficult scheme would make use of present phonon imag-

ing techniques [97]. The experimental configuration could be as follows: A pulse of

laser light generates a local rarefaction of the condensate, which then travels as two

waves, one moving clockwise, the other counterclockwise. By nondestructive imaging

techniques one might then observe where the two waves meet, which gives the veloc-

ity of the metastable supercurrent. This is only feasible if the speed of sound c is

comparable to the velocity v with which the condensate moves around the annulus.

Linearizing Eq. (4.6) gives c = (gΓNm/2πm)1/2 ≈ 1.2mm/s, which is only 30 times

greater than v = ~/mr̄ ≈ 46µm/s.
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As an alternative scheme, one can perform an interference experiment where a

nonrotating condensate is overlapped with the toroidal cloud [92]. If the toroidal

cloud is rotating, the spatially varying phase will be visible in the resulting interference

pattern.

4.6 Coherent vs. incoherent pathways

Throughout this calculation I have assumed that a single condensate always exists.

More generally, the transition state could have a fragmented condensate (see Chapter

3) or even a more complicated structure with no condensation at all. Based upon the

intuition that I have gained from the study in Chapter 3, I expect that the energy of

the transition state would change much if one broadens the allowable class of states.

It should also be noted that any single measurement that tried to catch the phase slip

on film would undoubtedly see a single condensate at all times (see Section 3.2.2).
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Chapter 5

Finite Temperature Collapse of a

Gas with Attractive Interactions

In this Chapter I present a study of the mechanical stability of the weakly interacting

Bose gas with attractive interactions. My major concern here is the role of finite

temperature, and I show that the non-condensed particles play a crucial role in de-

termining the region of stability, including providing a mechanism for collapse in the

non-condensed cloud. Furthermore, I demonstrate that the mechanical instability

prevents BCS-type “pairing” in the attractive Bose gas. I extend these results to

describe domain formation in spinor condensates. The research in this chapter was

performed with Gordon Baym, and has been published in Physical Review A [98].

5.1 Introduction

5.1.1 The system of interest

At high densities, attractive interactions drive a mechanical instability in atomic

clouds. At low densities these clouds are stabilized by quantum mechanical and

entropic effects. The presence of both these stabilizing mechanisms makes attractive

Bose gases unique. For comparison, interstellar hydrogen has a similar instability,

the Jeans instability, in which gravity competes with thermal pressure [8]; however

quantum mechanics plays no role in the stability of hydrogen clouds, and the collapse

is therefore much less rich.

Experimentally, stability and collapse has been observed in clouds of degenerate
7Li [24] and 85Rb [25], both of which have attractive interactions. Previous theoretical

studies of the attractive Bose gas, typically numerical, have been limited to zero [99] or

very low [100] temperature. Here I give a simple analytic description of the region of
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stability and threshold for collapse valid from zero temperature to well above the Bose

condensation transition, and thus provide a consistent global picture of the instability.

Contrary to previous predictions, at finite temperature the non-condensed particles

can play a significant role in the collapse.(A very recent variational calculation by

Tempere et al. [101] is capable of describing the collapse over a range of temperatures

comparable to the approach presented here.)

5.1.2 Results

My results are summarized in the phase diagram in Fig. 5.1 which shows three regions:

normal, Bose condensed, and collapsed. This third region is not readily accessible

experimentally; the system becomes unstable at the boundary (the solid line in the

figure). The gross features of the phase diagram can be understood qualitatively

with dimensional arguments similar to those in section 1.2.5. At low temperatures

the only stabilizing force is the zero-point motion of the atoms. This “quantum

pressure” (which should not be confused with the Fermi pressure which stabilizes

neutron stars) has a characteristic energy per particle, EQ ∼ ~
2V −2/3/m, where ~

is Planck’s constant, V is the volume in which the cloud is confined, and m is the

mass of an atom. The attractive interactions which drive the collapse are associated

with an energy U = ~
2asn/m, where n is the density, and as (= −1.45 nm for 7Li

and −20 nm for 85Rb) is the s-wave scattering length. Comparison of U with EQ

indicates that for low temperatures the density n at collapse should be n ∼ (V 2/3as)
−1,

independent of temperature. At high temperatures, the stabilizing force is thermal

pressure, P = −T∂S/∂V , which is characterized by the thermal energy ET ∼ kBT .

Here comparison of U with ET indicates that at high temperatures the density of

collapse should be n ∼ mkBT/~
2as, linear in temperature. The crossover between

the quantum and classical behaviors (n ∝ T 0 and n ∝ T ) occurs near Tc. The collapse,

as described here, is a phenomena in which the cloud as a whole participates, not just

the condensate.

In this Chapter, I calculate the last point of metastability against collapse. As

one approaches this point, the system will generally undergo an earlier dynamical

collapse, driven by thermally activated processes [102], as in a first order Van der

Waals transition, or quantum tunneling [103], both of which destabilize the cloud.

The actual dynamics of collapse are, however, beyond the scope of this Chapter. The

dynamics can be described by the tools of Chapter 6.
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Figure 5.1: Phase diagram, density n [cm−3] versus temperature T , for a cloud of
attractive bosons. a) For a cloud of 7Li with spatial extent L = 3.15µm and scattering
length as = −1.45nm, corresponding to the experiments in Ref. [1], performed at T
near 300 nK. b) For a cloud of 85Rb with scattering length as = −20nm and spatial
extent L = 3µm, corresponding to the recent experiments in Ref. [2], performed at T
near 15 nK. Note the logarithmic scales. The solid line separates the unstable (shaded)
region from the stable region. The dashed line, representing the Bose condensation
transition has been continued into the collapsed region to illustrate that the two lines
intersect. This diagram is drawn for a uniform but finite cloud, but can be applied
to harmonically trapped gases by taking n to be the central density in the trap.
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5.1.3 Method

My basic approach is to identify the collapse with an instability in the lowest energy

mode of the system (the breathing mode in a spherically symmetric cloud). As the

system goes from stable to unstable, the frequency of this mode goes from real to com-

plex, passing through zero when the instability sets in. The density response function,

χ(k, ω), which measures the response of the cloud to a probe at wavevector k and

frequency ω, diverges at the resonant frequencies of the cloud. Therefore, by virtue

of the vanishing frequency of the lowest energy mode, the collapse is characterized by

χ(k = 2π/L, ω = 0)−1 = 0. (5.1)

Here k = 2π/L is the wavevector of the unstable mode, whose wavelength L should

be of order the size of the system. Equation (5.1) implicitly determines the line of

collapse in the temperature-density plane.

To evaluate the response function analytically, I use a local-density approximation,

replacing the response function χ(k, ω) of the inhomogeneous cloud by that of a gas

with uniform density n. The response of the uniform gas is evaluated at the same

frequency and wavevector as for the inhomogeneous system, and n is given by the

central density of the atomic cloud. The local-density approximation should be valid

for temperatures large enough that the thermal wavelength, ΛT = (2π~
2/mkBT )1/2, is

much smaller than the size of the trap, in particular that kΛT/4
√
π be small (see the

expansion in Appendix E.4.3 on page 164). In all experiments to date, this condition

is satisfied, and I treat kΛT/4
√
π as a small parameter in this calculation.1 With this

approximation, I calculate the line of collapse using the theory of χ(k, ω) of a uniform

gas (reviewed in appendix E).

In the experiments on 7Li, the atoms are held in a magnetic trap2 with a har-

monic confining potential V (r) = 1
2
mω2r2, with ω ≈ 2π × 145s−1.This potential

gives the cloud a roughly Gaussian density profile (see Section 5.4). The tem-

perature T is typically 50 times the trap energy ~ω ≈ 7nK, so the parameter

kΛT/4
√
π, ≈

√

~ω/2kBT ≈ 0.10, is small. The experiments on 85Rb use softer

traps, ~ω ≈ 0.6nK, and colder temperatures T ≈ 15nk, so that kΛT/4
√
π ≈ 0.14.

The local density approximation used here provides a framework for investigating

1 My derivation of the condensate’s response is valid at arbitrarily low temperatures, as it does

not rely upon an expansion in powers of kΛT /4
√

π. In regimes where the noncondensate fraction is

small, my analysis of the system’s stability can likewise be continued to T = 0.
2 The traps used are slightly asymmetric, and the frequencies quoted here are the geometric mean

of the three frequencies along each principal axis; see [24, 25].
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the interplay of condensation and collapse. Although the results are not as accurate

as can be obtained through numerical simulations (comparing with previous numeri-

cal work [100], I find that my results are always well within a factor of two of those

calculated using more sophisticated models), the conceptual and computational ad-

vantages of working with a uniform geometry far outway any loss in accuracy. Due to

their simplicity, the arguments used here provide an essential tool in choosing which

parameter ranges to investigate in future experiments and computations.

The tools introduced to discuss the collapse of an attractive gas can also be used

to describe other instabilities in trapped Bose gases. In Section 5.5 and 5.6, I apply

these methods to the problem of BCS type pairing between bosons, and towards

domain formation in spinor condensates.

5.2 Simple limits

5.2.1 Zero temperature

To illustrate my approach, I first consider the stability of a zero temperature Bose

condensate. The excitation spectrum of a uniform gas is [105]:

~
2ω2

k = ε2
k + 2gnεk ≡ E2

k , (5.2)

where εk = ~
2k2/2m and g = 4π~

2as/m. In the attractive case, g < 0, all long

wavelength modes with εk < 2|g|n have imaginary frequencies and are unstable. A

system of finite size L only has modes with k > 2π/L, and for larger k has an

excitation spectrum similar to Eq. (5.2). If |g|n < ~
2π2/mL2, the unstable modes are

inaccessible and the attractive Bose gas is stable.

This information is included in the density response function χ(k, ω) of the dilute

zero-temperature gas [104], which gives the change in density n induced by an external

potential U , of wavevector k and frequency ω, coupled to the density:

χ(k, ω) =
δn

δU
=

nk2

m(ω2 −E2
k/~

2)
(5.3)

The poles of χ are at the excitation energies, ±Ek. In particular, χ(k = 2π/L, ω = 0)

diverges when |g|n = ~
2π2/mL2.

5.2.2 High temperature (T ≫ Tc)

To illustrate the procedure further I calculate the stability of an attractive Bose gas

at temperatures much larger than Tc, where thermal pressure is the predominant
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stabilizing force. Quantum effects are negligible in this limit, and the line of collapse

is simply the spinodal line of the classical liquid-gas phase transition,3 as characterized

by Mermin [106]. One can neglect finite size effects, and look for an instability in the

uniform gas at zero wavevector, k = 0, corresponding to finding where χ(k = 0, ω = 0)

diverges. The susceptibility χ(0, 0) = −∂n/∂µ (where µ is the chemical potential),

is proportional to the compressibility of the system, which diverges when the gas

becomes unstable.

At high temperature one can work in the Hartree Fock approximation, where the

density is given by the self consistent solution of

n =

∫

d3p

(2π~)3

1

eβ(ǫp−µ) − 1
, (5.4)

with Hartree Fock quasiparticle energies ǫp = εp + 2gn; here β = 1/kBT . In the

classical limit (βµ ≪ −1), n = eβ(µ−2gn)/Λ3
T . The response χ(0, 0) has the structure

of the random phase approximation (RPA),

χ(k, ω) =
χ0(k, ω)

1 − 2gχ0(k, ω)
, (5.5)

where χ0(0, 0) = − (∂n/∂µ)ǫ (where the ǫ are held fixed) is the “bare” response. In

the classical limit χ0(0, 0) = −βn. Since χ0(0, 0) is negative, the repulsive system

(g > 0) is stable. For attractive interactions however (g < 0), the denominator of Eq.

(5.5) vanishes when 2gχ0 = 1, which in the classical limit occurs when 2|g|n = kBT .

The above calculation is only valid well above Tc. When |µ| . ~
2/mL2, finite size

effects start to become important, and a more sophisticated approach is needed. If one

blindly used the above result near Tc one would erroneously find that the instability

towards collapse prevents Bose condensation from occurring. This difficulty can be

avoided by working with the finite wavevector response χ(k = 2π/L, ω = 0), to which

we now turn.

5.3 Density response function

I calculate the response χ in the RPA, with the approximation that the bare re-

sponses of the condensate and non-condensed particles are taken to be those of a

non-interacting system (see appendix E). This approach, employed by Szépfalusy

3 In the theory of liquid-gas phase transitions, the spinodal line is the curve on the phase diagram

where ∂P/∂V = 0, which represents the edge of the co-existence region, beyond which supercooled

vapor cannot exist.
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and Kondor [107] in studying the critical behavior of collective modes of a Bose gas,

and later modified by Minguzzi and Tosi [108] to include exchange, is simple to eval-

uate analytically, and is valid both above and below Tc. It generates an excitation

spectrum which is conserving [109] and gapless [104]. At zero temperature it yields

the Bogoliubov spectrum, Eq. (5.2), and above Tc it becomes the standard RPA with

exchange.

The susceptibility in this approximation has the form,

χ(k, ω) =
χc

0 + χn
0 + gχc

0χ
n
0

(1 − gχc
0)(1 − 2gχn

0 ) − 4g2χc
0χ

n
0

, (5.6)

where χc
0 and χn

0 are the condensate and non-condensed particle contributions to the

response of the non-interacting cloud,

χn
0 (k, ω) =

∫

d3q

(2π)3

f(q − k/2) − f(q + k/2)

~ω − (εq+k/2 − εq−k/2)
, (5.7a)

χc
0(k, ω) =

n0

~ω − εk
− n0

~ω + εk
. (5.7b)

Here n0 is the condensate density, the εk = k2/2m are the free particle kinetic

energies, and the Bose factors f(k) are given by (e−β(εk−µ) − 1)−1. In appendix E I

derive this response function. A general discussion of quantum mechanical response

functions appears in appendix C. At zero temperature χn
0 = 0 and the susceptibility

reduces to that in Eq. (5.3), while above Tc, χ
c
0 = 0, and χ reduces to Eq. (5.5).

Figure E.2, on page 161, shows the class of diagrams summed in this approximation.

Expanding χn
0 in the small parameter kΛT (see details in appendix E.4.3), one

finds for T > Tc,

gχn
0(k, 0) = −2

as

ΛT

[

4π

kΛT
arctan |εk/4µ|1/2 + g1/2(e

βµ) − |π/βµ|1/2 + O(kΛT )

]

,

(5.8)

where gν(z) ≡
∑

j z
j/jν is the polylogarithm function. For chemical potential µ

much larger in magnitude than kBT , the system is classical, and Eq. (5.8) reduces to

gχn
0 = −βgn, as in the Hartree-Fock approach, Section 5.2.2. Below Tc the chemical

potential of the non-interacting system vanishes and the response functions are:

gχn
0 (k, 0) = −4π2as

kΛ2
T

+ O((kΛT )0), (5.9a)

gχc
0(k, 0) = −16π

asn0

k2
. (5.9b)

Using these expressions one calculates the spinodal line separating the stable and

unstable regions of Fig. 5.1 by setting k = 2π/L and solving the equation

χ−1 ∝ 1 − g(χc
0 + 2χn

0 ) − 2g2χc
0χ

n
0 = 0, (5.10)
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which gives the line of collapse as a function of µ and T (for T > Tc), or as a function

of n0 and T (for T < Tc). I use the following relations to plot the instability on the

n− T phase diagram,

n =

{

Λ−3
T g3/2(e

βµ), T > Tc

n0 + Λ−3
T ζ(3/2), T < Tc,

(5.11)

with the Riemann Zeta function ζ(3/2) = g3/2(1) ≈ 2.6. The line of condensation

n = Λ−3
T ζ(3/2) separates the condensed and non-condensed regions.

Equations (5.9a) and (5.9b) indicate that below Tc the noncondensate response χn
0

scales as k−1 ∼ L, while the condensate response χc
0 scales as k−2 ∼ L2. For realistic

parameters, L is the largest length in the problem, so that the condensate dominates

the instability except when n0 is much smaller than n. Since the condensate is very

localized, even a few particles in the lowest mode make n0 locally much greater than

the density of noncondensed particles. In Fig. 5.2 I show how the line of instability

depends on the size of the system, L.

Substituting Eq. (5.9) into Eq. (5.10) one calculates the maximum stable value of

the condensate density n0,

(n0)max =
π

4L3

(

L

|as|

)(

T ∗ − T

T ∗ + T

)

, T < T ∗, (5.12)

where T ∗ = ~
2/2mkBL|as| is the temperature at which the line of collapse crosses

the line of condensation. For all greater temperatures, (n0)max = 0, and there is no

condensation.

From Eq. (5.12) one sees that (n0)max decreases monotonically with temper-

ature, from its maximum value (n0)
T=0
max = π/4L2|as|, to zero at T = T ∗. Us-

ing parameters from experiments [24, 25], one finds for the lithium trap at Rice,

(N0)
T=0
max = L3(n0)

T=0
max = 1700, and T ∗ = 7.5 µK, and for the JILA rubidium-85 trap,

(N0)
T=0
max = 120, and T ∗ = 46 nK .

One can verify the accuracy of the expansion in kΛT by including the next order

term of Eq. (5.9a) in the calculation of (n0)max. While this next term has a negligible

effect for lithium, there is a small change in the shape of (n0)max for rubidium. Most

notably, the curve is rounded near T = 0, and T ∗ is increased to 53nK. The maximum

number of condensed particles vs. temperature for the two experiments are plotted

in Fig. 5.3; these results are consistent with the experiments, and agree quite well

with numerical mean-field calculations [100]. In particular, my curve (N0)max(T ) for

lithium has a slope of −1/2.2 nK at T = 0, which lies between the calculated slopes of

Davis et al. and Houbiers et al. [100]. Although (n0)max decreases with temperature,
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Figure 5.2: Scaling of the instability threshold with system size. Solid lines show the
maximum stable density nmax for a given temperature. From the top, the system size
is L= 0.3, 3, 30 µm. The other parameters are the same as in Fig. 5.1. The dashed line
indicates the Bose-Einstein condensation transition. Note the three scaling regimes;
at low temperature, nmax ∼ L−2, near the critical temperature nmax ∼ L−3/2, and at
high temperatures nmax is independent of L
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the non-condensed density n′ increases (n′ = Λ−3ζ(3/2)). Thus the total density at

collapse need not be monotonic with temperature (cf. the low temperature region of

Fig. 5.1b).

Future condensate experiments at higher temperatures and densities should be

able to study the structure in Eq. (5.12), and map out the phase diagram in Fig. 5.1.

The rubidium experiments are performed at temperatures near T ∗, where the spinodal

line intersects Tc, and in principle should be able to explore the crossover between the

quantum mechanical and classical behavior of the instability. The lithium experiments

are much further away from exploring this regime, and in the current geometry,

inelastic processes make such an investigation impractical.4 Since T ∗ is proportional

to 1/L, a softer trap could be used to bring this crossover down to lower temperatures

where these difficulties are less severe (see Fig. 5.2). More precise numerical studies

at higher temperatures are needed to guide these experiments.

5.4 Modeling the harmonic trap

Most experimental and theoretical results are reported in terms of numbers of par-

ticles instead of density. By appropriately modeling the density distribution of a

harmonically trapped gas, one can present my conclusions in such a form. Once the

interactions are strong enough to modify the density distribution significantly, the

system undergoes collapse; thus one can take the density distribution to be that of

non-interacting particles. For kBT ≫ ~ω, the density profile is well-approximated by

n(r) =

∫

d3p

(2π)3

1

eβ(εp+V (r)−µ) − 1
+ n0e

−r2/d2

, (5.13)

where V (r) = mω2r2/2 is the confining potential, with characteristic length d =

(~/mω)1/2. The density of condensed particles at the center of the trap is n0. Above

Tc n0 = 0, and below Tc, µ = 0. Integrating over space,

N =

{

(kBT/~ω)3 g3(e
βµ), T > Tc

(kBT/~ω)3 ζ(3) + (π~/mω)3/2 n0, T < Tc.
(5.14)

The instability occurs in the lowest energy mode of the system, the breathing

mode, whose wavevector is proportional to 1/d. In a zero temperature non-interacting

4 At a temperature of 5µK, a 3.15µm cloud of 7Li collapses at a density of n = 1.39× 1014cm−3.

At such a high density the dominant decay mechanism is three-body collisions, giving a lifetime

τ = (G3 n2)−1, where G3 is a constant determined from three-body scattering. Using the theoretical

estimate [110], G3 = 2.6×10−28, I find that τ = 200ms. At T = 10µK the lifetime is only τ = 40ms.
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Figure 5.3: Maximum number of condensed particles as a function of temperature,
for the a) 7Li and b) 85Rb experiments. The (kΛT )0 terms in Eq. 5.9a have been
included in producing these plots, giving a slightly different shape than that quoted
in Eq. (5.12).
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gas the breathing mode has a density profile δρ ∝ (2r2/d2 − 3) exp (−r2/d2), where r

is the radial coordinate. In momentum space this distribution is peaked at wavevector

k = 2/d. At finite temperature thermal pressure increases the radius of the cloud and

the wavevector of the breathing mode becomes smaller. Since the response of the non-

condensed cloud is relatively insensitive to the wavevector, I look for an instability at

k = 2/d.

The resulting phase diagram, Fig. 5.4, is similar to that in Fig. 5.1. The most

significant difference is that the line of collapse follows the condensation line (on the

scale of the figure they appear to coincide over a significant temperature range). This

behavior can be understood by noting that for trapped particles, condensation results

in a huge increase in the central density of the cloud (a standard diagnostic of BEC).

5.5 Pairing

With minor changes the formalism presented here can be used to investigate the insta-

bility towards forming loosely bound dimers, or “pairs,” the Evans-Rashid transition.

Such an instability occurs in an electron gas at the superconducting BCS transition

[111], and has been predicted by Houbiers and Stoof [100, 112] to occur in the trapped

alkalis. The pairing is signalled by an instability in the T-matrix of the normal phase

[113], which plays the role that the density response function plays in the collapse.

Again, I simulate the finite size of the cloud by looking for an instability at k = 2π/L,

compared with k = 0 in a bulk sample. In analogy to Eq. (5.5), the T-matrix can be

written as a ladder sum,

T (k, ω) =
g

1 − gΞ(k, ω)
. (5.15)

In this equation, k is the relative momentum of the pair. The instability towards

pairing is signalled by T → ∞, when gΞ = 1. To the same level of approximation as

Eq. (5.7a), the medium-dependent part of the “pair bubble” Ξ is

Ξ(k, ω) =

∫

d3q

(2π)3

f(q − k/2) + f(q + k/2)

~ω − (εq+k/2 + εq−k/2)
. (5.16)

Setting ω = 0, and expanding in small kλT (see appendix E.4.3), one finds

gΞ(k, ω = 0) = −4
as

ΛT

[

4π

kΛT
arctan

(

|ǫk/4µ|1/2

1 + |ǫk/4µ|1/2

)

(5.17)

+g1/2(e
βµ) − |π/βµ|1/2 + O(kΛT )

]

.
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Figure 5.4: Phase diagram, number N versus temperature T , for harmonically
trapped bosons with attractive interactions; a) 7Li, b) 85Rb. The parameters used
correspond to Fig. 1. The open circle marks where the spinodal line meets with the
BEC phase transition.
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Except for the argument of the arctangent, this expression is identical to twice gχn
0 as

given in Eq. (5.8). Since arctangent is a monotonic function, and its argument here is

smaller than in Eq. (5.8), one sees that gΞ < 2gχn
0 , which implies that the instability

towards collapse occurs at a lower density than the pairing instability. Thus I conclude

that the pairing transition does not occur in an attractive Bose gas. Interestingly, in

the classical limit, the instabilities towards pairing and collapse coincide.

5.6 Domain formation in spinor condensates

The approach used here to discuss the collapse of a gas with attractive interactions

also describes domain formation in spinor condensates, and gives a qualitative un-

derstanding of experiments at MIT [9] in which optically trapped 23Na is placed in

a superposition of two spin states. Although all interactions in this system are re-

pulsive, the two different spin states repel each other more strongly than they repel

themselves, resulting in an effective attractive interaction. The collapse discussed

earlier becomes, in this case, an instability towards phase separation and domain for-

mation. The equilibrium domain structure is described in [114]. Here I focus on the

formation of metastable domains [115].

The ground state of sodium has hyperfine spin F = 1. In the experiments the

system is prepared so that only the states |1〉 = |F = 1, mF = 1〉 and |0〉 = |F =

1, mF = 0〉 enter the dynamics. The effective Hamiltonian is then

H =

∫

d3r
∇ψ†

i · ∇ψi

2m
+ V (r)ψ†

iψi +
gij

2
ψ†

iψ
†
jψjψi. (5.18)

where ψi (i = 0, 1) is the particle destruction operator for the state |i〉; summation

over repeated indices is assumed. The effective interactions, gij = 4π~
2aij/m, are

related to the scattering amplitudes aF=0 and aF=2, corresponding to scattering in

the singlet (F1 + F2 = 0) and quintuplet (F1 + F2 = 2) channel, by [9, 114, 116]:

ã ≡ a11 = a01 = a10 = aF=2, (5.19a)

δa ≡ a11 − a00 = (aF=2 − aF=0)/3. (5.19b)

Note that the |1〉+ |0〉 channel is purely F = 2 for identical bosons, since the F = 1

state is anti-symmetric and the scattering is purely s-wave. Numerically, ã = 2.75nm

and δa = 0.19nm. In the equations of motion, these lengths appear as g̃ = 4π~
2ã/m

and δg = 4π~
2δa/m. Initially the condensate is static with density n = 1014cm−3,

and all particles in state |1〉. A radio-frequency pulse places half the atoms in the

93



|0〉 state without changing the density profile. Subsequently the two states phase

separate and form 40 ± 15 µm thick domains. The trap plays no role here, so I

neglect V (r) in Eq. (5.18) and consider a uniform cloud.

Within a mean field approximation, one writes ψi =
√
nm=ie

iφi, and the equa-

tions of motion for φi and nm=i are derived by making stationary the action S =
∫

dt
[∫

d3r (1/2i)(∂tψ
∗ψ − ψ∗∂tψ) −H

]

, leading to a set of “hydrodynamic equa-

tions”,

∂tnm=i + ∇ · (nm=i∇φi) = 0 (5.20a)

∂tφi − (∇2√nm=i)/2m
√
nm=i + gijnm=j = 0, (5.20b)

the first of which is a continuity equation, and the second is analogous to Euler’s

equation for an ideal fluid. The initial stages of domain formation can be understood

by linearizing these equations about nm=0 = nm=1 = n/2. After eliminating the phase

variables, and Fourier transforming with respect to space and time,

(

ω2 − εk(εk + g̃n + δg n) −g̃nεk

−g̃nεk ω2 − εk(εk + g̃n)

)(

δnm=0

δnm=1

)

= 0. (5.21)

Here δnm=i = nm=i − n/2 is the fluctuation of the density of each species, and as

before εk = k2/2m. When δg is set to zero, the two solutions of these equations

represent a pure spin wave, where δnm=0 + δnm=1 = 0, or a pure density wave

where δnm=0 = δnm=1. For arbitrary δg, the spectrum of these modes become

ω2 = ε
(

ε+ g̃n− δg n/2 ± [(g̃n)2 + (δg n/2)2]1/2
)

, which for small δg is

~
2ω2

ph =

(

~
2k2

2m

)2

+ g̃n
~

2k2

m
+ O(δg), (5.22a)

~
2ω2

sp =

(

~
2k2

2m

)2

− δg n
~

2k2

4m
+ O((δg)2). (5.22b)

Similar excitation spectra were found in [117]. The subscripts ph or sp refer to the

phonon or spin-wave character of the excitations. Since δg > 0, the long-wavelength

spin excitations have imaginary frequencies. The mode with the largest imaginary

frequency grows most rapidly, and the width of the domains formed should be com-

parable to the wavelength λ of this mode. By minimizing Eq. (5.22b) one finds

λ =
√

2π/n δa ∼ 20µm, in rough agreement with the observed domain size.

To connect these unstable modes to our previous discussion of the collapse more

explicitly, I note that in the mean field approximation, the interaction in Eq. (5.18)

is only a function of nm=0 and n, the density of particles in the state |0〉 and the total
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density, respectively:

〈Hint〉 =

∫

d3r

(

g̃

2
n2 − δg

2
n2

m=0

)

, (5.23)

which shows explicitly the effective attractive interaction.
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Chapter 6

Kinetic Theory

This Chapter develops the kinetic theory needed to describe a finite temperature gas

of Bose condensed atoms. The approach used here was developed in the 1960’s by

a series of authors, most notably Kadanoff and Baym [113] and Kadanoff and Kane

[118]. Recently several authors have applied these, or similar, ideas to trapped atomic

gases [119, 120, 121, 122, 123]. The underlying theory is complex, and the main goal

of most of these studies is to produce approximations that allow a real problem to be

solved.

In writing this Chapter I have three goals. First, and foremost, I want to develop

a formalism which can be applied to understanding a series of experimentally rele-

vant problems where both the coherent motion of the condensate and the incoherent

motion of the non-condensed particles play equal roles. These problems include the

dynamics of vortex decay, and the dynamics of domain formation in a spinor con-

densate. Second, with the aid of a small toy model, I would like to clarify how a

Bogoliubov quasiparticle differs from the collective condensate excitations with the

same dispersion. Finally, I would like to present a very compact derivation of the

kinetic equations which is of general interest.

The kinetic theory developed here is highly nontrivial. Readers may wish to

familiarize themselves with the material in Appendix E where a simpler linearized

theory is presented, and the material in Appendix C where response functions are

discussed.

6.1 Overview

In classical mechanics one describes the kinetics of a gas/liquid via a phase-space

distribution function f(R, p, T ), which measures the probability of having a particle of
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momentum p at position R and time T . This distribution function obeys a Boltzmann

equation, typically of the form

(∂T + (p/m) · ∇R − (∇U) · ∇p)f = I[f ]. (6.1)

The left hand side of the Boltzmann equation describes the motion of the gas particles

if they were non-interacting; U is an arbitrary external field, m is the particle mass,

and ∇R and ∇p are gradients with respect to position and momentum variables.

The right hand side, the collision integral, describes the interactions between the

particles, and is a nonlinear function of f . The collision integral drives the system

towards equilibrium, and has the structure,

I[f ](R, p, T ) =
∑

q

(Rq→p −Rp→q), (6.2)

where Rp→q is the total rate of particles scattering from momentum p to momentum

q. Classically, Rp→q is proportional to the number of particles in the state p, and so

one usually writes Rp→q = Γp→qf(q).

In a quantum theory one can derive a similar equation. The key is to recognize

that the single particle Green’s function G< = 〈ψ†(r1′, t1′)ψ(r1, t1)〉 behaves like a

phase space distribution. After writing G<(r1, t1, r1′, t1′) in terms of the center of

mass coordinates R = (r1 + r1′)/2 and T = (t1 + t1′)/2, and the relative coordinates

r = (r1−r1′) and r = (t1− t1′), one can Fourier transform with respect to the relative

coordinates,

G<(p, ω, R, T ) =

∫

d3r dt eiωt−ip·rG<(r, t;R, T ). (6.3)

If one integrates the resulting function over p, one gets the density of occupied states

in real space. Integrating over r, gives the density of occupied states in momentum

space. Thus G<(p, ω, R, T ) holds all of the physics that is contained in the classical

f(R, p, T ). In quantum mechanics, the energy of a particle ω is not independent of

its momentum p, requiring one to carry around an extra variable. When there is a

well-defined dispersion relationship, one can produce a quantum mechanical phase

space distribution function that is only a function of R, p, T .

Although I am interested in G<, it is a instructive to first understand the time

ordered Green’s function G = 〈T (ψ†ψ)〉. In a nonequilibrium (Schwinger-Keldysh)

formalism, the time ordering operator T , orders operators along a contour in the

complex time plane. This contour, illustrated in Fig. 6.1 begins at time t = −∞,

follows the real axis to t = +∞, returning to t = −∞ − iβ. Periodic boundary

conditions on this path ensure that the system is in thermal equilibrium at time
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Figure 6.1: Contour in complex time used in the Schwinger-Keldysh formalism.

t = −∞. In all subsequent integrals, time integrals will implicitly follow this contour,

and space integrals will be over three dimensions. The equations for G take the form

of a convolution,
∫

d2̄G−1(1, 2̄)G(2̄, 1′) = δ(1 − 1′). (6.4)

Here I have introduced the notational shorthand of using numbers to represent coor-

dinates, such as 1 represents {r1, t1}. In a normal system, after converting to relative

and center of mass (COM) coordinates, G−1 obeys the equation

G−1(p, ω, R, T ) = ω − p2/2m− V (R, T ) − Σ(R, T ; p, ω), (6.5)

which defines the self-energy Σ. Unfortunately the convolution in Eq. (6.4) is not

simple in term of the variables R, p, T, ω that describe the distribution function.

The Boltzmann equation only describes the evolution of the system close to equi-

librium in the presence of slowly varying disturbances. One can use this assumption

of slow variation to derive a “semi-classical” scheme for approximating the convolu-

tion. For pedagogical purposes I first show how this semiclassical method works in

an abstract setting. Let F be the convolution of two arbitrary functions A and B,

F (X, x) = A ∗B =

∫

dx̄A(x1, x̄)B(x̄, x1′), (6.6)

where x1 = X − x/2 and x1′ = X + x/2. By replacing x̄ with the relative coordinate

r, one finds,

F (X, x) =

∫

dr A(RA = X + r/2, rA = x− r)B(RB = X + (r − x)/2, rB = r). (6.7)

In analogy to the expected behavior of the Green’s functions, suppose A and B are

peaked near rA = 0, and rB = 0, each falling off on a length scale ξ. Suppose
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further that A and B vary only slowly as a function of their COM coordinates, with

a length scale L. Up to corrections of relative order ξ/L, the functions A and B can

be expanded to give

F (X, x) =

∫

dr A(X, x− r)B(X, r) + ∂XA(X, x− r)
r

2
B(X, r) (6.8)

−(x− r)

2
A(X, x− r)∂XB(X, r) + · · ·

This expresses F as a series of terms, each of which is a convolution in the variable

x. The Fourier transform of F with respect to the relative coordinate is then

F (X, p) =

∫

dx e−ixpF (X, x) = A(X, p)B(X, p) +
i

2
∂XA∂pB − i

2
∂pA∂xB. (6.9)

This convolution identity is the key to my derivation of the quantum Boltzmann

equation.

Turning back to the Green’s functions, the length scale over which the center of

mass of G changes is set by the external potential. This length is L. The rate of

change of the relative coordinate is set by the temperature and interactions. This

length scale, denoted ξ, is the coherence length. One builds Σ from G’s, and the

same length scales govern its behavior. Thus, as long as ξ ≪ L one can expand

the convolution for the equations of motion of G. (Similar arguments follow for the

convolution in the time domain.)

At this point it is convenient to introduce further notation. I define the Poisson

brackets {A,B} by

{A,B} = (∇RA · ∇PB −∇PA · ∇RB) − (∂TA∂ωB − ∂ωA∂TB). (6.10)

Then the convolution identity (6.9) is compactly written

A ∗B = AB + (i/2){A,B}. (6.11)

Stepping back for a moment, the classical Boltzmann equation, Eq. (6.1), is described

by

{ω − p2/2m− V (R, T ), f(R, p, T )} = I[f ]. (6.12)

Applying the convolution identity (6.11) to the equation for G,

(G−1 ∗G)(p, ω, R, T ) = 1 = (G−1
0 − Σ)G+

i

2
{(G−1

0 − Σ, G}. (6.13)

Looking at a frequency ω → ω± iη, for small η, one can write this equation in terms

of its real and imaginary parts

G(ω ± iη) = Re[G(ω)] ∓ iA/2 (6.14a)

Σ(ω ± iη) = Re[Σ(ω)] ∓ iΓ/2. (6.14b)
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This leaves four equations

(G−1
0 − Re[Σ])(Re[G]) + (Γ/2)(A/2) (6.15a)

± ({Γ/4, Re[G]} − {(G−1
0 −Re[Σ]), A/4}) = 1

(G−1
0 −Re[Σ])(A/2) − (Γ/2)(Re[G]) (6.15b)

± ({Γ/4, Re[G]} − {(G−1
0 −Re[Σ]), A/4}) = 0.

These are most transparent in the following form

(

G−1
0 −Re[Σ] Γ/2

−Γ/2 G−1
0 −Re[Σ]

)(

Re[G]

A/2

)

=

(

1

0

)

(6.16a)

{Γ, Re[G]} − {(G−1
0 − Re[Σ]), A} = 0. (6.16b)

The matrix is easily inverted to give the well-known results [113]

Re[G] = (G−1
0 −Re[Σ])/((G−1

0 − Re[Σ])2 + (Γ/2)2) (6.17a)

A = Γ/((G−1
0 − Re[Σ])2 + (Γ/2)2). (6.17b)

When Γ vanishes one must interpret the Lorentzian as a Dirac delta function.

We now have enough tools to investigate G<. The equations of motion for G<

can be derived from the equations for G, taking t1 < t1′ , in which case
∫

d2̄ (G−1
0 (1, 2̄) − Σ(1, 2̄))G(2̄, 1′)

=

∫

d2̄G−1
0 (1, 2̄)G<(2̄, 1′) −

∫ t1

d2̄
1

i
Σ>(1, 2̄)G<(2̄, 1′)

−
∫ t1′

t1

d2̄
1

i
Σ<(1, 2̄)G<(2̄, 1′) −

∫

t1′

d2̄
1

i
Σ<(1, 2̄)G>(2̄, 1′) (6.18a)

=

∫

d2̄

[

G−1
0 (1, 2̄)G<(2̄, 1′) −

(

1

i
Θ(1 − 2̄)[Σ>(1, 2̄) − Σ<(1, 2̄)]

)

G<(2̄, 1′)

+Σ<(1, 2̄)

(

1

i
Θ(1′ − 2̄)[G>(2̄, 1′) −G<(2̄, 1′)]

)]

, (6.18b)

where Θ(x), the Heaviside step function, is zero for negative arguments and otherwise

equals 1. Since G−1
0 is strictly local in time one does not have to worry about breaking

the G−1
0 integrals up. Eq. (6.18b) is simple expressed in terms of retarded/advanced

response functions,

GA(12) =
−1

i
Θ(2 − 1)[G>(1, 2) −G<(1, 2)] (6.19a)

ΣR(12) =
1

i
Θ(1 − 2)[Σ>(1, 2) − Σ<(1, 2)], (6.19b)
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in terms of which the equations of motion read,

(G−1
0 − ΣR) ∗G< − Σ< ∗GA = 0. (6.20)

Following the same procedure for t1 > t1′ , one finds

(G−1
0 − ΣR) ∗G> − Σ> ∗GA = 0. (6.21)

I now switch to center-of mass and relative coordinates, assuming L≫ ξ,

(G−1
0 − ΣR)G< − Σ<GA +

i

2
({(G−1

0 − ΣR), G<} − {Σ<, GA}) = 0 (6.22)

As with the equations of motion for G, one can break this equation up into a real

and imaginary parts. Using the relations

GA(ω) = G(ω + iη) = ReG(ω) + iA(ω)/2 (6.23a)

ΣR(ω) = Σ(ω + iη) = ReΣ(ω) − iΓ(ω)/2; (6.23b)

one finds

{Γ/4, G<} − {Σ<, A/4} = (G−1
0 −ReΣ)G< − Σ<ReG (6.24a)

{(G−1
0 −ReΣ), G<} − {Σ<, ReG} = −(ΓG< − Σ<A) (6.24b)

= −(Σ>G< − Σ<G>). (6.24c)

The last relationship appears as Eq. (9-30) in Kadanoff and Baym [113], and has the

structure of a Boltzmann equation [cf. (6.12)]; the left hand side contains streaming

terms, while the right is a collision integral. The functions Σ> and Σ< are the rates

of scattering out of and into a given chunk of phase space. The functions G< and G>

are the number of particles and the number of holes available in that chunk of phase

space.

When A is strongly peaked about a few discrete points, one can label those points

by a quantum number ν, and write A =
∑

ν A
ν . One then splits G< into a product

fνA
ν . The Poisson bracket obeys the Leibniz “product” rule, which for scalars reads

{A,BC} = {A,B}C + {A,C}B, and along with Eq. (6.16b), gives us,

{

(G−1
0 − ReΣ), fν

}

Aν+{Γνf ν−Σ<, ReG}+{ReG, f ν}Γν = −(Γνfν−Σ<)Aν , (6.25)

where Γν is defined analogously to Aν . In equilibrium, Σ< = Γνf ν . Equation (6.24a)

forces A to be strongly peaked. See [113] for concrete examples that clarify this

structure.
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6.2 Condensed system

6.2.1 Basic problems

In the condensed system, the Green’s function G< is a two-by-two matrix (cf. ap-

pendix C.4.1). However, for the weakly interacting system, the elementary excitations

are still quasiparticles, for which one should be able to find a Boltzmann equation.

There does not exist a one to one correspondence between particles and quasiparticles,

so the constraints imposed by number conservation have a different form in a con-

densed and noncondensed system. Matrix Green’s functions also appear in systems of

particles with internal degrees of freedom. The matrix structure arising from internal

degrees of freedom is simpler to deal with than the one arising from the presence of

a condensate.

In the last Section, all formulae which did not explicitly refer to real and imaginary

parts of functions are correct for more general matrix propegators (I was careful with

operator ordering). However one needs to take Hermitian and anti-Hermitian parts

of equations instead of real and imaginary. This is complicated by the fact that the

Hermitian and anti-Hermitian parts of the various matrices do not commute.

Since the different components do not commute, it is very hard to solve the re-

sulting equations. One might hope that one could formally manipulate the matrix

equations in the same manner as one does the scalar equations. Unfortunately the

basic assumptions underlying these manipulations only hold for scalar Green’s func-

tions. For example, the decomposition of G< into the product fA relies upon the

relationship {A, f(A)} = 0. This relationship is an obvious corollary of the chain rule

{A, f(B)} = {A,B}f ′(B), along with {A,A} = 0. Unfortunately, neither the chain

rule, nor the latter identity are true for matrices. For example, consider the two by

two matrix A = ωτ1 + tτ2, for which the Poisson bracket reads {A,A} = 2iτ3 6= 0.

The most promising scheme to deal with these difficulties is to project the equa-

tions of motion onto Pauli matrices. This approach seems manageable, at least at the

mean field level. Instead of the two equations one has for the scalar case (one real,

one imaginary), one ends up with eight equations (four Pauli matrices, both real and

imaginary). In the next Section I investigate Bogoliubov theory in the context of this

formalism.

Alternatively one can make approximations which simplify the structure of the

matrix equations of motion. For example the Hartree-Fock approximation of Stoof et

al. [123], and the Popov approximation of Griffin et al. [120], each omit off-diagonal

terms in G−1
0 . For many problems such an approximation is appropriate.
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6.3 Bogoliubov theory

In simple mean-field theories of the Bose gas (see appendix C.4.1), the inverse Green’s

function is of the form

G−1
MF = G−1

0 − ΣMF = ωτ3 − ǫ− ∆τ1, (6.26)

where τν is a Pauli matrix, and the coefficients are generically calculated in some self-

consistent manner. In the simplest of these theories, the Bogoliubov approximation,

ǫ(R,P, T ) = p2/2m + gn0(R, T ), and ∆(R,P, T ) = gn0(R, T ). For the remainder of

this Section I neglect the subscripts MF . In a uniform, time independent system,

the spectral density is

A = 2πδ(G−1) = 2π [δ(ω −E) − δ(ω + E)]

[

ω

2E
τ3 +

ǫ

2E
− ∆

2E
τ1

]

, (6.27)

= 2πδ(ω2 − E2) [ωτ3 + ǫ− ∆τ1] (6.28)

which can also be thought of as

A = 2πδ(ω − E)

(

u

v

)

(

u∗ v∗
)

− 2πδ(ω + E)

(

v∗

u∗

)

(

v u
)

, (6.29)

where the Bogoliubov factors are

u =

√

ǫ+ E

2E
, (6.30a)

v = −
√

ǫ−E

2E
. (6.30b)

This representation of A is useful, along with the representation

G−1 = (ω −E)

(

u

−v

)

(

u∗ −v∗
)

− (ω + E)

(

v∗

−u∗

)

(

v −u
)

. (6.31)

For our purposes the representation in terms of Pauli matrices, Eq. (6.27) is easiest

to work with.

Now consider a slowly varying n0(R, T ). By construction G−1A = 0, but the

Poisson bracket is

{G−1, A} = {ω2 − ǫ2 + ∆2, f/2} + τ1({ǫ,∆f} − {∆, ǫf}) (6.32)

+iτ2({∆, ωf} − {ω,∆f}) + τ3({ω, ǫf} − {ǫ, ωf}),

with f = 2πδ(ω2 − E2). The first term, proportional to the identity, is zero, but the

others are generically finite. Thus this spectral density does not obey the semiclassical

equations of motion.
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The physical reason why this spectral density does not work is that it violates

number conservation. This violation occurs because as the spectrum changes, the

relationship between the number of quasiparticles and the number of real particles

changes. The collisionless Boltzmann equation conserves the number of quasiparticles,

so the spectral density has to be modified to take into account fluctuations in the

number of condensed particles.

To find the correct spectral density, I consider an arbitrary matrix of the form

A = a0 +
∑

ν anτν . The equation

{G−1, A} = 2iG−1A, (6.33)

can then be broken up into eight components,

{ω, a3} − {ǫ, a0} − {∆, a1} = 0 (6.34a)

{ǫ, a1} + {∆, a0} = −2ωa2 (6.34b)

{ǫ, a2} = 2ωa1 + 2∆a3 (6.34c)

{ǫ, a3} − {ω, a0} = −2∆a2 (6.34d)

0 = ωa3 − ǫa0 − ∆a1 (6.34e)

{ω, a2} = 2∆a0 + 2ǫa1 (6.34f)

{∆, a3} + {ω, a1} = −2ǫa2 (6.34g)

{∆, a2} = 2ǫa3 − 2ωa0.. (6.34h)

Solving so many simultaneous partial differential equations is difficult. By combining

Eqs. (6.34f,6.34c,6.34h), one finds that a2 satisfies

{ω2 − ǫ2 + ∆2, a2} = 0. (6.35)

Thus a2 is a function of ω2 − E2. The matrix element a2 is closely related to the

change in the number of quasiparticles. In equilibrium it vanishes.

These equations are amenable to a perturbative analysis where one formally treats

the Poisson brackets in (6.33) as small, which amounts to an expansion in powers of

ξ/L. Writing A =
∑

ν A
(ν), this analysis yields a hierarchy,

G−1A(0) = 0 (6.36)

G−1A(1) = −i/2{G−1, A(0)} (6.37)

G−1A(2) = −i/2{G−1, A(1)}, (6.38)

and so on. As previously discussed, A(0) = 2πδ(ω2 − E2)[ωτ3 + ǫ − ∆τ1]. Iterating

these equations, and using the identity xδ‘(x) = −δ(x), one finds A(1) = −2πδ‘(ω2 −
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E2)τ2(ǫ{∆, ω} + ω{ǫ,∆} + ∆{ω, ǫ}). These first order corrections have little effect

except to enforces particle conservation.

6.4 Response to a sudden change of interaction

strength

As a simple example to illustrate some of the issues raised by the kinetic approach

presented in this Chapter, I explore a uniform gas subjected to a sudden change

of interaction strength. In principle this situation could be experimentally realized

through the use of Feshbach resonances which allow the tuning of atomic interactions

[124]. I first study this problem using elementary means. I then use the machinery

developed in the preceding Sections to rederive these results.

6.4.1 The scenario

Before time t = 0 a uniform cloud of non-interacting bosons is in equilibrium. At

t = 0 interactions are suddenly turned on. The system is no longer in equilibrium,

and various excitations are generated. These excitations are generated on a timescale

of order the inverse mean field energy τMF ≈ ~/gn, where g = 4π~
2as/m. These

excitations equilibrate on the collision time τc ≈ 1/(nσv). The times scale as different

powers of the scattering length; τMF ∼ 1/as, while τc ∼ 1/a2
s. Thus one expects a

clear separation of timescales with τMF ≪ τc. Introducing typical parameters of Bose

gas experiments, τMF ≈ 0.6ms, and τc ≈ 17ms.

Due to this separation of timescales one can look at the two processes separately,

the generation of excitations and their equilibration. The former is described by a

collisionless (mean field) kinetic theory. There is a very interesting technical issue

here, in that within a collisionless kinetic theory, entropy is conserved and there

is no generation of quasiparticles. Thus these excitations are collective in nature

and represent an unusual oscillation of the condensate. Due to the presence of the

condensate, the spectrum of these collective oscillations is the same as the spectrum

of quasiparticle excitations.
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6.4.2 Elementary approach

The mean field theory describing this situation can be derived from the Heisenberg

equations for the field operator Ψ,

(

i∂t +
∇2

2m

)

Ψ = gΨ†ΨΨ. (6.39)

One writes Ψ = ψ+ ψ̃ where ψ = 〈Ψ〉 is a c-number which represents the condensate,

and ψ̃ is the operator that annihilates a non-condensed atom. Taking the expectation

value of Eq. (6.39) and keeping terms to quadratic order in the excitations, one arrives

at a non-linear Schrödinger equation

(

i∂t +
∇2

2m

)

ψ = gψ∗ψψ + 2g〈ψ̃†ψ̃〉ψ + g〈ψ̃ψ̃〉ψ∗. (6.40)

Varying ψ in Eq. (6.40) gives

(

i∂t +
∇2

2m

)

ψ̃ = 2gψ∗ψψ̃ + gψψψ̃†. (6.41)

where higher order terms have been ignored.

This approximation, a variant on the Bogoliubov approximation, obeys all of the

standard conservation laws (energy, mass, and current). These laws are easily verified

by noting that we could have derived the equations from functional differentiation of

a functional Φ (see Appendix D). In particular, multiplying Eq. (6.40) and (6.41)

by ψ∗ and ψ̃†, and subtracting the complex conjugate, gives ∂tn0 = −∂t〈ψ̃†ψ̃〉 =

2gIm(ψ∗)2〈ψ̃ψ̃〉, and verifies number conservation. Note that the standard Bogoliubov

theory, where the term g〈ψ̃ψ̃〉ψ∗ is ignored, does not conserve particle number.

In this formalism, a time and space dependent chemical potential is introduced as

the derivative of the condensates phase. One writes ψ =
√
n0 exp(iφ), and defines

vs ≡ (∇φ)/m (6.42)

µ ≡ −∂tφ−mv2
s/2. (6.43)

Using these definitions, one rewrites Eq. (6.40) as a set of equations,

∂tn0 + ∇ · (n0vs) = 2gn0Im(〈ψ̃ψ̃〉e−2iφ) (6.44)

µ =
∇2√n0

2m
√
no

+ g(n− n0) + gRe(〈ψ̃ψ̃〉e−2iφ). (6.45)

Equation (6.44) has the structure of a continuity equation. The right hand side repre-

sents the transfer of particles between the condensate and normal cloud. The second
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line (6.45) is analogous to Euler’s equation for an ideal fluid. The term proportional

to ∇2√no is the “quantum pressure” term which played such an important role in

Chapter 5.

The equation for the non-condensed atoms is simplified by performing a Bogoli-

ubov transformation,

ψ̃ = eiφ
∑

k

[

eik·ruk(t)b̂k + e−ik·rv∗k(t)b̂
†
−k

]

, (6.46)

with c-number functions u and v and time independent boson operators b̂k and b̂†−k.

Since Eq. (6.41) is linear in ψ̃, this ansatz involves no further approximation. To

ensure the proper commutation relationships, one must enforce |uk|2−|vk|2 = 1. The

resulting equation for uk and vk is

(

i∂t − ǫk −gn0

−gn0 −i∂t − ǫk

)(

uk

vk

)

= 0. (6.47)

To the extent that one can ignore terms proportional to the depletion, the chemical

potential is µ = g(2n− n0), and ǫ = k2/2m+ gn0. In an inhomogeneous condensate

one would also need a term corresponding to spatial gradients, and also allow for the

presence of the superfluid velocity vs.

The stationary solutions to Eq. (6.47) correspond to (uk, vk) ∼ e±iEkt, where

E2
k = ǫ2k − (gn0)

2. The physical, positive frequency solutions, are best characterized

by the bilinears (cf. 6.30),

|uk|2 =
ǫ+ E

2E
(6.48)

|vk|2 =
ǫ− E

2E
(6.49)

u∗kvk =
−gn0

2E
. (6.50)

More generically, Eq. (6.47) can be formally integrated,

(

uk(t)

vk(t)

)

= exp

[

it

(

−ǫk −gn0

gn0 ǫk

)](

uk(t = 0)

vk(t = 0)

)

. (6.51)

In this expression I have ignored the time dependence of n0 and vs, both assumed

to be slow and small. The exponential is simplified by noting that the square of its

argument is proportional to the identity, yielding,
(

uk(t)

vk(t)

)

=

[

cos(Ekt) +
i sin(Ekt)

Ek

(

−ǫk −gn0

gn0 ǫk

)](

uk(t = 0)

vk(t = 0)

)

. (6.52)
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Figure 6.2: Non-condensed density as a function of time after interactions are sud-
denly turned on. The density is measured relative to its long-time value, and time is
measured in terms of the mean field time.

It is readily verified that the constraint |uk|2 − |vk|2 = 1 is maintained by these

dynamics.

Focusing on the case at hand, at t ≤ 0, the system is in equilibrium with all of the

particles in the condensate. This implies that n0 = n and that 〈ψ̃†ψ̃〉 = 0. Using the

ansatz in Eq. (6.46), 〈ψ̃†ψ̃〉 =
∑

k(v
2
k + (u2

k + v2
k)〈b†kbk〉, which implies that bk|Ψ〉 = 0

and that vk = 0. The normalization condition u2
k − v2

k = 1 then gives uk = 1.

From Eq. (6.52) the factor vk evolves as vk(t) = i(gn0/Ek) sin(Ekt). Thus the

number of excited particles ñ = 〈ψ̃†ψ̃〉 = V −1
∑

k |vk|2 = V −1(gn0/Ek)
2 sin2(Ekt).

At long times, the phase of the sine wave is essentially random, and one can replace

sin2(Ekt) with 1/2, giving ñ = V −1
∑

k(gn0)
2/2E2

k = 2π2/ξ3
MF, where ξ2

MF = ~/gnm

is the condensate healing length. The time required to reach this asymptotic value is

of order τMF = ~/(gn0). The general integral analytically evaluates to

ñ(t) = 2π2/ξ3
MF

(

1 − cosh(4t/τMF) + sinh(4t/τMF)
)

. (6.53)

This curve is shown in Fig. 6.2.

6.4.3 Further analysis

This model calculation seems quite simple, but the physics is actually quite strange.

For example, as anticipated, the number of quasiparticles, 〈b†kbk〉, is conserved. Thus
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these oscillations of particles into and out of the condensate are somehow just a more

complicated oscillation of the condensate.

One gets further clues about this system by looking at the Green’s function,

G(1, 2) =
1

i

〈

T

[(

ψ1

ψ†
1

)

(ψ†
2 ψ2)

]〉

, (6.54)

and the functions G< and G>, corresponding to the specific time orderings t1 < t2

and t1 > t2. To make contact to the material in the early part of this Chapter, I write

these functions in terms of the central coordinate T = (t1 + t2)/2 and the relative

coordinate t = t1 − t2.

In the example at hand, 〈b†b〉 = 0, thus

G>(1, 2) =

(

u(1)

v(1)

)

(u∗(2) v∗(2)) (6.55a)

G<(1, 2) =

(

v∗(1)

u∗(1)

)

(v(2) u(2)). (6.55b)

Using the expressions for u and v in Eq. (6.52),

G>(T,ω,k) = 2πδ(ω) gn

2E2

(

−gn cos(2EkT ) ǫ cos(2EkT )−iEk sin(2EkT )

ǫ cos(2EkT )−iEk sin(2EkT ) −gn cos(2EkT )

)

(6.56a)

+2πδ(ω−Ek) ǫ+E
2E

(

ǫ+E
2E

− gn
2E

− gn
2E

ǫ−E
2E

)

+2πδ(ω+Ek) ǫ−E
2E

(

ǫ−E
2E

− gn
2E

− gn
2E

ǫ+E
2E

)

G<(T,ω,k) = 2πδ(ω) gn

2E2

(

−gn cos(2EkT ) ǫ cos(2EkT )−iEk sin(2EkT )

ǫ cos(2EkT )−iEk sin(2EkT ) −gn cos(2EkT )

)

(6.56b)

+2πδ(ω−Ek) ǫ−E
2E

0

B

@

ǫ+E
2E

− gn
2E

− gn
2E

ǫ−E
2E

1

C

A
+2πδ(ω+Ek) ǫ+E

2E

0

B

@

ǫ−E
2E

− gn
2E

− gn
2E

ǫ+E
2E

1

C

A
.

All of the dynamics occurs in the ω = 0 sector. This is a sign that these excitations

are actually deformations of the condensate. Subtracting the Green’s functions gives

A = G>−G< = 2πδ(ω−E)

(

ǫ+E
2E

− gn
2E

− gn
2E

− ǫ−E
2E

)

−2πδ(ω+E)

(

ǫ−E
2E

− gn
2E

− gn
2E

− ǫ−E
2E

)

, (6.57)

just as one finds in equilibrium. The spectral density A determines the dispersion and

wavefunctions of the quasiparticles. Since A is independent of time, the quasiparticles

are also unchanged in time. Because of the ω = 0 structure, G< andG> are not simply

proportional to A.
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6.4.4 Kinetic approach

I now look at this problem in the language of the kinetic theory presented earlier in

this Chapter. In the absence of collisions, the fundamental equation is

{G−1
0 − Σ, G<} =

−2

i
(G−1

0 − Σ)G<, (6.58)

where {A,B} = (∂ωA∂TB − ∂TA∂ωB) − (∇pA∇RB −∇RA∇PB).

Within this approximation,

(G−1
0 − Σ)(k, T, ω) = τ3ω − ǫk − gn0τ1, (6.59)

where ǫk = k2/2m + gn0, and n0 is taken to be independent of time. Since G< is

Hermitian, it can be decomposed in terms of Pauli matrices,

G< = g0 +
∑

ν

gντν , (6.60)

where all of the g’s are real. Blindly substituting this decomposition into Eq. (6.58),

and using the relationship τµτν = δµ∋ + iǫµνλτλ, one finds the following six equations:

∂Tg3 = 0 (6.61a)

∂Tg2 = 2(ǫ)g1 + 2(gn0)g0 (6.61b)

∂Tg1 = −2ǫg2 (6.61c)

∂Tg0 = 2(gn0)g2 (6.61d)

0 = ωg3 − ǫg0 − (gn0)g1 (6.61e)

0 = ωg2 (6.61f)

0 = ωg1 + (gn0)g3 (6.61g)

0 = ωg0 − ǫg3, (6.61h)

which correspond to (6.34) specialized to the present case. The algebraic equations

can only be solved if the determinant vanishes,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω −gn0 −ǫ
ω

gn0 ω

−ǫ ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ω2(ω2 − ǫ2 + (gn0)
2) = 0, (6.62)

requiring ω = 0,±E. The distribution function will therefore have terms proportional

to δ(ω), δ(ω−E), and δ(ω+E). Considering each of these cases in turn, the Green’s
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functions must have the general form,

G< = Aδ(ω − E)

(

ǫ− E −gn0

−gn0 ǫ+ E

)

+Bδ(ω + E)

(

ǫ+ E −gn0

−gn0 ǫ+ E

)

(6.63)

+δ(ω)

(

−gn0f1(t) ǫf1(t) + if2(t)

ǫf1(t) − if2(t) −gn0f1(t)

)

,

where A and B are constants, and f1 and f2 are functions of time. One also has

initial conditions
∫

dω

2π
G<(T = 0) = (1 − τ3)/2, (6.64)

which tells us that A − B = 2π/2E, f2(0) = 0, and f1(0) = (A + B)gn0/ǫ =

(A + B)ǫ/gn0 − 2π/gn0. Thus f1(0) = 2π(gn0/E
2), A = 2π(ǫ + E)/2E2, and B =

2π(ǫ− E)/2E2.

The differential equations in Eq. (6.61) reduce to two equations,

∂T f2 = 2E2f1 (6.65)

∂T f1 = −2f2, (6.66)

which are trivially integrated. As expected one recovers Eq. (6.56b).
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Chapter 7

Electromagnetically Induced

Transparency.

In this Chapter I describe the theory of electromagnetically induced transparency in

a gaseous medium, and show how this effect is used to stop light. Two formalisms

are discussed at length, a mean field theory, and an equilibrium Green’s function cal-

culation. I also say a few words about performing a non-equilibrium Green’s function

calculation, though a full analysis of such a theory goes beyond the scope of this

thesis.

7.1 Introduction: the basic picture

The New York Times writes “Scientists bring light to full stop” [125]. A light beam

is frozen in space. Is this the ultimate in delay lines? Will it be used for quantum

computing? Most importantly, how does it work?

The premise is simple. Light, which is a harmonic vibration of the electromagnetic

field, couples to polarons, harmonic vibrations of the polarization of a media – the

coupled excitation is referred to as a polariton. If one finds a scheme where one can

control the strength of the coupling, then one can adiabatically transform light into

a polarization wave. Polarons have very little dispersion, so the excitation is then

effectively stopped. At some later time one can transform the polaron back into a

photon, and light continues on its way.

It is useful to ask what is the simplest system in which one can perform this trick.

A first guess would be that one could use a cloud of two-level atoms. Unfortunately,

such a system is too simple, since there is no way to control the strength with which

light couples to the transition. Without being able to control the coupling strength,

112



one cannot adiabatically transfer the photon into a polaron. An even bigger problem

with two-level atoms is that since one has no control of the coupling to the electro-

magnetic field, one has to contend with spontaneous emission, and the polaron will

consequently have a very short lifetime.

The next level of sophistication is to use three-level atoms. Typically one considers

a Λ configuration, as portrayed in Fig. 7.1. The levels 1 and 2 represent different

hyperfine states of an atom, and there are no allowed transitions between them. The

state 3 is an excited electronic state, which couples to both 1 and 2, through different

polarizations of light, denoted α and β. There are three distinct polarization waves in

this system, depending upon which of the two states are coupled. The various cases

will be labeled by the symbols, P13, P12, P23. The goal will be to convert α photons

into P12 polarization waves. The switch which will turn on the coupling between the

photon and the polarization wave is a laser of β photons.

1

2

3
α

β

Figure 7.1: Electronic structure of a 3-level atom in the Λ configuration. Levels 1
and 3 are coupled by photons of polarization α, while levels 2 and 3 are coupled by
photons of polarization β

Suppose one has an intense laser of β photons. An atom in the 1 state, could

then absorb an α photon, jumping into the 3 state. Then the atom can be stimulated

to emit a β photon, dropping into the 2 state. Thus, when the laser is on, P12 is

coupled to the α photons. When the laser is off there is no coupling. This system

can therefore be used to stop light. This process is schematically shown in Fig. 7.2.

α
3 2
β

1

Figure 7.2: Schematic view of the transfer of a α photon into a P12 polarization
wave. An α photon comes along and excites an atom from the 1 state to the 3
state, generating a P13 polaron. The excited atom emits a β photon, and changes the
polaron into a P12 polarization wave.

One caveat is needed. At no point in the procedure can the atom ever have a
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probability of occupying the 3 state. The 3 state is highly excited and couples strongly

both α and β photons, consequently it has a relatively short lifetime. Any occupation

of this state will result in an absorption of photons. It is the lack of absorption which

gives this effect the name “electromagnetically induced transparency.”

It is also useful to say a few words about momentum conservation. If the initial

light beam has momentum k, and the coupling laser has momentum q, then the

polaron will have momentum k − q. An interesting twist on the experiment is to

convert the polaron back into a photon using a coupling beam of momentum q′ 6= q.

In this case the outcoming light will have momentum k − q + q′. This system could

then be used as a very efficient router, where light can be stored and the out-coupled

in an arbitrary direction.

7.2 A mathematical description of the system

The low energy physics of the light-atom system is given by the Hamiltonian,

H =
∑

k

[

ck(α†
kαk + β†

kβk) +
∑

ν=1,2,3

(ǫk + Eν)ψ
†
νkψνk

]

(7.1)

+λ
∑

kq

[

αqψ
†
3k+qψ1k + α†

qψ
†
1kψ3k+q + βqψ

†
3k+qψ2k + β†

qψ
†
2kψ3k+q

]

+
2π~

2as

m

∑

kqp

∑

µν

ψ†
νkψ

†
µpψµp−qψνk+q.

The first line gives the energies of the uncoupled modes. The photons of the two

polarizations are annihilated by the operators αk and βk. Atoms in the electronic

state ν with momentum k are annihilated by the operator ψνk. The atomic energy is

written as ǫk +Eν , where ǫk = k2/2m, and Eν is the energy of the electronic state ν.

The second line of this Hamiltonian gives the coupling between the photon modes

and the atomic transitions. The coupling constant λ is proportional to the dipole

matrix element for the electronic transition, explicitly

λ = −e〈1|x|3〉
√

E3 −E1

2ǫ0V
, (7.2)

Where 〈1|x|3〉 is the dipole matrix element, e is the electron charge, ǫ0 is the permi-

tivity of space, and V is the volume of space. I assume that the same λ can be used

for coupling states 3 and 2, as are used for 3 and 1. This approximation works well

for the current experiments, but generically two such constants are needed. One sees

114



in the Hamiltonian that the photons couple to polarization operators

Pij(q) =
∑

k

ψ†
ik+qψjk. (7.3)

Finally, the last line of the Hamiltonian gives the interaction between the atoms.

This interaction will only be important in that it will lead to some collisional broaden-

ing/decoherence. The collision cross-section is σ = 4πa2
s. Some typical experimental

parameters are given in table 7.1.

Table 7.1: Experimental Parameters: temperature T , density n, collision rate 1/τc,
natural width of state 3 Γ3, coupling constant λ, recoil energy Erecoil = k2/2m, and a
rate Γd associated with Doppler broadening (see Section 7.4)

87Rb (Phillips et al. [12]) 23Na (Liu et al. [11])

(E3 −E1)/2π~ 3.8 · 1014 Hz 5.1 · 1014Hz

(E2 −E1)/2π~ ∼ 105 Hz 1.8 · 109 Hz

kBT/2π~ 360K=7.5 · 1012 Hz 10−6 K=2 · 104 Hz

n 1011cm−3 1013 cm−3

as 5.8nm 4.9nm

1/τc 8.8 · 104 s−1 1.2 · 104s−1

Γ3 3.4 · 107s−1 6.1 · 107s−1

λ2V/~2 256 m3/s2 253 m3/s2

Erecoil/2π~ 3.6 · 104Hz 2 · 104 Hz

Γd =
√
ErecoilkBT/~ 5 · 108 Hz 2 · 104Hz√
Nλ/~ 5.1 · 109 s−1 5.1 · 1010s−1

7.3 Mean field theory

There are two experiments which use an atomic gas to stop light. The group at

the Rowland Institute [11] uses a cloud of 23Na just above the BEC transition tem-

perature. The group at Harvard [12] uses a hot (360K) cloud of 87Rb. The former

experiment is almost in the regime where all components of the experiment are coher-

ent. The atoms are almost condensed, and all photon fields are generated by lasers.

The system can therefore be adequately described by a zero-temperature mean field

theory. Finite temperature effects are discussed in the following section.

First I restrict my attention to a single mode in each field, and ignore all incoherent

processes such as spontaneous emission and atomic collisions (these can be put back
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in phenomenologically). Second, as the experiments are performed in very dilute

gases, I ignore the interactions between the atoms. Third, I ignore the dynamics of

the β field – this is assumed to be controlled by the experimenter by turning a dial.

With these assumptions, I write down the Heisenberg equations of motion for the

field operators, treating the operators as c-numbers,

i∂tψ1 = E1ψ1 + λα∗ψ3 (7.4a)

i∂tψ2 = E2ψ2 + λβ∗ψ3 (7.4b)

i∂tψ3 = E3ψ3 + λαψ1 + λβψ2 (7.4c)

i∂tα = ckα + λψ∗
1ψ3. (7.4d)

The recoil energies have been absorbed into Eν . Two constants of motion are readily

verified,

n =
∑

ν

|ψν |2 (7.5a)

n∗ = |α|2 + |ψ3|2 + |ψ2|2, (7.5b)

which are respectively the total density of atoms and the total density of “excitations.”

I now look for equilibrium solutions to these equations. I take β to be on resonance,

β(t) = βe−i(E3−E2)t, and rescale the frequencies of all the fields

ψi → e−iEitψi (7.6a)

α → e−iω0tα = e−i(E3−E1)tα. (7.6b)

The resonant frequency is ω0 = E3 −E1. After rescaling, the resulting equations are

i∂tψ1 = λα∗ψ3 (7.7a)

i∂tψ2 = λβ∗ψ3 (7.7b)

i∂tψ3 = λαψ1 + λβψ2 (7.7c)

i∂tα = (ck − ω0)α+ λψ∗
1ψ3. (7.7d)

On resonance, ck = ω0; these equations are solved by αψ1 + βψ2 = 0 = ψ3, which

can be conveniently written as |α|2 = |β|2|ψ2|2/|ψ1|2. This state is known as a dark

polariton, since it does not undergo spontaneous emission. Utilizing the conservation

laws, one can relate |α|2 and |β|2 in this dark state via the equation,

|α|2 =
|β|2(n∗ − |α|2)
n− n∗ + |α|2 , (7.8)
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Figure 7.3: Relationship between probe and coupling beam intensity. The density
of probe photons |α|2 vs. the density of coupling photons |β|2, under the constraint
that the total number of excitations is held constant. As |β|2 → ∞ the density
of probe photons equals the total density of excitations n∗. If the coupling beam is
adiabatically reduced, the probe photons are converted into polarons. When |β|2 → 0
no probe photons remain. Asymptotically, |α|2 = (n∗/n)|β|2 as |β|2 → 0.

which is easily solved for |α|2,

|α|2 =
1

2

√

(n− n∗ + |β|)2 + 4|β|2n∗ − (n− n∗ + |β|2). (7.9)

In particular, β → ∞, implies |α|2 → n∗, and the excitation is a photon. When

β → 0, the magnitude |α|2 → 0, and the excitation is a P12 polaron. At no point is

state 3 ever occupied. By adiabatically changing β one can tune from the photon to

the polaron. If n∗ ≪ n, one has a much more convenient expression

|α|2 =
n∗|β|2
n+ |β|2 . (7.10)

The full expression (7.9) is plotted in Fig. 7.3.

Experimentally, light is stopped by adiabatically ramping the strength of the

coupling laser. The experimentalist starts with a very strong β field. A laser of α

photons is incident on the atomic cloud. While the light is inside the cloud, the β

laser is slowly turned off, transforming the photons to polarons.

To understand the group velocity of the excitation one must look at the dispersion

ω(k). Technically, this starts to become tricky, since one has to solve Eq. (7.7) for

ck 6= ω0. To produce analytic results one has to expand in small parameters. For
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example, the speed of light is calculated by expanding (7.7) in small (ck − ω0). This

procedure results in a velocity of v = c/(1+nβ2/(α2 +β2)2), which as α → 0 becomes

v = c/(1 + n/β2).

A more straightforward approach is to expand in small α. Physically this expan-

sion corresponds to assuming that the probe beam is weak (which is the experimen-

tally relevant regime). To this end, I change from the particle operators ψi to the

polarization operators Pij = ψ†
iψj ,













i∂t − ck −λ
−λ(n1 − n3) i∂t − ω0 −λβ

−λβ∗ i∂t − (E2 − E1) λα

λα∗ i∂t − (E2 −E3)

























α

P13

P12

P32













=













0

0

0

λβ∗(n3 − n2)













,

(7.11)

where ni−ψ†
iψi. If one assumes α is small, one can ignore the coupling to P32, finding

a linear theory,






i∂t − ck −λ
−λn i∂t − ω0 −λβ

−λβ∗ i∂t − (E2 −E1)













α

P13

P12






=







0

0

0






. (7.12)

I have approximated n1−n3 by the total density of particles, n. One can phenomeno-

logically introduce the spontaneous decay of state 3, by transforming ω0 → ω0 − iΓ

in Eq. (7.12). Taking β to be on resonance, the eigenfrequencies solve

(ω − ck)[(ω − ω0)
2 − λ2β2 − iΓ(ω − ω0)] − λ2n(ω − ω0) = 0. (7.13)

The general solution to this cubic is not particularly enlightening. One can write this

equation in a way which is conducive to solving iteratively for ω near ck,

ω − ck = λ2n
ω − ω0

(ω − ω0)2 − λ2β2 − iΓ(ω − ω0)
. (7.14)

In particular, to first order one finds v = c(1 − n/β2). In Fig. 7.4, I plot the roots of

Eq. (7.13) as a function of k.

On resonance, (i.e. when ω0 = ck) the eigenfrequencies are

ω = 0 (7.15)

ω = ∓λ
√

n + β2. (7.16)
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Figure 7.4: Resonant frequencies of the mean-field equations. The dashed line shows
the frequencies when the coupling between the photons and the polarons are turned
off.

On dimensional grounds, the adabaticity condition is that the rate of change of the

laser intensity is much less than the minimum energy spacing between the modes, i.e.

∂tβ

β
≪ λ

√
N

~
. (7.17)

For alkali atoms, this ratio is of order 108 − 1010Hz.

Transparency

An important point here is that even in the presence of spontaneous emission from

state 3, the frequencies (7.15) and (7.16) are real, implying that there is no absorption.

In contrast, in the absence of the coupling beam, the α photons would be quickly

absorbed by the gas. This absorption results from generation of P13 excitations,

which have a very short lifetime.

7.4 Equilibrium Green’s functions

I now go beyond the mean field treatment by including various incoherent processes.

I use the standard finite temperature equilibrium Green’s functions as discussed in

Appendix C. The formalism can be conveniently built up starting from the equations

of motions for the field operators shown in Eq. (7.11). (This equation was presented

as a mean-field equation, but as long as one keeps the operators normal ordered

it is also true for the fields themselves.) I will however take a more intuitive, but

equivalent, approach of diagrammatically building up the self-energies for the photon
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and polaron Green’s functions.

7.4.1 Two level atoms

A useful exercise to get used to this approach is to first consider a gas of two-level

atoms interacting with light. This is equivalent to setting β = 0 and looking at the

Green’s function for α. The photon couples to the polarization by exciting atoms

from state 1 to state 3,

q
= +

3

1

+ · · · (7.18)

In this case the self-energy is

Σα(k, ω) = λ2Π
(0)
13 (k, ω) =

3

1

(7.19)

=
λ2

2π

∫

dz

ω − z

∫

d3q

(2π)3

∫

dν

2π
(7.20)

[G>
3 (k − q, z − ν)G<

1 (q, ν) −G<
3 (k − q, z − ν)G>

1 (q, ν)] .

There is a gap of order 10000K between the 1-states and the 3-states, so in equilibrium

there should be no occupation of the 3-states. Therefore the Green’s functions have

the simple form, G<
3 = 0 and G>

3 = A3 = 2ImG3, where A3 is the spectral density

(see Appendix C.4). In the absence of any α photons, G1 will be the free Green’s

function,

G1(k) =
1

ω −E1 − k2/2m
. (7.21)

One is then lead to the simple result

Σα(k, ω) = λ2

∫

d3q

(2π)3
f(ǫq)G3(k − q, ω + E1 + q2/2m), (7.22)

where f(ǫq) is the equilibrium occupation of a mode with energy ǫq. Taking into

account spontaneous emission processes, one can approximate the propegator G3 as

G3(k, ω) =
1

ω − (E2 + k2/2m− iΓ3/2)
, (7.23)

which yields a self-energy,

Σα(k, ω) = λ2

∫

d3q

(2π)3

f(ǫq)

ω − ω0 + k · q/m+ iΓ/2
. (7.24)
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The resonant frequency is ω0 = E3 − E1 + Erecoil, where Erecoil = k2/2m.

There are two cases in which the integral is trivial to perform. First, at zero

temperature only the mode q = 0 is occupied, and

Σα(k, ω) =
λ2n

ω − ω0 + iΓ/2
, (7.25)

where n is the atomic density. The other simple case is when thermal broadening

dominates over the natural width Γ. Thermal broadening only dominates at quite

high temperatures, in which case one can take f to be a Boltzmann distribution, and

neglect Γ in Eq. (7.24). Using the identity (x− a)−1 = P (x− a)−1 ± iπδ(x− a), one

can read off the imaginary part of Σ,

ImΣα(k, ω) = −λ
2n

2

( m

2πk2T

)1/2

exp
(

− m

2k2T
(ω − ω0)

2
)

. (7.26)

The resonance clearly has a width Γd =
√

4kBTǫk. The crossover between the zero

temperature behavior and the high temperature behavior occurs when Γd = Γ, which

is equivalent to kBT = Γ2/Erecoil.

For a Gaussian distribution one can perform the integral for all temperatures

without taking Γ → 0. The resulting line shape extrapolates between a Lorentzian

and a Gaussian (these two shapes are compared in Fig. 7.5). The basic trick involves

first integrating out the momenta perpendicular to k, the resulting one-dimensional

integral is of the form

I(x) =
1√
π

∫

dt
e−t2

t− x
. (7.27)

Not surprisingly, this same integral plays an important role in the random phase

approximation to the density excitations of a gas of atoms discussed in Appendix E.

To evaluate the integral, one expresses (t− x)−1 as a Fourier integral

I(x) =
i

π

∫ ∞

0

ds

∫ ∞

−∞
dt exp

(

−t2 − is(t− x)
)

(7.28)

= ie−x2

(1 + erfix), (7.29)

where erf(x) is the error function. The end result is

Σα(k, ω) =
λ2n

2

(

2

πΓ2
d

)1/2

exp

(

−(ω − ω0 − iΓ/2)2

Γ2
d

)

[ierf(i(ω − ω0 − iΓ/2)/Γd) − i] .

(7.30)

For further discussion of polaritons in gases of two level atoms, see [126].
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Figure 7.5: Comparison of a Lorentzian and a Gaussian

7.4.2 Three level atoms

With the simple polariton problem under our belts, it is quite straightforward to

understand electromagnetically induced transparency. Adding the β photons mixes

G3 and G2,

G3(k, ω) =
3

=
3

+
3 2 3

+ · · · (7.31)

=
1

ω − (ǫk + E3 − iΓ/2) − λ2|β|2
ω − (ǫk−qc + E2 + cqc)

, (7.32)

where qc is the momentum of the coupling laser. The self-energy of the α photons is

found by substituting (7.32) into (7.22). Thus one needs to evaluate G3(k − q, ω +

ǫq + E1) where k is the momentum of the α photon, and q is a momentum which is

integrated over. In the experiments, Doppler broadening is minimized by taking the

probe beam of α photons to be colinear with the control beam of β photons. In this

case k and qc point in the same direction. For all practical purposes, these momenta

are equal, |k| = |qc|, and G3 is

G3(k − q, ω + ǫq + E1) =
ω − ω1

(ω − ω1)(ω − ω0 + k · q/m+ iΓ/2) − λ2|β|2 , (7.33)

where ω1 = (E2 − E1) + cqc. I will consider only the resonant case, ω1 = ω0. Even

with k parallel to qc, The expression (7.33) has some q dependence, which leads to

Doppler broadening. Physically, this broadening arises from the coupling to state 3.

The integral in Eq. (7.22) again has two simple limits. At low temperature
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(T ≪ Γ2/Erecoil),

Σα(q, ω) =
λ2n(ω − ω0)

(ω − ω0)2 − λ2β2 + (ω − ω0)iΓ/2
, (7.34)

while at high temperature

ImΣα(k, ω) = −λ2n
mΛT

2k
exp

(

− m

2k2T

[(ω − ω0)
2 − λ2β2]2

(ω − ω0)2

)

. (7.35)

For arbitrary temperatures (treating f using Boltzmann statistics),

Σα(k, ω) = −λ2n

(

mΛT

2k

)

exp(−x2)(ierf(ix) − i) (7.36)

x =

(

βm

2k2

)1/2
(ω − ω0)

2 − λ2β2 − iΓ(ω − ω0)/2

ω − ω0
. (7.37)

The statement of transparency is that Im(Σα) = 0, which is true when ck = ω0.

I focus on zero temperature for a moment, where the photon propegator is

Gα =
(ω − ω0)

2 − λ2β2 − iΓ(ω − ω0)/2

(ω − ck)[(ω − ω0)2 − λ2β2 − iΓ(ω − ω0)/2] − λ2n(ω − ω0)
, (7.38)

The denominator is familiar from the mean field theory in Section 7.3. The residues

at each of the poles tell how much of the excitation is a photon. The residue at

ω = ck = ω0 is

R = β2/(n+ β2). (7.39)

In the language of Section 7.3 this residue is the ratio |α|2/n∗ discussed in Eq. (7.10).

At finite temperature, the residue is

R = lim
ω→ω0

(1 − Σ/(ω − ω0))
−1, (7.40)

where Σ is given in Eq. (7.36). As z → ∞, the error function asymptotically behaves

as

erf(iz) ∼ exp(z2)/
√
πz, (7.41)

which yields the same residue. One could have guessed that the residue is temperature

independent. The only way that temperature could affect this state is through the

Doppler shift of the atomic transitions. These shifts exactly cancel on resonance,

resulting in a temperature independent residue.
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7.5 Non-equilibrium Green’s functions

For completeness, here I make a few notes about going beyond the equilibrium theory

discussed in Section 7.4. This non-equilibrium theory is a topic I would like to address

in the future.

The full kinetic theory can be discussed in terms of the matrix Green’s function,

G =
1

i







λα†α λP †
13α λP †

12α

λα†P13 λP †
13P13 λP †

12P13

λα†P12 λP †
13P12 λP †

12P12






. (7.42)

The equations of motion for the Green’s function is formally written as G−1G = 1.

At zero temperature, where ψ1 is a c-number,

G−1 =







i∂t − ck −λ 0

−λ (i∂t − ω0 + iΓ/2)/n −λβ/n
0 −λβ∗/n (i∂t − ω0)/n






(7.43)

I have explicitly taken β to be on resonance, and have neglected the dispersion of the

polarons. This expression is nothing but the equations of motion in Eq. (7.12). For

time independent β, these equations are easily integrated to reproduce the results of

the equilibrium theory. To describe a non-equilibrium theory, one can perform the

Wigner transform outlined in Chapter 6. In general, the resulting equations need to

be solved numerically, and its analysis is a topic of further research.
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Chapter 8

Summary

Experiments on cold atomic clouds have demonstrated a diverse and extremely in-

teresting set of phenomena. In this thesis I provided a theoretical description of a

subset of these phenomena. I derived the effect of interactions on the phase tran-

sition temperature of a Bose gas. I calculated the lifetime of persistent currents in

toroidal traps. I produced a phase diagram which describes the stability of a cloud of

bosons with attractive interactions. I presented a kinetic theory for describing finite

temperature clouds of degenerate particles. I explored the interaction of light with

atomic clouds, providing a theoretical basis for experiments in which light is brought

to a halt.
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Appendix A

Mathematical Functions

A.1 The polylogarithm functions

This appendix is intended as a reference for the properties of the polylogarithm func-

tions. Further details can be found in [127, 128, 129, 130].

The polylogarithm functions are defined by the series

gν(z) =
∞
∑

j=1

zj

jν
. (A.1)

Analytically, they possess a singularity at z = 1, typically a logarithmic branch point.

For ν > 1 the limit z → 1 of gν(z) is well defined and is equal to ζ(ν).

The polylogarithm functions obey the relationship

z
d

dz
gν(z) =

d

d log z
gν(z) = gν−1(z). (A.2)

This relationship, plus the closed form

go(z) =
z

1 − z
, (A.3)

allows one to calculate many of the properties of the polylogarithm functions for

integral ν. In particular one can use this relationship to calculate an asymptotic

expansion of gν(e
−x) for small x. For this expansion I introduce the Bernoulli numbers

Bn, defined by the generating function

∑

n

Bnx
n

n!
=

x

ex − 1
= x go(e

−x). (A.4)

These numbers are tabulated in table A.1, and can be related to the Riemann zeta

function via

Bn = (−1)nn ζ(1 − n) n = 1, 2, . . . (A.5)
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Integrating (A.4) one finds

gν(e
−x) =

(−x)ν−1

(ν − 1)!

[

− log x+

ν−1
∑

m=1

1

m

]

+

∞
∑

k=0
k 6=ν−1

ζ(ν − k)
(−x)k

k!
. ν = 1, 2, 3, . . .

(A.6)

The equivalent expression for non-integral ν is

gν(e
−x) = Γ(1 − ν)xν−1 +

∞
∑

k=0

ζ(ν − k)
(−x)k

k!
, ν 6= 1, 2, 3, . . . (A.7)

One derives this latter expression by taking the Mellin-Barnes transform of gν(e
−x)

[131]. A form of Laplace transform, the Mellin transform of a function f(x) is a

function F (s), related to the original by

F (s) =

∫

dx xs−1f(x) (A.8a)

f(x) =
1

2πi

∫ c+i∞

c−i∞
ds xs−1F (s), (A.8b)

where the contour in the inverse transform must be taken to the right of all the

singularities of F (s). In practice the latter integral is performed via the residue

theorem.

The Mellin transform of gν is

Gν(s) =

∫ ∞

0

gν(e
−x)xs−1dx = ζ(ν + s)Γ(s). (A.9)

Gν(s) is well defined for large enough s. One inverts the transform via a contour

integral

gν(e
−x) =

1

2πi

∫ c+i∞

c−i∞
Gν(s)x

−sds, (A.10)

where the contour is to the right of all singularities of Gν(s). This integral is then

evaluated using the residue theorem along with the following facts. 1) The function

Table A.1: Bernoulli numbers Bn, as defined by the generating function
t

et − 1
=

∑

n

Bn
tn

n!
.

B0 B1 B2 B3 B4 B5 B6 B7 B8

1 −1
2

1
6

0 − 1
30

0 1
42

0 − 1
30
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ζ(s) is regular, except at s = 1 where it has a pole with residue 1. 2) The function

Γ(s) is regular except when s is a non-positive integer. The residue of Γ(s) at s = −n
is (−1)n/n!. Summing over the residues gives equation (A.7).
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Appendix B

The µ→ 0 asymptotics of F for a

noninteracting Bose gas.

Here I calculate the µ → 0 behavior of the grand canonical free energy of a non-

interacting Bose gas. This result is used extensively in Chapter 2.

B.0.1 Mathematical structure of the expansion

I begin by developing some mathematical machinery. As in Section 2.1, I consider

a generic system of non-interacting bosons with energy levels εi. Measuring the

chemical potential µ from the ground state energy εo, The grand free energy is (cf.

Eq. (2.6))

F = −T
∑

j

∑

n

e−βj(εn−εo−µ)

j
(B.1a)

= −T
∑

n

g1(e
−β(εn−εo−µ)) (B.1b)

= −Tg1(e
βµ) + Fex, (B.1c)

where g1(z) = − log(1 − z). The contribution of the excited particles, Fex is regular

at µ = 0, so this function can be expanded in a series in βµ. Using the properties of

the polylogarithm functions (see Appendix A.1),

Fex = −T
∑

n

′ ∞
∑

k=0

(βµ)k

k!
g1−k(e

−β(εn−εo)). (B.2)

The prime indicates that the ground state is omitted from the sum. Equation (B.2)

is the starting point for this analysis. The radius of convergence of (B.2) is limited
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by the pole at µ = ε1 − εo. The coefficients of βµ in Eq. (B.2),

fk =
∑

n

′
g1−k(e

−β(εn−εo)), (B.3)

are thermodynamic derivatives of the free energy with respect to the chemical poten-

tial, evaluated at µ = 0. Hence they give the moments (in fact the cumulants) of the

number of excited particles at temperatures below Tc. In particular:

< Nex > = f1 (B.4a)

< δN2
ex > = 〈N2

ex〉 − 〈Nex〉2 = f2. (B.4b)

I proceed by expanding fk in powers of the inverse temperature β. The structure

of the expansion is understood by writing

fk =

∫

dE ρex(E) g1−k(e
βE) (B.5a)

≈
∫

dE
ρex(E)

(βE)k
+ O(βk−1). (B.5b)

where ρex(E) is the density of excited states. For low enough energies the density

of states has the form ρ(E) ∼ Eα/γα+1, where γ has the dimension of energy. If

k < α + 1 the integral converges and fk ∼ (kBT/γ)
α+1. Otherwise, the sum is

infrared divergent, and will be dominated by the first term. On dimensional grounds

the lowest energy state has energy ε1 ∼ γ, so in this latter case fk ∼ (kBT/γ)
k.

To make these results more concrete, briefly consider point particles in a three

dimensional box, where α = 1/2 and γ ∼ ~
2/mL2. According to this argument, the

number of excited particles is extensive, Nex = f1 ∼ L3, while the fluctuations are

anomalously large 〈δN2
ex〉 = f2 ∼ L4. These large fluctuations in the number of non-

condensed particles are related to the large fluctuations in the number of condensed

particles (2.25).

B.0.2 The Mellin-Barnes Transform

To go beyond these order-of-magnitude estimates of fk, one performs a Mellin-Barnes

transform defined in equation (A.9). This transform allows one to express fk as a

sum of power-laws.

To produce an expansion of fk in powers of β, one should take the Mellin transform

of (B.3) with respect to β. This approach is inconvenient, since β is a dimensional

quantity. Instead I introduce a dummy variable x multiplying β, then in the end one
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can set x = 1. Thus I define

Fk(s) =

∫

dx xs−1
∑

n

′
g1−k(e

−xβ(εn−εo)) (B.6a)

=
∑

n

′∑

j

1

j1−k

∫

dx xs−1e−xβj(εn−εo) (B.6b)

= ζ(s+ 1 − k)Γ(s)
∑

n

′
(

1

β(εn − εo)

)s

. (B.6c)

The rightmost pole of Fk(s) gives the leading order behavior of fk as β → 0. The

zeta-function has a pole at pole at s = k with residue 1. the Gamma function has

poles at s = −m (m=0,1,2,. . . ) with residue (−1)m/m!. The remainder, designated

the spectral zeta function

Z(s) =
∑

n

′
(

1

β(εn − εo)

)s

, (B.7)

contains all the information about the details of the system.

We now have a simple algorithm for finding the expansion of F . First one finds

the poles of Z(s), giving all of the singularities of Fk(s). Assuming one only have to

deal with isolated singularities (as is the case), it is a simple matter to directly write

down fk, since fk is identically equal to the sum of the residues of Fk(s),

fk =
∑

poles si

Res{Fk(s), si}. (B.8)

In the following two Sections I specialize first to particles in a d-dimensional box,

then to particles in a harmonic well.

B.0.3 Particles in a Box

The spectral zeta function for particles in a box, with dispersion

ε = (~2/2mℓ2)(n2
x + n2

y + · · · ), (B.9)

is discussed by Ziff et al. [127]. Following those authors, I introduce sums Cd(s) given

by

Cd(s) =
Γ(s)

πs

∑′

nx,ny,...

1

(n2
x + n2

y + · · · )s
, (B.10)

in terms of which the spectral zeta function is

Γ(s)Z(s) =

(

L

λ

)2s

Cd(s). (B.11)
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Some sample values of the sums Cd(s) are given in Table B.1. The function Cd(s) is

regular except for poles at s = d/2 and s = 0, where the residues are respectively 1

and −1. These singularities can be removed to produce an analytic function

C̃d(s) = Cd(s) +
1

s
− 1

s− d/2
− 1

d/2
. (B.12)

It will only be necessary to evaluate this function at s = 0 or s = d/2, where it is

equal to the regular part of Cd(s). The function C̃d(s) is tabulated in Table B.2.

Putting together the poles from Z(s) and from the zeta function in (B.6c), one

finds that for k 6= 0, d/2,

fk =

(

ℓ

Λ

)d

ζ(1 − d/2 − k) +

(

ℓ

Λ

)2k

Cd(k) − ζ(1 − k), (B.13a)

while for even d,

fd/2 =

(

ℓ

Λ

)d(

2 log
ℓ

Λ
+ γ + C̃d(d/2)

)

, (B.13b)

and for k = 0,

f0 = −2 log
ℓ

Λ
− γ + C̃d(0). (B.13c)

In the latter two equations γ ≈ 0.577216 is Euler’s gamma, which appears here

because ζ(s) = 1
s−1

+ γ + O(s− 1).

B.0.4 Harmonic Well

The harmonic well, with ε = ~Ω(n1 + · · ·+nd +d/2) is slightly easier to analyze than

the uniform gas since the energy levels are evenly spaced. The spectral zeta function

for a harmonically trapped gas is

Z(s) = (β~ω)−s
∑

nx,ny,...

(

1

nx + ny + · · ·

)s

, (B.14a)

= (β~ω)−sQd(s), (B.14b)

where the sum is taken over all non-negative n, where not all of the n’s are zero. The

sum Qd(s) can be written as

Qd(s) =
∑

n

g
(d)
n

ns
, (B.15)
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Table B.1: Values for the lattice sum Cd(s) =
Γ(s)

πs

∑′

nx,ny,...

1

(n2
x + n2

y + · · · )s

d=1 d=2 d=3

s=1 1.047197 ∞ -2.8374

2 0.219324 0.610644 1.6752

3 0.131243 0.300514 0.5419

4 0.123694 0.263718 0.4278

5 0.157008 0.324039 0.5039

6 0.249700 0.507268 0.7741

Table B.2: Values for the lattice sum C̃d(s) = Cd(s) +
1

s
− 1

s− d/2
− 2

d
.

d=1 d=2 d=3

s=0 -1.95381 -0.89912 -0.4996

s=d/2 -1.95381 -0.89912 -0.4996
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where g
(d)
n is the number of ways of adding d non-negative numbers together to form

the number n. Calculating g
(d)
n is a famous boson counting problem,1 and g

(d)
n can be

written in terms of a binomial coefficient,

g(d)
n =

(

n+ d− 1

d− 1

)

. (B.16)

The binomial coefficients
(

n
m

)

, read “n choose m,” give the number of ways of taking

m objects out of a set of n, disregarding order. I now expand this in powers of n as

g(d)
n =

1

Γ(d)

∑

k

[

d

k

]

nk−1. (B.17)

The Stirling numbers of the second kind
[

n
m

]

, read “n cycle m”, give the number of

ways of making m cycles of n objects. Table B.3 lists some of Stirling numbers. Note

that
[

n
n

]

= 1.

Qd(s) can now be written as

Qd(s) =
∞
∑

n=1

g(d)
n

1

ns
(B.18a)

=
∑

j

1

Γ(d)

[

d

d− j

]

ζ(s+ 1 − d+ j), (B.18b)

with poles at s = d, d − 1, . . . , 1. I tabulate Qd(s) in Table B.4. Since there are so

many poles, the full expression for fk is rather daunting. The leading order behavior

is

fk =















(β~ω)−dζ(d+ 1 − k), k < d

(β~ω)−d
(

∑

l 6=0

[

d
d−l

]

ζ(1 + ℓ) + Γ(d) (− log(β~ω) − γ +Hd−1)
)

, k = d

(β~ω)−kΓ(k)Qd(k), k > d,

(B.19)

where Hn =
∑n

m=1
1
m

is the partial sum of reciprocals. Including higher order terms

1 The standard counting argument goes as follows. The number of ways of writing n as a sum of

d non-negative numbers is the same as the number of ways of writing n + d as a sum on d positive

numbers. The latter is calculated by writing down n tick marks, and asking how many ways are

there to put d − 1 barriers in the n + d − 1 spaces between the tick marks. This gives

g(d)
n =

(

n + d − 1

d − 1

)

.
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Table B.3: Stirling numbers of the second kind
[

n
m

]

m=0 1 2 3 4 5

n=0 1

1 0 1

2 0 1 1

3 0 2 3 1

4 0 6 11 6 1

5 0 24 50 35 10 1

6 0 120 274 225 85 15

Table B.4: Values for the lattice sum Qd(s) =
∑

nx,ny,...

(

1

nx + ny + · · ·

)s

.

d=1 d=2 d=3 d=4 d=5

s=1 ∞ ∞ ∞ ∞ ∞
2 1.64493 ∞ ∞ ∞ ∞
3 1.20206 2.84699 ∞ ∞ ∞
4 1.08232 2.28438 3.70788 ∞ ∞
5 1.03693 2.11925 3.26144 4.4974 ∞
6 1.01734 2.05427 3.1139 4.20104 5.32539
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gives

fk =
d−1
∑

j=0

j 6=d−k

(β~ω)j−dΓ(d− j)

Γ(d)

[

d

d− j

]

ζ(d+ 1 − k − j) (B.20)

+(β~ω)−kΥk +
∑

n

(β~ω)nζ(−n− k + 1)
(−1)n

n!
Qd(−n).

Where the contribution Υk is given by

Υk =































Q′
d(0) −Qd(0) log β~ω , k = 0

(Γ(k)/Γ(d))
∑

l 6=d−k

[

d
d−l

]

ζ(k + 1 − d+ l)

+Γ(k) (− log(β~ω) − γ +Hk−1)
, 0 < k ≤ d

Γ(k)Qd(k) , k > d

(B.21)

I tabulate Q′
d(0), the derivative of Qd(s), in Table B.5.

Table B.5: Derivative of (the analytic continuation of) the lattice sum Q′
d(0).

Q′
1(0) Q′

2(0) Q′
3(0) Q′

4(0) Q′
5(0)

-0.918939 -1.08436 -1.18229 -1.25176 -1.3054
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Appendix C

Review of response functions

C.1 Introduction

Green’s functions, and more general response functions, play an important role in

this thesis. In this Appendix I review the concepts and techniques which are used in

the rest of the thesis. In general my notation follows Kadanoff and Baym [113].

C.2 Linear response theory

Linear response theory is the general study of the response of a system to a weak

probe. Because the probe is weak, it does not perturb the system. As a concrete

example, let us consider the response of a resistor to an applied current. The re-

sponse is quantified by measuring the voltage across the resistor. For weak enough

currents, the voltage is proportional to the current. The impedance, Z = ∂V/∂I, is

the coefficient of proportionality.

The general framework in which one introduces linear response theory is to write

the perturbation in the form

Hpert(t) = α(t)A, (C.1)

where A is the operator that the perturbation couples to (in our example A would

be the voltage across the sample, since the energy is IV ), and α(t) is a c-number

describing the time dependence of the perturbation. One then looks at the time

dependence of some other operator, B, which within the interaction picture is

B(t) = 〈T
(

ei
R t

−∞
dτ V (τ)

)

B T
(

e−i
R t

−∞
dτ V (τ)

)

〉. (C.2)

In the interaction picture, the perturbation Hpert(t) appears in the form

V (t) = eiH0(t)Hpert(t)e
−iH0(t). (C.3)
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To find the linear response, one expands the exponentials to first order in α,

δB(t) =

∫ t

−∞
dτ α(τ)

1

i
〈[B(t), A(τ)]〉, (C.4)

=

∫ ∞

−∞
dτ α(τ)χr

BA(t− τ), (C.5)

which defines the retarded response function

χr
BA(t) = θ(t)

1

i
〈[B(t), A(0)]〉. (C.6)

In the frequency domain, the response is particularly simple

δB(ω) = α(ω)χr
BA(ω). (C.7)

Thus our whole task is to calculate χr
BA(ω).

The easiest route to calculating χr
BA leads one through the complex frequency

plane. This detour is not surprising, since one often uses complex analysis to calculate

Fourier transforms. One needs two expressions to continue. First, one needs the well

known convolution identity

∫

dt eiωtf(t)g(t) =

∫

dt eiωt

∫

dν

2π
e−iνt

∫

dν ′

2π
e−iν′tf(ν)g(ν ′) (C.8)

=

∫

dν

2π
f(ν)g(ω − ν). (C.9)

The second expression one needs is the Fourier transform of a theta function

∫

dteiωtθ(t)e−ηt =
−1

iω − η
=

i

ω + iη
(C.10)

∫

dteiωtθ(−t)eηt =
1

iω + η
=

−i
ω − iη

. (C.11)

To ensure convergence of the integrals, I have introduced an exponential that decays

on a timescale 1/η. At the end of the calculation I will take η to zero.

Using these simple expressions one finds

χr
BA(ω) =

∫

dω′

2π

χ[B,A](ω)

ω − ω′ + iη
, (C.12)

where

χ[B,A](ω) =

∫

dt eiωt〈[B(t), A(0)]〉 (C.13)

= −2 Imχr
BA(ω). (C.14)
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The last equality is seen by using the identity

1

ω − ω′ + iη
= P

1

ω − ω′ − iπδ(ω − ω′) (C.15)

which is easily proven by contour integration. Equation (C.14) only holds when ω is

real.

There are very efficient techniques to calculate χ[B,A](ω). These make use of the

time ordered response function

χBA(t) =
1

i
〈T (A(0)B(t))〉, (C.16)

which is closely associated with

χ>
BA(t) = 〈B(t)A(0)〉, (C.17)

χ<
BA(t) = 〈A(0)B(t)〉. (C.18)

In the frequency plane, the time ordered response function is

χBA(ω) =

∫

dt eiωt 1

i
(θ(t)χ>

BA(t) + θ(−t)χ<
AB(t)) (C.19)

=

∫

dω′

2π

χ[B,A](ω
′)

ω − ω′ . (C.20)

The retarded and time-ordered response functions are simply related,

χr
BA(ω) = χBA(ω + iη). (C.21)

Most manipulations of the time-ordered functions take advantage of the fact that

they are periodic in imaginary time. The basic argument is that this periodicity

follows from the cyclical invariance of the trace,

〈B(t)A(0)〉 = Tr
{

e−β(H−µN)
[

eiHtB(0)e−iHt
]

A(0)
}

(C.22)

= Tr
{

e−β(H−µN)
[

eβ(H−µN)e−iHtA(0)eiHte−β(H−µN)
]

B(0)
}

(C.23)

= 〈A(−(t+ iβ))B(0)〉 (C.24)

= 〈A(0)B(t+ iβ)〉. (C.25)

The end expression will look slightly different if A does not commute with N . Further

complications arise when one is dealing with Fermi operators, but for our purposes

these can be ignored. By convention one defines time ordering so that t = −iβ is

later than t = 0. Thus

χBA(t = 0) = χBA(t = −iβ). (C.26)
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Hence χBA can be expanded as a Fourier series,

χBA(t) =
1

−iβ
∑

ν

e−iωνtχBA(ων). (C.27)

The Matsubara frequencies ων are restricted to multiples of (2π/−iβ),

ων =
2πν

−iβ , ν = 0,±1,±2, . . . . (C.28)

The periodicity also leads to the equality,

χ>
BA(ω) = eβωχ<

BA(ω), (C.29)

which combined with

χ[B,A] = χ>
BA − χ<

BA, (C.30)

gives

χ>
BA = χ[B,A]

(

1 +
1

eβω−1

)

(C.31)

χ<
BA = χ[B,A]

(

1

eβω − 1

)

. (C.32)

One recognizes the thermal occupation of a boson mode in the last expression. Phys-

ically χ[B,A](k, ω) represents the spectral density, which counts the number of modes

at wave number k and energy ω. The functions χ<
BA and χ>

BA represent the density

of occupied and unoccupied states. The relations (C.31) and (C.32) are only true in

an equilibrium ensemble, though (C.30) holds generically.

I now invert the Fourier series in (C.27),

∫ −iβ

0

dt eiωνtχBA(t) = χBA(ων)

(

1

−iβ

)
∫ −iβ

0

dt (C.33)

= χBA(ων). (C.34)

Equation (C.33) may be written as an integral over all ω,

∫ −iβ

0

dt eiωνtχBA(t) =

∫ −iβ

0

dt eiωνt 1

i
χ>

BA(t) (C.35)

=

∫

dω

2π

∫ −iβ

0

dt ei(ων−ω)t

(

1

i
χ>

BA(ω)

)

(C.36)

=

∫

dω

2π

1 − e−βω

ων − ω
χ>

BA(ω). (C.37)

Using (C.31) one sees that

χBA(ων) =

∫

dω

2π

A(ω)

ων − ω
, (C.38)
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thus proving that the series coefficients χBA(ων) are equal to the Fourier transform

along the real axis χBA(ω = ων). Thus one can use the Matsubara Green’s functions

and the real-time Green functions interchangeably.

The real time Green’s functions because have obvious physical meaning, however

the imaginary time functions are easier to calculate. In the retarded real time func-

tions, temperature information is carried by the state of the system at time t = −∞.

In the time-ordered imaginary-time functions, temperature information is carried by

the cyclic boundary conditions. In both of these cases, it is only the unperturbed

system that is in thermodynamic equilibrium and the perturbation will in general

give a non-equilibrium state.

C.3 Sum rules

Often in working with this formalism that one has use for certain “sum rules.” These

involve taking various moments of χ[B,A](ω). The first rule is a statement that the

total spectral weight is given by the commutator of A and B,
∫

dω

2π
χ[B,A](ω) = χ[B,A](t = 0) = [B,A]. (C.39)

The second rule, known as the f-sum rule is

lim
ω−>∞

ω2χBA(ω) =

∫

dω

2π
ωχ[B,A](ω) = i

∂

∂t

χ[B,A](t)

∣

∣

∣

∣

t=0

= [[B,H ], A]. (C.40)

The third rule is that
∫

dω

2π

χ[B,A](ω)

ω
= −χBA(ω = 0). (C.41)

The function χBA(ω = 0) is the static response of the system. It represents the

response of the system to very slowly turning on the perturbation. By definition, this

is the adiabatic, or isoentropic, response. One is also interested in the isothermal

response of the system, where the temperature of the system is held fixed while the

perturbation is turned on. Given specific quantities A and B one can use Maxwell

relationships to connect the two responses. In the general case it is simpler to use

the microscopics.

One defines the static isothermal response of B to a perturbation of the form

δH = αA, by writing

χ(T ) =
δB

δα
=

Tr e−βHB

Tr e−βH
(C.42)

= −β [〈AB〉 − 〈A〉〈B〉] . (C.43)
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By redefining A and B to be Ã = A− < A > and B̃ = B− < B >, one can always

set 〈A〉〈B〉 = 0. Thus without loss of generality,

χ(T ) = −βχ<
BA(t = 0) (C.44)

= −β
∫

dω

2π
χ<

BA(ω) (C.45)

= −β
∫

dω

2π
f(ω)χ[B,A](ω). (C.46)

Now if the spectral weight is concentrated at energies much less that T , then one can

replace f(ω) with (βω)−1, telling us χ(T ) ≈ χBA.

C.4 Green’s functions

This Appendix would not be complete without mentioning the most important re-

sponse function, the single particle Green’s function, which is the response of the

system to adding or removing a particle. As with more general response functions,

there is a whole zoo of Green’s functions, defined by

G(12) =
1

i
〈T
(

Ψ(1)Ψ†(2)
)

〉 (C.47)

G<(12) = 〈Ψ(1)Ψ†(2)〉 (C.48)

G>(12) = 〈Ψ†(2)Ψ(1)〉 (C.49)

GR(12) =
1

i
θ(1 − 2)(G>(12) −G<(12)) (C.50)

GA(12) =
−1

i
θ(2 − 1)(G>(12) −G<(12)) (C.51)

A(12) = G>(12) −G<(12). (C.52)

Here a short hand notation is used where a number, such as 1, represents the time

and space coordinates t1 and r1. The Fourier transforms G<(ω) and G>(ω) are

particularly important as they give the density of available single-particle states and

the density of occupied single-particle states.

A convenient approach to calculating these Green’s functions is to approximate

and solve the partial differential equations that these functions obey. These equations

are derived from the equations of motion for the field operators. For concreteness,

considers a set of particles interacting through a point interaction of strength g, with

Hamiltonian

H =

∫

d3r
∇Ψ†∇Ψ

2m
− µΨ†Ψ +

g

2
Ψ†Ψ†ΨΨ. (C.53)
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Including the chemical potential µ in the Hamiltonian has no effect on the dynamics,

but makes thermodynamic relationships simpler. With this Hamiltonian, the field

operators obey an equation of motion

i∂tΨ(r, t) = [Ψ, H ] = −∇2
r

2m
Ψ(r, t) − µΨ(r, t) + gΨ†(r, t)Ψ(r, t)Ψ(r, t). (C.54)

Multiplying on the right by Ψ†(r′, t′), time ordering and taking the expectation value,

(

i∂t +
∇2

r

2m
+ µ

)

G(rt, r′t′) − g〈TΨ†(r, t)Ψ(r, t)Ψ(r, t)Ψ†(r′, t′) = δ(t)δ3(r − r′).

(C.55)

The delta function on the right results from the time derivative of the time ordering

operator. Conventionally the interaction term is expressed in terms of a self-energy

Σ(rt, r′t′). The self-energy is most easily defined by expanding (C.55) in terms of the

Matsubara frequencies, and Fourier transforming with respect to r − r′;

(ων − k2/2m+ µ− Σ(k, ων))G(k, ων) = 1. (C.56)

The self-energy is typically calculated perturbatively. Some manipulations of these

equations are discussed in Chapter 6.

C.4.1 Anomalous Green’s functions

In the presence of a condensate the Green’s functions develop a matrix structure.

Here I briefly discuss the origin of this structure.

Since there are a macroscopic number of particles in a condensate, removing a

single particle from the condensed mode makes no difference to the system. This

property is captured by stating that the field operator Ψ has a non-zero expectation

value ψ = 〈Ψ〉. The function ψ(r) =
√
N0φ(r) corresponds to the square root of the

number of condensed particles times the wavefunction of the condensate. Thus the

field operator can be decomposed into a mean field part and fluctuations, Ψ = ψ+ ψ̃.

Taking the expectation value of (C.54),

(i∂t + ∇2/2m+ µ− g|ψ|2)ψ = 2gψ〈ψ̃†ψ̃〉 + gψ∗〈ψ̃ψ̃〉 + g〈ψ̃†ψ̃ψ̃〉. (C.57)

When the right hand side is neglected this equation is the Gross Pitaevskii equation,

which is accurate when the number of non-condensed particles is small. Many alkali

gas experiments are very well described by this “nonlinear Schrödinger equation.”

For a uniform condensate this equation is readily satisfied by setting µ equal to the

mean field energy, µ = gn0.
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By considering the right hand side of (C.57) one sees that in addition to ordinary

Green’s functions of the form 〈ψ̃†ψ̃〉, one also has to consider anomalous Green’s

functions, 〈ψ̃ψ̃〉. The regular and anomalous functions are conveniently described by

a matrix

↔
G(rt, r′t′) =

1

i





〈T
(

ψ̃(r, t)ψ̃(r′, t′)
)

〉 〈T
(

ψ̃(r, t)ψ̃(r′, t′)
)

〉
〈T
(

ψ̃(r, t)ψ̃(r′, t′)
)

〉 〈T
(

ψ̃(r, t)ψ̃(r′, t′)
)

〉



 . (C.58)

Analogous to (C.55), this matrix Green’s function obeys an equation of motion

(ωτ
↔

3 − k2/2mτ
↔

0 −Σ
↔

(k, ω))
↔
G(k, ω) = τ

↔
0. (C.59)

The matrix τ
↔

3 is a Pauli matrix and τ
↔

0 is the identity. A large class of approximations

for the self-energy are discussed in Appendix D. Where no confusion is likely to arise

I omit the ‘↔’ symbol on tensors and ‘→’ on vectors.
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Appendix D

Conserving (Φ-derivable)

approximations

In this Appendix I review the structure of Φ-derivable Green’s function approxima-

tions, verifying that they obey the standard conservation laws (number, energy, and

momentum) [109]. These conservation laws are critical for correctly describing the

behavior of an atomic gas. A simple Φ-derivable approximation is used in Chapter

6.4. After a short discussion of conservation laws, I perturbatively develop Φ to sec-

ond order in the interactions. This second order functional in conjunction with the

kinetic theory of Chapter 6, provides a very accurate non-equilibrium theory of a

degenerate Bose gas.

D.1 Basic structure

As discussed in Section C.4.1, a condensed system is described by breaking up the

field operator Ψ into a mean field part ψ = 〈Ψ〉 and a fluctuation ψ̃. One is naturally

lead to a matrix formulation of the equation of motion where,

~ψ =

(

ψ

ψ†

)

(D.1)

↔
G =

(

G11 G12

G21 G22

)

=
1

i

(

〈ψ̃ψ̃†〉 〈ψ̃ψ̃〉
〈ψ̃†ψ̃†〉 〈ψ̃†ψ̃〉

)

. (D.2)

The equations of motion for these functions are schematically written as

↔
G−1

0
~ψ = ~η (D.3)

(
↔
G−1

0 −Σ
↔

)
↔
G = δ

↔
. (D.4)
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In these equations
↔
G−1

0 = iτ↔3∂t + ∇2/2mτ↔0, where τ↔3 is a Pauli matrix, τ↔0 is the

two-by-two identity matrix, and adjacent operators are convoluted. The symbol δ
↔

=

δ(t − t′)δ3(r − r′)τ↔0 is the identity. The source term, ~η, and the self-energy, Σ
↔

, are

complicated functionals of ~ψ and Σ
↔

.

D.2 Conservation laws

One can guarantee conservation laws are satisfied if Σ
↔

and ~η are related to a functional

of ψ and G via the relations [109],

2η =
δΦ

δψ∗ (D.5)

iΣij =
δΦ

δGji

, (D.6)

where ~η = (η, η∗). The symmetries of Φ give rise to conservation laws. For example,

conservation of particle number is related to the U(1) gauge symmetry of Φ. This

number conservation is easily demonstrated, starting with the identity

δΦ =

∫

d1
∑

j

δΦ

δΨj(1)
δΨj(1) +

∫

d1 d1′

[

∑

ij

δΦ

δGij(11′)
δGij(11′)

]

(D.7)

=

∫

d1 2 (η∗(1)δψ(1) + η(1)δψ∗(1)) +

∫

d1 d1′
∑

ij

iΣij(11′)δGji(1
′1). (D.8)

Here a notational short-hand is used where the symbol 1 is used in place of time and

space co-ordinates t1, t1. I now consider a local gauge change of the form

~ψ → eiΛτ↔3 ~ψ (D.9)
↔
G → eiΛτ↔3

↔
Ge−iΛτ↔3, (D.10)

which gives to lowest order

δψ = iΛψ (D.11)

δG = i(Λτ↔3

↔
G−

↔
Gτ↔3Λ). (D.12)

Thus the variation in Φ is

δΦ =

∫

d1 Λ(1) (2iη∗(1)ψ(1) − 2iη(1)ψ∗(1)) (D.13)

+

∫

d1 d1′ iΣ(11′) (iΛ(1′)τ3G(1′1) − iΛ(1)G(1′1)τ3)

=

∫

d1 Λ(1)

[

2i(η∗(1)ψ(1) − η(1)ψ∗(1)) (D.14)

−
∫

d1′ Trτ3 (G(11′)Σ(1′1) − Σ(11′)G(1′1))

]

.
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Since Φ is invariant under this gauge change, one must have δΦ = 0, for an arbitrary

choice of Λ, implying the expression in square brackets must vanish.

I now show that local number conservation is a consequence of this term vanishing.

From Eq. (D.1), ψ obeys the equation of motion
(

i∂t +
∇2

2m

)

ψ = η. (D.15)

Multiplying by ψ∗ and subtracting the complex conjugate yields

∂t(n0) + ∇ · (n0vs) = −i(ψ∗η − η∗ψ). (D.16)

Similarly, Eq. (D.2), reads
(

iτ3∂t +
∇2

2m

)

G(11′) = δ(11′) + Σ(12̄)G(2̄1′). (D.17)

The adjoint equation to (D.17) reads

−i∂t′G(11′)τ3 +
∇′2

2m
G(11′) = δ(11′) +G(12̄)Σ(2̄1′). (D.18)

Multiplying by τ3, subtracting the two equations, and setting 1′ = 1 yields

∂tiG(1, 1)+ ∇ ·
[

1

2im
(∇1τ3iG(1, 1′) −∇1′iG(1, 1′)τ3)

]

1=1′
(D.19)

=

∫

d2̄ τ3Σ(12̄)G(2̄1′) −G(12̄)Σ(2̄1′)τ3.

Thus

∂t(2n) = ∂t(2n0 + TriG) (D.20)

= 2i(η∗ψ − ψ∗η) +

∫

d2̄ Tr τ3(Σ(12̄)G(2̄1) −G(12̄)Σ(2̄1)) (D.21)

which vanishes by virtue of Eq. (D.14).

D.2.1 Components

In some circumstances it is more convenient to work with the components Gij , rather

than the tensor
↔
G. The components are not independent. For example, G11(1, 1

′) =

G22(1
′, 1). In computing the functional derivatives in (D.5), one needs to take the

interdependencies into account. To ensure that one does not double-count any terms,

it is convenient to take Φ, which is a functional of the matrix G(1, 1′), and substitute

G11(1, 1
′) → G11(1, 1

′) +G22(1
′, 1)

2
(D.22)

G22(1
′, 1) → G11(1, 1

′) +G22(1
′, 1)

2
. (D.23)
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Call this new functional Φ′. The derivatives of Φ′ with respect to G12, G21, ψ, and

ψ†, are all trivially equal to the derivatives of Φ. To show that δΦ′/δG11 = δΦ/δG,

one writes

δΦ′

δG11(1′, 1)
=

1

2

δΦ′

δG11(1′, 1)
+

1

2

δΦ′

δG22(1, 1′)
(D.24)

=
Σ11(1, 1

′) + Σ22(1
′, 1)

2
(D.25)

= Σ11(1, 1
′). (D.26)

In the rest of this Appendix, I make no distinction between Φ and Φ′. Equations

written in matrix notation will refer to Φ, while equations written in components will

refer to Φ′.

D.3 Self-energies

By definition, the self-energy is the sum of all irreducible diagrams which have one

incoming line and one outgoing line. (A diagram is irreducible if it cannot be split

into two by cutting a single propegator.) Figure D.1 shows all diagrams of Σ11 up to

second order in the interaction. All of the diagrams on each row are equal. Figure D.2

shows the diagrams for Σ12 to the same order. Algebraically, the diagonal elements

are
−iΣ11(11′) = δ(1, 1′)2(−ig)(ψ∗ψ + iG11)

+2(−ig)2iG11(1
′1)(iG11(11′)iG11(11′)−

i(G0)11(11′)i(G0)11(11′))

+4(−ig)2iG11(11′)iG12(11′)iG21(11′)

+4(−ig)2ψ(1)ψ∗(1′)iG12(11′)iG21(11′)

+2(−ig)2ψ∗(1)ψ(1′)(iG11(11′)iG11(11′)−
i(G0)11(11′)i(G0)11(11′))

+4(−ig)2ψ(1)ψ(1′)iG11(11′)iG21(11′)

+4(−ig)2ψ∗(1)ψ∗(1′)iG11(11′)iG12(11′)

+4(−ig)2ψ(1)ψ∗(1′)iG11(11′)iG11(1
′1)

+ · · · ,

(D.27)
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Figure D.1: Terms in Σ11 up to second order in the interaction. Propegators, G11,

G12, and G21 are respectively represented by diagrams , , and . In
the right hand columns the interaction is represented by a dashed line. For a point
interaction, each of the diagrams on the right reduces to the diagram on the left in
which the interaction is represented by a vertex with a dot. Short lines emanating
from vertices represent condensate contributions 〈ψ〉 and 〈ψ†〉.
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(1) (1) (2) (4)

(2) (4) (4) (4)

(4)

Figure D.2: Terms in Σ12 which are up to second order in the interaction. Unlike
figure D.1, only the diagrams with point interactions are drawn, with the multiplicity
listed in parenthesis.

while the off-diagonal ones are

−iΣ12(11′) = δ(1, 1′)(−ig)(ψψ + iG12)

+2(−ig)2iG12(11′)iG12(11′)iG21(11′)

+4(−ig)2iG11(11′)iG11(1
′1)iG21(11′)

+2(−ig)2ψ∗(1)ψ∗(1′)iG12(11′)iG12(11′)

+4(−ig)2ψ(1)ψ(1′)iG12(11′)iG21(11′)

+4(−ig)2ψ(1)ψ(1′)iG11(11′)iG11(1
′1)

+4(−ig)2ψ∗(1)ψ(1′)iG11(11′)iG12(11′)

+4(−ig)2ψ(1)ψ∗(1′)iG11(1
′1)iG12(11′)

+ · · · .

(D.28)

Here Σ is self-consistent; the expressions above use G and not G0. The interaction

g = 4π~
2as/m is not the bare interaction, but rather comes from a repeated summing

of binary interactions (the T-matrix), and to avoid double counting one must subtract

the G0’s which appear in the above equations.
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The source term in the condensate’s equation of motion η is given by

η = g〈Ψ†ΨΨ〉
= gψ∗ψψ + 2gψiG11 + gψ∗iG12

−ig
2

2

∫

d3r

∫ −iβ

0

dτ [4ψ∗(1′)iG21(11′)iG11(11′)iG11(11′)

+4ψ(1′)iG11(1
′1)( iG11(11′)iG11(11′)−

i(G0)11(11′)i(G0)11(11′))

+8ψ∗(1′)iG11(11′)iG11(1
′1)iG12(11′)

+8ψ(1′)iG11(1
′1)iG12(11′)iG21(11′)]

+ · · · .

(D.29)

These expressions are summed up by writing down Φ. To ease notation, we will

use G→ as a short form of (G11 +G22)/2.

Φ = g

∫

d1

[

|ψ|4 + 4|ψ|2iG→ + (ψ∗)2iG12 + (ψ)2iG21 + 2iG→iG→

]

−ig
2

3

∫

d1 d1′
[

3iG→(11′)iG→(11′)iG→(1′1)iG→(1′1)

+3iG12(11′)iG21(11′)iG12(1
′1)iG21(1

′1)

+12iG→(11′)iG12(11′)iG→(1′1)iG21(1
′1)

+12ψ(1)ψ∗(1′)iG→(11′)iG→(1′1)iG→(1′1)

+6ψ(1)ψ(1′)iG12(11′)iG12(1
′1)iG21(1

′1)

+6ψ∗(1)ψ∗(1′)iG21(11′)iG21(1
′1)iG12(1

′1)

+12ψ∗(1)ψ∗(1′)iG→(11′)iG21(1
′1)iG→(1′1)

+12ψ(1)ψ(1′)iG→(11′)iG12(1
′1)iG→(1′1)

+ 24ψ(1)ψ∗(1′)iG→(11′)iG12(1
′1)iG21(1

′1)

]

.

(D.30)

Φ differs from the free energy in that the second order terms have an extra factor of

1/3. The relevant diagrams are shown in Fig. D.3.
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(2) (1)

(4) (1) (1)

(3) (3) (12)

(12) (6) (6)

(12) (12) (24)

Figure D.3: Second order expansion of Φ in powers of V . Only the diagrams with
point interactions are drawn, but the multiplicity is listed in parenthesis.
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Appendix E

Collisionless Excitations of a

Spatially Uniform Weakly

Interacting Gas

E.1 Introduction

In this Appendix I calculate the linear response of a gas of degenerate atoms in the

collisionless regime. These results were used in Chapter 5 to calculate the stability

of a gas of attractive atoms, and are the building blocks for the more sophisticated

kinetic theory described in Chapter 6.

I begin by discussing a simple classical kinetic theory, the collisionless Boltzmann

equation. I linearize this equation about equilibrium to find the elementary excita-

tions of a classical gas. I show that a classical gas has a collisionless “zero-sound”

mode that has the same dispersion relationship as the Bogoliubov spectrum of a

zero temperature Bose gas. I then go through the equivalent procedure in a quan-

tum mechanical system, producing the random phase approximation, and finding the

excitation spectrum of a uniform Bose gas at arbitrary temperature. Those unfa-

miliar with the general theory of linear response functions may wish to glance at

Appendix C, where I give a brief review of the subject.

E.2 The collisionless Boltzmann equation

I begin with a discussion of the collisionless Boltzmann equation, which describes

a classical gas of particles with a mean-field treatment of their interactions. This

equation is used in plasma physics, where its known as the Vlasov equation. Treating
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the interactions via a mean-field, and introducing a weak perturbing field U(x, t), the

particles see a potential

V (x, t) = gn(x, t) + U(x, t), (E.1)

where g parameterizes the interaction. In the absence of U , the density n is uniform.

Denoting the distribution of particles with momentum p, and position x, at time

t, by f(p, x, t), the collisionless Boltzmann equation reads

∂tf(p, x, t) + v · ∇xf(p, x, t) + F · ∇pf(p, x, t) = 0. (E.2)

This equation simply states Newton’s laws. The particles drift with velocity v = p/m,

and accelerate according to the force F = −∇xV (x, t). Note that the density in (E.1)

is

n(x, t) =

∫

dp

(2π)3
f(p, x, t). (E.3)

In the absence of the perturbation U(x, t), the Boltzmann equation is solved by

the Maxwellian velocity distribution

f0(p, x, t) = e−β(p2/2m+gn−µ). (E.4)

The density n is uniform and solves the equation n = eβµ−gn/Λ3, where Λ−2 =

mkBT/2π~
2 is the thermal wavelength. Linearizing (E.2) about this solution gives

∂tδf + v · ∇xδf + βf0v · ∇x(U + gδn) = 0, (E.5)

where δf and δn are respectively the variation of f and n.

It is convenient to Fourier transform (E.5) with respect to space and time, using

the convention

g(k, w) =

∫

dx

∫

dt e−ik·x+iωtg(r, t). (E.6)

Note, there are two momenta in the resulting equations; p = mv is the physical

momentum of the particles, and ~k is the momentum associated with the Fourier

transform of x. The transformed equation reads

−ωδf + v · kδf + βf0v · k(U + gδn) = 0. (E.7)

If g = 0, then δf = βf0(v · k/(v · k − ω)). Integrating over p, the response of the

noninteracting gas is

χ0 =
δn

δU

∣

∣

∣

∣

g=0

=

∫

dp

2π3

βf0 v · k
ω − v · k . (E.8)
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In the complex frequency plane, this function contains a branch cut along the real

frequency axis. In most circumstances one is interested in the retarded response,

which is the analytic continuation from the upper half plane. One selects out this

branch by taking ω → ω + iη in (E.8). Equation (E.7) is no more difficult to solve

when g 6= 0. Solving for δf and integrating over p gives

δn = χ0(U + gδn). (E.9)

This equation is interpreted as saying that the cloud responds not only to the external

potential, but also to the mean field generated when its profile is distorted. The full

response function is written as

χ =
δn

δU
=

χ0

1 − gχ0
. (E.10)

This expression involves all powers of the interaction.

To understand the response (E.10) one first needs to understand the structure of

χ0. In Eq. (E.8), the integral over the directions transverse to k is trivial, leaving

χ0(k, ω) = −βn 1√
π

∫

dt
t e−t2

t− ω/νk
. (E.11)

All the k-dependence in this expression is buried in the characteristic energy scale

νk = 2
√

ǫkT . (E.12)

For ease of reference, I denote the integral as

I(x) =
1√
π

∫

dt
t e−t2

t− x
. (E.13)

I(x) can be written in terms of standard functions by expanding the ratio t/(t−x)
as a Fourier integral,

I(x) = 1 +
2ix√
π

∫ ∞

0

ds

∫

dte−t2−2ist+2ixs. (E.14)

The t integral is Gaussian, as is the subsequent s integral. In terms of the error

function erf(z) = (2/
√
π)
∫ z

0
exp(−z2), the integral is

I(x) = 1 + i
√
πxe−x2

(1 − erf(−ix)). (E.15)

The singularities of I(x) all reside at x = −i∞, signifying that any collective modes

of the system are strongly overdamped. As I now show, in the interacting gas, these
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singularities move towards the real axis, and for sufficiently strong interactions a

collective “zero-sound” mode develops.

A useful trick for understanding the poles of the interacting system is to find the

curves in the complex plane where Im(χ0) = 0, as shown in Fig. E.1. The poles of χ

lie along these lines. The zeroes of χ0 appear as the intersection of two of these lines.

In the context of attractive interactions, the most important line of Im(χ0) = 0 lies

on the imaginary axis, where as ω → −i∞ the function I(ω) diverges to +∞, but as

ω → i∞, the function I(ω) → 0. For attractive interactions g < 0, the pole on this

line starts at ω = −i∞, but as interactions increase, the pole moves upwards. When

βgn = −1, the pole reaches the real axis. For larger interactions, the pole crosses onto

the physical sheet – signaling a breakdown of our approach. As described by Mermin

[132], the pole crossing the real axis represents the spinodal line of a liquid-gas phase

transition.

There is no instability for repulsive interactions. Instead there is a collective mode,

whose frequency is given by the location of the pole on the line Im(χ0) = 0 which

asymptotically approaches the real axis. One finds the dispersion of this excitation

by looking at the large x expansion, I(x) = −1/2x2 + O(x−4). Using (E.10), the

formula for χ, one arrives at

χ =
2nǫk

ω2 − 2ngǫk
. (E.16)

Thus there is a mode with linear dispersion ω = ck, where the speed of sound is

c =
√

ng/m. For consistency of the large x expansion, one must have ω2 ≫ ν2
k = ǫkT ,

which translates into ng ≫ T . In other words, this mode exists as long as the mean-

field interactions dominate the temperature. It is no coincidence that this mode has

the same dispersion as the zero-temperature Bogoliubov sound mode.

E.3 Random phase approximation

In this Section I perform the same calculation in the quantum regime. Much of the

hard work has already been done in 1974 by Szépfalusy and Kondor [107], who were

interested in how the modes below Tc match up with the modes above Tc. This

investigation lead them to calculate the response of an interacting gas within the

random phase approximation (RPA). They considered only the repulsive case, but it

is not difficult to extend their work into the the more general setting.

The starting point, as before, is to calculate the density response function χ =
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Figure E.1: Zeros of the imaginary part of the free response function χ0(k, ω) as a
function of complex ω. The sign of χ0 alternates on adjacent contours. In particular,
the line on the imaginary axis has χ0 < 0, and the one to its right has χ0 > 0.
Within a mean-field approximation, these lines represent the paths which the poles of
χ follow as one increases the strength of the interactions. For attractive interactions,
the singularities follow the χ0 < 0 lines, while for repulsive interactions, they follow
the χ0 > 0 lines. In all cases the poles reside at ω = −i∞ when the interactions
vanish. In the case of attractive interactions, a pole can cross the x axis, representing a
mechanical instability. In the case of repulsive interactions, a pole can asymptotically
approach the real axis, representing a collective “zero sound” mode.
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δn/δU . The simplest approximation, the RPA, consists of a sum over bubbles,

χ =
χ0

1 − gχ0

. (E.17)

The physics here is the same as in the classical case. The density response is the direct

response, plus the response to the mean field generated by the distorted density profile.

The approximation comes in treating the direct response as χ0, the susceptibility of

the non-interacting system.

The most elementary approach to calculating χ0 is to simply write down the

response function in the time domain (cf. Appendix C)

χ0 =
δρq(0)

δUq(t)
=

1

i

[

〈T
(

ρ†q(t)ρq(0)
)

〉0 − 〈ρ†q(t)〉0〈ρq(0)〉0
]

, (E.18)

where ρq is the Fourier transform of the density operator,

ρq =

∫

d3r eiq·r 〈ψ†(r)ψ(r)〉 =
∑

k

a†k+q/2ak−q/2. (E.19)

The real-space operator ψ(r) annihilates a particle at position r, while the momentum

space operator ak annihilates a particle with momentum k. Although I write n for the

mean density, I use ρk, rather than nk for the Fourier component of the density. The

symbol nk denotes the number of particles in a mode with momentum k; nk = a†kak.

For the non-interacting system, the product of the two density operators in (E.18)

factors, leaving a simple bubble,

χ0 =
1

i

∑

k

〈T
(

a†k−q/2(t)ak−q/2(0)
)

〉0〈T
(

ak+q/2(t)a
†
k+q/2(0)

)

〉0. (E.20)

Since the field operators evolve as

ak(t) = e−iǫktak(0), (E.21)

one can trivially perform the Fourier transform to arrive at

χ0(q, ω) =
∑

k

nk−q/2 − nk+q/2

ω − (ǫk+q/2 − ǫk−q/2)
. (E.22)

A more sophisticated yet computationally simpler (and more instructive) way to

arrive at the same formula is to write (cf. Eq. (C.12)

〈T
(

ρ†qρq

)

〉(ω) =

∫

dω′

2π

Π(q, ω′)

ω − ω′ , (E.23)

where

Π(q, ω) = −2Imχ0 = 〈[ρ†q, ρq]〉(ω). (E.24)
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As the imaginary part of χ, Π represents a decay rate – the rate at which particles

scatter from momentum k − q/2 to momentum k + q/2.

Looking at the two terms in the commutator, one sees that there are two processes

in Π. In the first process, a particle comes along with momentum k−q/2 and scatters

into a state with momentum k+q/2, gaining an energy ω. The second process (which

has a minus sign) has a particle with momentum k+ q/2 scattering into a state with

momentum k − q/2, losing energy ω. Thus the spectral density is

Π(q, ω) =
∑

k

[(

nk−q/2(1 + nk+q/2) − nk+q/2(1 + nk−q/2)
)

(2πδ(ǫk+q/2 − ǫk−q/2 − ω)
]

,

(E.25)

which when substituted into (E.23) gives the same result as (E.22).

I now replace the sum over k with an integral. This is allowed as long as I treat the

condensate separately (cf. the discussion in Chapter 2). Thus, following Szepfalusy

and Kondor, I break the response function up into a regular part due to the non-

condensed particles, and a singular part due to the condensate, χ0 = χn
0 + χc

0. The

regular part is

χn
0 (q, ω) =

∫

d3k

(2π)3

nk−q/2 − nk+q/2

ω − (ǫk+q/2 − ǫk−q/2)
, (E.26)

and the singular part is

χc
0(q, ω) =

n0

ω − ǫq
− n0

ω + ǫq
. (E.27)

At zero temperature, only the singular part contributes, χ0 = χc
0. Thus the response

function of the interacting system is

χ =
χ0

1 − gχ0

=
2n0ǫq

ω2 − ǫ2q − 2n0gǫq
. (E.28)

Clearly, one has well defined excitations with energies given by the Bogoliubov ex-

pression

ω =
√

ǫ2q + 2gn0ǫq. (E.29)

As discussed in Section 5.2.2, for attractive interactions one finds an instability when

the level spacing ~
2/2mL2 is equal to −2gn0. In the opposite limit of T ≫ Tc, only the

regular part contributes, χ0 = χn
0 , and the distribution functions nq become classical

nq = e−β(ǫq−µ). Linearizing both the numerator and denominator of (E.26) in q allows

us to recover the result of Section E.2,

(χ0)classical = −βnI(ω/νq). (E.30)
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To discuss the intermediate regime (between zero T and classical) one has to study

the analytic structure of χn
0 . First, however, I introduce a more sophisticated version

of the RPA, first used by Minguzzi and Tosi [108]. This improved approximation

includes exchange forces, which are important for short range interactions.

E.3.1 The RPA with exchange

Equation (E.17) was based upon the assumption that the response to a perturbation

δU is given by the classical result δn = χ0(δU + gδn). This expression ignores

exchange processes where the identical particles exchange momenta. By including

this exchange term one produces Hartree-Fock approximation, δn = χ0(δU + 2gδn).

Unfortunately, this last expression cannot be applied to a condensed gas. The problem

is that this factor of two only occurs if the coliding particles are in different states.

Thus a scheme must be devised to account for the exchange interaction between

non-condensed particles, but not between condensed ones.

Such a scheme was developed by Minguzzi and Tosi [108]. One looks separately at

the change in the density of condensed and non-condensed atoms, δn0 and δñ. The

factors of two are easily incorporated in a matrix expression,
(

δn0

δñ

)

=

(

χc
0

χn
0

)

δU +

(

χc
0 2χc

0

2χn
0 2χn

0

)(

gδn0

gδñ

)

, (E.31)

which gives the relationship

χ =
δn0

δU
+
δñ

δU
=

χc
0 + χn

0 + gχc
0χ

n
0

(1 − gχc
0)(1 − 2gχn

0) − 4g2χc
0χ

n
0

. (E.32)

An alternative view of this same approximation is to use Eq. E.17, but include the

exchange interaction in χ0. For example, for a non-condensed gas in the Hartree-Fock

approximation, one would write

χHF
0 = χn

0

(

1 + gχn
0n+ (gχn

0n)2 + · · ·
)

, (E.33)

where successive exchange collisions are accounted for. Diagrammatic expressions for

these different approximations are shown in Fig. E.2.

E.4 Analytic Structure of χn0

In this Section I investigate the analytic structure of χn
0 . Section E.4.1 will be devoted

to deriving the following expression [107]

χn
0 (k, ω) = − m

πkΛ2
T

∫ (ω+ǫk)/νk

(ω−ǫk)/νk

dz

∫

dx
x

x− z

1

ex2−βµ − 1
, (E.34)
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H
=

HF
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H
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HF
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Figure E.2: Diagrammatic description of the approximation used for the response
function. Lines with arrows represent propegators of the non-interacting system.
Jagged lines represent the contact interaction between particles. a) Generically the
response function can be expressed in terms of a polarization bubble (the bubble with
shaded interior). b) In the Hartree approximation (RPA), the polarization bubble is
taken to be the response of the non-interacting gas. c) In the Hartree-Fock approxi-
mation, the polarization bubble involves a sum over repeated exchange interactions.
d) In a condensed system, the polarization bubble for the Hartree approximation must
include terms where one of the particles is in the condensate. e) The Hartree-Fock
approximation for the condensed gas requires writing all exchange graphs, noting that
there is no exchange interaction between condensed atoms. The vertices in these fig-
ures with only a single solid line implicitly include an interaction with the condensate.
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where once again νk = 2
√
Tǫk. Following this derivation I will give the asymptotic

behavior of χn
0 in various limits.

The x integral in (E.34) is the quantum mechanical version of the integral I(t)

introduced in Section E.2, and it shares many of the same analytic structures (for

example it is a meromorphic function). The response function χ, is not meromorphic,

as it contains logarithmic singularities in the complex frequency plane.

E.4.1 SK expression

In this section I derive Eq. (E.34). Starting with the general expression,

χn
0 (k, ω) =

∫

d3q

(2π)3

nq−k/2 − nq+k/2

ω − (ǫq+k/2 − ǫq−k/2)
, (E.35)

one splits the integrand into two terms, one containing nq−k/2 and the other nq+k/2.

After shifting q by ±k/2, one finds

χn
0 (k, ω) =

∫

d3q

(2π)3
nq

(

1

ω − (ǫq+k − ǫq)
− 1

ω − (ǫq − ǫq−k)

)

. (E.36)

The energies in the denominator can be expanded as ǫq±k = (q2 +k2 ±2kq cos θ)/2m,

where cos θ is the angle between q and k. The angular integrals are easily performed,

leading to

χn
0 (k, ω) =

m

(2π)2k

∫ ∞

0

dq q2 nq log

[

(p̄+ k/2 − q)(p̄− k/2 + q)

(p̄+ k/2 + q)(p̄− k/2 − q)

]

, (E.37)

with p̄ = mω/k. One extracts the important structure by rewriting the logarithm

as an integral of the form
∫

dx/x. Scaling all lengths by a multiple of the thermal

wavelength gives

χn
0 (k, ω) =

−m
πkΛ2

T

∫ z+

z−

dz I(z, βµ) (E.38)

I(z, βµ) =

∫ ∞

−∞
dx

x

x− z

1

ex2−βµ − 1
, (E.39)

where z± = ω/2
√
εkT ± kΛT/4

√
π. In the limit βµ → ∞, I(z, βµ) agrees with the

function I(z) defined on p. 155.

E.4.2 ω → ∞ structure of χn
0 .

Here I investigate the high frequency response of the noninteracting system. This is

a useful check on our analysis as the exact structure is a consequence of the f-sum
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rule. As ω → ∞, the limits z± in the integral in (E.38) become very large, and one

can expand (E.39) in powers of 1/z,

I(z, βµ) → − 1

z2

∫

dx x2 1

ex2−βµ − 1
(E.40)

= − 1

z2

∑

j

eβjµ

∫

dxx2e−jx2

(E.41)

= −Γ(3/2)

z2

∑

j

eβjµ

j3/2
(E.42)

= −
√
π

2

g3/2(e
βµ)

z2
. (E.43)

Thus if ω ≫ ǫk the response function is

χn
0 (k, ω) = − m

πkΛ2
T

∫ (ω+ǫk)/νk

(ω−ǫk)/νk

dz

∫

dx
x

x− z

1

ex2−βµ − 1
(E.44)

→ − m

πkΛ2
T

(

2ǫk
νk

)

I[ω/νk, βµ] (E.45)

=
2ǫkn

ω2
, (E.46)

where I’ve used that n = g3/2(e
βµ)/Λ3

T . This is the result expected from the f-sum

rule.

E.4.3 Long wavelength response

According to Eq. (E.38), at fixed ω, the k → 0 limit of χn
0 is equivalent to the ω → ∞

limit. Further analysis is needed to understand the k → 0 structure as ω → 0.

Analytic structure of I.

The first step to understanding the low frequency, long wavelength response is to write

I in terms of its poles in the complex z plane. This is accomplished by expanding

the distribution function in terms of Matsubara frequencies,

1

ex2−βµ − 1
=
∑

ν

1

x2 − βµ− 2πiν
, (E.47)

so that

I(z, βµ) =

∫

dx
1

ex2−βµ − 1
+ z2

∫

dx
1

x2 − z2

(

∑

ν

1

x2 − βµ− 2πiν

)

.(E.48)

163



The first integral is a Bose function
√
πg1/2(e

βµ). The second integral is evaluated

with the residue theorem,

I(z, βµ) =
√
πg1/2(e

βµ) − iπz

2
+ iπ

∑

ν

(

1

z −
√
βµ+ 2πiν

+
1√

βµ+ 2πiν

)

. (E.49)

The branches of the square roots are chosen so that they poses negative imaginary

parts. This agrees with formula (A.3) of Szepfalusy and Kondor, even though their

expression is much more complicated looking. At degeneracy, βµ → 0, and (E.49)

becomes

I = π1/2ζ(1/2)− iπz

2
+
iπ

z
+ iπ

∑

ν 6=0

(

1

z −
√

2πiν
+

1√
2πiν

)

. (E.50)

The k → 0 limit of χ(ω = 0)

Integration of the leading terms and setting ω = 0 yields Eq. (5.8),

gχn
0(k, 0) = −2

as

ΛT

[

4π

kΛT

arctan |εk/4µ|1/2 + g1/2(e
βµ) − |π/βµ|1/2 + O(kΛT )

]

.

(E.51)

The expansion parameter is z+ = kΛT/4
√
π.

Asymptotics of the T-matrix

This is an appropriate place to discuss the asymptotics of the function Ξ, defined by

(5.16). This function is analogous to χn
0 , except it corresponds to a response in the

particle-particle channel. Following the procedure of sec. E.4.1 to integrate out the

angular variables, one writes Ξ as

Ξ(k, ω) =
−2m

πkΛ2
T

∫ z̄+

z̄−

dz I(z), (E.52)

with z̄± = (kΛ/4
√
π)[i
√

1 + 2ω/εk ± 1]. Using the expansion in Eq. (E.49) gives Eq.

(5.17),

gΞ(k, ω = 0) = −4
as

ΛT

[

4π

kΛT
arctan

(

|ǫk/4µ|1/2

1 + |ǫk/4µ|1/2

)

(E.53)

+g1/2(e
βµ) − |π/βµ|1/2 + O(kΛT )

]

.
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E.4.4 The classical limit revisited

I now re-examine the classical limit discussed in Section E.2. My procedure there

amounted to using a linearized dispersion, effectively confining the result to ω ≫ ǫk.

It is possible to calculate the exact result, in order to separate the quantum effects

in (E.34) from the non-linear effects. I start with

χn
0 (k, ω) = − m

πkΛ2
T

∫ (ω+ǫk)/νk

(ω−ǫk)/νk

dz

∫

dx
x

x− z

1

ex2−βµ − 1
, (E.54)

then take the classical limit 1/(ex2−βµ−1) → e−(x2−βµ), and use the identity m/2πk =

1/ΛTνk

√
π, in order to get

χn
0 (k, ω)c = −βn νk

2ǫk

1√
π

∫ (ω+ǫk)/νk

(ω−ǫk)/νk

dz

∫

dx
xe−x2

x− z
, (E.55)

where, as usual, n = eβµ/Λ3
T . Turning back to Section E.4.1, one sees that the last

integral is

χn
0 (k, ω)c = −βn νk

2ǫk

∫ (ω+ǫk)/νk

(ω−ǫk)/νk

dz
[

1 + i
√
πxe−x2

(1 − erf(−ix))
]

. (E.56)

Integrating by parts leaves us with the final expression

χn
0 (k, ω)c = βn

νk

2ǫk

i
√
π

2

[

e−t2(1 + erf(it))
]t=(ω+ǫk)/νk

t=(ω−ǫk)/νk

. (E.57)

Note that even when ω = 0, this expression epends on ǫk,

χn
0 (k, ω = 0)c = −βn

√
πe−(ǫk/νk)2erf(iǫk/νk)

2(ǫk/νk)
. (E.58)

For ǫk ≪ T one can expand (E.58) in powers of ǫk/νk,

χn
0 (k, ω = 0)c = −βn

(

1 − 2

3

(

ǫk
νk

)2

+
4

15

(

ǫk
νk

)4

+O(ǫk)

)

. (E.59)
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Appendix F

Low Energy Scattering

In this Appendix I review the theory of low energy scattering. This subject is par-

ticularly important for understanding Feshbach resonances, where the interactions

between atoms are tuned by changing the magnetic field.

F.1 The Scattering amplitude

F.1.1 Definition

The basic picture of potential scattering is illustrated in Fig. F.1. One has an incoming

wave eikz that is incident on a small impurity of size r0 (positioned at the origin), and

one asks what the far field wavefunction looks like. Generically

ψ(r) = eikz + f(k, r̂)
eikr

r
, (F.1)

which has the form of the incoming wave plus a scattered wave. In the far field r ≫ r0,

the scattering amplitude f can only be a function of the incident wave vector k, and

on the direction r̂. (In this equation f is also implicitly a function of the direction

of the incoming wave, generically denoted k̂ and here set to ẑ. For a spherically

symmetric potential f is independent of k̂.)

In the long wavelength limit kr0 ≪ 1 one expects that the scattering will become

isotropic – the wave is too large to “see” the structure of the impurity. Thus one can

drop the r̂ dependences and only consider f(k), referred to as the s-wave scattering

amplitude. All of our discussions will be limited to this s-wave limit. The same

argument implies that f does not have much momentum dependence. For the most

part this statement is true and f can be replaced by f(k = 0); however in the presence

of a scattering resonance, f depends strongly on k. These resonances are of immense

experimental importance.
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eikz

Incoming Wave Outgoing Wave

eikr

r

Figure F.1: Generic Scattering Geometry. An incoming plane wave eikz reflects off
a small impurity.

It is worth mentioning that resonant scattering in higher momentum channels

(“shape resonances”), can lead to angular dependence of f in the long wavelength

limit. These resonances play no roles in current alkali gas experiments.

F.1.2 T -matrix

There are two problems in scattering theory. First, relating the scattering amplitude

to the scattering potential, and second, relating the properties of the system to the

scattering amplitude. The first problem amounts to solving the Schrödinger equation

in the presence of the impurity, with the boundary condition that the incoming wave is

eikz. Generically solving this equation requires the use of computers, but in principle

is solvable to arbitrary precision.

As an alternative to computers, one can also use perturbation theory to solve

the Schrödinger equation. For realistic atomic potentials perturbation theory is not

going to work well. Nevertheless it is still useful to formally develop the scattering

amplitude as a sum of terms, each one containing higher powers of V . One can

then think of the scattered wavefunction as coming from multiple scattering from the

impurity.

The standard approach to developing the perturbation series is to write the

Schrödinger equation in integral form. Formally I write

ψ = φ− 1

H0 − E
V ψ, (F.2)

where φ = eikz is the incident wave function, V is the scattering potential, E =

k2/2m is the energy of the state, and (H − E)−1 is the Green’s function for the free
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Schrödinger equation. Applying H0 − E to Eq. (F.2), one arrives at

(H0 − E)ψ = −V ψ, (F.3)

which is the conventional Schrödinger equation.

As can be verified directly, in momentum space and in real space, the Green’s

functions are given by

〈q| 1

H −E
|q′〉 =

(2π)3δ3(q − q′)

q2/2m− E
(F.4)

〈r| 1

H −E
|r′〉 =

m

2π

exp(ik|r − r′|)
|r − r′| , (F.5)

where E = k2/2m. On physical grounds, I have chosen outgoing boundary conditions

in Eq. (F.5). This latter result is only true in three dimensions. Getting away from

my schematic notation, one writes Eq. (F.2) in one of two forms,

ψ(k′) = (2π)3δ3(kẑ − k′) − 2m

∫

d3q

(2π)2

V (k′ − q)

q2 − (k′)2
ψ(q), (F.6)

ψ(r) = eikz − m

2π

∫

d3r′
eik|r−r′|

|r − r′|V (r′)ψ(r′), (F.7)

The first equation is in momentum space, the second in real space. In this Section

I only consider the real space equation (F.7), though later I will focus on (F.6). For

simplicity I assume that V (r) falls off over a lengthscale r0. Longer range potentials

can be treated, but such analysis is not particularly important for discussing neutral

atoms.

In the far field, r ≫ r0, one can expand the difference |r− r′| in the integral, to

arrive at the equation

ψ(r) = eikz − m

2π

eikr

r

∫

d3r′ eikr̂·r′V (r′)ψ(r′). (F.8)

Comparison with Eq. (F.1) gives an expression for the scattering amplitude,

f(k, r̂) = −m

2π

∫

d3r′ eikr̂·r′V (r′)ψ(r′). (F.9)

One generates a perturbative solution to Eq. (F.7) by a simple iterative scheme.

One starts by setting ψ(r) = eikz on the right hand side of (F.7). This first order

result is known as the Born approximation to scattering. This procedure is iterated

by substituting the new value of ψ into the right hand side. In a schematic notation,

one has

ψ =

(

1 − 1

H0 − E
V +

1

H0 − E
V

1

H0 −E
V +

1

H0 − E
V

1

H0 − E
V

1

H0 −E
V + · · ·

)

φ.

(F.10)
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Figure F.2: Diagrammatic representation of the T-matrix equation. The T-matrix,
designated by a dark dashed line connected to an “X”, comes from multiple scattering
off the potential. The soft dashed lines represent bare potential scattering.

This expression is compactly written as

ψ = ψ0 −
1

H0 − E
Tψ0, (F.11)

where the T-matrix is defined by

T = V + V
1

H0 −E
V + V

1

H0 − E
V

1

H0 − E
V + · · · (F.12)

= V + V
1

H0 −E
T. (F.13)

A diagrammatic representation of Eq. (F.12) is shown in Fig. F.2. The scattering

amplitude is then related to the on-shell T-matrix, by the expression

f(k) =
−m
2π~2

T (k). (F.14)

For the many-body problem, or for the problem of scattering off many impurities,

one in principle needs the off shell T-matrix.

To fully appreciate the structure of the T-matrix, one must go beyond s-wave

scattering, and consider the generic scattering amplitude f(k̂, r̂, k) defined by the

asymptotic form

ψ(r) = eik·r + f(k, k̂, r̂)
eikr

r
. (F.15)

The scattering amplitude is a function of the direction of the incoming wave k̂, the

direction of the outgoing wave r̂, and the energy of the scattering particle, k2/2m.

The T -matrix similarly is a function of three variables,

T (k,k′, q) ≡ 〈k′|T (E = q2/2m)|k〉 (F.16)

= 〈k′|V |k〉 + 〈k′|V 1

H0 −E
T |k〉. (F.17)

The variables are the incoming momentum k, the outgoing momentum k′, and the

energy E = q2/2m. If one sets |k| = |k′| = q, one finds

f(k, k̂, r̂) = −m

2π
T (kk̂, kr̂, k). (F.18)
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The off mass shell terms of T give information about the non-asymptotic behavior

of the scattering. If one throws away all this information, such as one does in the

pseudo-potential approximation, one finds that the T -matrix is independent of the

momenta k and k′, and is only a function of the energy q

T (k,k′, q) = T (q) =
−2π

m
f(q). (F.19)

This approximation will clearly break down when the momenta are of atomic dimen-

sions.

F.1.3 Phase shifts

In the limit of s-wave scattering, the impurity only sees the part of the incoming

wave that is spherically symmetric. One finds the spherically symmetric part of the

incoming wave by integrating over the solid angle,

∫

dΩ

4π
eikz =

1

2

∫ 1

−1

d cos θ eikr cos θ (F.20)

=
sin(kr)

kr
. (F.21)

This wave has components which are propagating towards and away from the impu-

rity, as is seen by representing the wavefunction as

sin(kr)

kr
=

−1

2i

e−ikr

kr
+

1

2i

eikr

kr
. (F.22)

The scattering can only affect the outgoing wave. Since particles are conserved, the

only possible change it can make to the outgoing wave (in the asymptotic region) is

to provide a phase shift, δ,

eikr → ei(kr+2δ) = eikr + 2ieikreiδ sin δ. (F.23)

Thus, in complete generality, one can write the scattered wavefunction as

ψ(r) = eikz +
eiδ sin δ

k

eikr

r
. (F.24)

Comparing with Eq. (F.1) one arrives at an expression for the scattering amplitude

in terms of the phase shift.

f(k) = eiδ sin δ/k. (F.25)
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F.1.4 Meaning of the scattering amplitude and the phase

shift

On a microscopic level, δ has a clear meaning. It is the phase shift of the scattered

wave, relative to what it would be without the impurity. In the following section I

will show how this phase shift can be simply related to the density of states in the

presence of the impurity. The scattering amplitude, f , is the amplitude that the

particles are scattered. That is, σ = 4π|f |2 is the number of scattered particles per

unit flux of incoming particles. The cross section σ is the area that a classical target

would have to have for the scattering probability to be the same.

An equivalent way to understand f is to look at the equation

ψ = eikz + f
eikr

r
. (F.26)

The length f gives the distance from the impurity at which the flux of scattered

particles equals the flux of incoming particles.

For small δ Eq. (F.25) can be expanded, and one finds that f ≈ δ/k.

F.2 Relationship of the scattering problem with

the standing wave problem

In elementary quantum mechanics, the first problem one learns to solve is the “particle

in a box.” One takes the Hamiltonian −~
2∇2/2m, diagonalizes it via a Fourier series,

and finds the complete spectrum. Later one learns how to do scattering problems,

where one is not interested in the spectrum (which is continuous), but rather on

transmission and reflection amplitudes. The relationship between these two problems

is rarely completely clear.

One can connect the scattering problem and the standing wave problem by look-

ing at scattering in a finite size box. The three dimensional case (when limited to the

s-wave channel) is actually simpler than the one dimensional problem, so I will con-

centrate on it. I first “solve” the standing wave problem. Consider a small impurity

with a potential V (r) in the middle of a big spherical box of radius R. I wish to find

the eigenvalues of the Schrödinger equation,
[−∇2

2m
+ V (r)

]

ψ(r) = Eψ(r), (F.27)

with the boundary condition that ψ(R) = 0. I take ~ = 1, and restrict myself to

spherically symmetric states. By substituting ψ(r) = u(r)/r, one can write s-wave
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sector of the Schrödinger equation as
[−1

2m

d2

dr2
+ V (r)

]

u(r) = Eu(r), (F.28)

with the boundary condition u(0) = u(R) = 0. For r larger than the range of

the potential, one can ignore V (r), and this equation is just a free one dimensional

Schrödinger equation. Thus in the asymptotic regime there is some δ such that the

solution to (F.28) is u(r) = sin(kr + δ). To satisfy the boundary conditions the

momentum k must obey kR + δ = nπ, for some integer n.

Now imagine one performs a scattering experiment on the same potential. One

sends in a wave u(r) ∼ e−ikr, and looks at what comes out. Thus one must solve

Eq. (F.28) with the condition that the incoming part of u is (−1/2i)e−ikr. Well, we

know one solution of Eq. (F.28), which asymptotically is u(r) = sin(kr + δ). Multi-

plying by −2ieiδ, one gets u(r) = e−ikr − eikre2iδ. Since solutions to the Schrödinger

equation with a given boundary condition are unique, this u must be the scattered

wavefunction. Comparing with Eq. (F.23), one sees that the δ which arises in solving

the standing wave problem is the same as the δ which appears in the scattering prob-

lem. With this relationship one can solve the scattering problem by using the powerful

computational techniques which have been developed for ground-state problems (see

for example [134]).

F.2.1 Energy shifts

The relationship between scattered states and standing waves gives rise to a very nice

graphical construction which allows one to relate the density of states to the phase

shifts. Imagine one knows the phase shifts δ(k) (for example, see Fig. F.3). If one

places the system in a box, the only states which obey the boundary conditions have

kR + δ = nπ for some integer n. Thus the allowed states have a wave vector given

by the intersection of the lines kR + δ = nπ and δ(k).

In the absence of an impurity the wave vectors allowed have kR = nπ. Thus

the shift in wave vector is δk = −δ/R, and the change in the energy of a state is

δE = k δk/m = −δ k/mR, which is proportional to δ. As a historical note, this result

was a point of confusion in the 1950’s in the context of the many-body problem [133].

In the limit of large box, it is more convenient to talk about a density of states,

rather than the energy of any particular state. Starting from the relation kR+δ = nπ,

one finds that the density of s-wave states in k-space is

∂n

∂k
=
R

π
+
δ′(k)

π
, (F.29)
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δ

0

−π

kR
π 2π 3π 4π 5π 6π 7π

kR+  =nδ π

Figure F.3: Connecting phase shifts and energy shifts. The thick line represents the
phase shift δ(k). In a box, sin(kR+δ) = 0, so the allowed states lie at the intersection
of the thick line and the oblique lines kR + δ = 0. As the box is made larger, the
spacing between the oblique lines becomes smaller, and (on an absolute scale) they
become more perpendicular to the k axis.

where δ′(k) is the derivative of δ with respect to k. The first term is the standard

density of states in a 1-dimensional box, while the second term is the change in the

density of states due to the impurity. Thus one interprets δ/π as the number of extra

states with momentum less than k due to the impurity.

If one knows the density of states, then one can calculate For example, consider

a spherical “bump” potential as depicted in Fig. F.4. The bump has radius r0 and

height q2/2m. For k ≪ q, the bump appears to be an infinite barrier, and the density

of states should be ∂n = (R − r0)/π ∂k, which is less than the density of states in

the absence of the bump. The missing states have to go somewhere, and they are

pushed to momenta near k = q. For k ≫ q, the bump is irrelevant, and the density of

states should be that of a free gas, ∂n = R/π ∂k. One should therefore see a density

of states like the one in Fig. F.5. After integrating this curve, one arrives at a phase

shift δ like the one depicted in Fig. F.6.

As a corollary to the theorem that δ(k)/π is the number of extra states, one has

the general result that for a sufficiently well-behaved potential the k = 0 the phase

shift is equal to π times the number of bound states. Generically δ(k → ∞) = 0, and

the bound states are missing from the continuum.
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Figure F.4: Energy states for a spherical bump in a box. States are pushed up by
the bump

R
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Figure F.5: Density of states for a spherical bump in a box (schematic). The
potential has a height of V0 = q2/2m, and width r.

kq

δ

Figure F.6: Phase shift for a spherical bump in a box (schematic). The height of
the potential is q2/2m.
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F.3 Sample phase shifts

In this section I plot a few illustrative phase shifts.

F.3.1 Hard wall

The simplest scattering potential is a hard wall:

V (r) =

{

∞ r < r0

0 r > r0.
(F.30)

The wavefunction must vanish at the edge of the wall, so u(r) = sin(k(r − r0)) and

δ = −kr0. This example is pathological in that δ → ∞ as k → ∞.

F.3.2 Attractive well

A slightly more complicated simple potential is the attractive spherical well,

V (r) =

{

−V0 r < r0

0 r > r0.
(F.31)

This potential is not realistic but it possesses many of the features of more sophis-

ticated atomic potentials. In particular there are low energy resonances whenever a

new bound state enters the well. To find the phase shifts I write the wavefunction as

u(r) =

{

A sin(k′r) r < r0

B sin(kr + δ) r > r0,
(F.32)

where (k′)2/2m− V0 = k2/2m. Continuity of the wavefunction and its derivative are

guaranteed by matching the logarithmic derivative at r0, which gives

k′ cot(k′r0) = k cot(kr0 + δ). (F.33)

Solving for δ gives

tan δ =
k sin k′r0 cos kr0 − k′ sin kr0 cos k′r0
k′ cos k′r0 cos kr0 + k sin kr0 sin k′r0

. (F.34)

For different values of V0 I plot δ(k) in Fig. F.7. For simplicity I introduce the

momentum q, satisfying V0 = q2/2m, which marks the depth of the well. The most

striking feature of these graphs is that when cos(qr0) = 0, the phase shift at k = 0

jumps. This happens because a new bound state enters the well at this point.
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Figure F.7: Phase shifts for a spherical well potential. The depth of the well is
V0 = q2/2m and its radius is r0. All momenta are measured in terms of r0. The
various lines show different values of q, each differing by 0.1π/r0. Resonances occur
at qr0 = (n+ 1/2)π.
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Figure F.8: Energy levels for an attractive well of radius r0 and depth V0 = q2/2m
within a box of size R. The energy is measured in terms of the quantization energy
of the large box, π2/mR2. The horizontal axis shows qr0/π, a measure of the depth
of the well. Resonances occur whenever qr0 = (n+ 1/2)π, and one of the continuum
energy states drops into the well. For this plot R = 50r0. Increasing R0 makes the
jumps sharper.

It is instructive to put this system in a box of size R, and calculate the energy of

the first few levels as a function of q. As seen in Fig. F.8, whenever one passes through

a resonance, the lowest energy state becomes bound, and the next level replaces it.

What is happening is that each line has a fixed number of nodes, and at the resonance

one of the nodes moves from outside the well to inside the well, drastically reducing

the energy.

F.3.3 Resonant barrier

I next consider a resonant barrier potential, as shown in Fig. F.9,

V (r) =











0 r < r0

q2/2m r0 < r < 2r0

0 r > 2r0.

(F.35)

As opposed to the attractive well which possesses zero energy resonances, the resonant

barrier has finite energy resonances resulting from the quasi-bound states which are
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Figure F.9: Resonant barrier potential.

found at momenta where sin(kr0) ≈ 0. At these resonances, one finds an extra state.

From our understanding of δ′/π as the density of states, we should have a phase

change of π near this momentum. As seen in Fig. F.10, this is indeed the case.

F.4 The pseudopotential

Here I discuss an expansion of the scattering amplitude in powers of kr0, where r0 is

the length scale of the potential. This expansion takes the form

k cot δ = − 1

as
+

1

2
rek

2 + O((r0k)
4). (F.36)

The parameters as and re are known as the scattering length and the effective range. I

emphasize that (F.36) is an expansion in r0k, and even when as is large, the remaining

terms can be small. The pseudopotential approximation amounts to taking only the

first term in this expansion.

One derives Eq. (F.36) via a matching argument. The Schrödinger equation

obeyed by u(r) = rψ(r) is
(

k2 + ∂2
r

2m
− V (r)

)

u = 0. (F.37)

For r ≪ r0, V (r) dominates over k2, and one writes

u(r) = χ(r) + O(k2), r ≪ r0, (F.38)

where χ(r) is independent of k. For r ≫ r0, the potential V (r) vanishes and u takes

on its asymptotic form

u(r) = A sin(kr + δ), r ≫ r0. (F.39)
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Figure F.10: Phase Shifts δ(k)/π for a resonant barrier potential. The momentum
k is measured in units of π/r0. Each line corresponds to a different barrier height.

I match the logarithmic derivatives at r0, finding

k cot(kr0 + δ) = χ′/χ+ O(k2), (F.40)

which gives the desired expansion of k cot δ in powers of k2.

In terms of cot δ the scattering amplitude is

f =
eiδ sin δ

k
=

1

k cot δ + ik
. (F.41)

So in the pseudo-potential approximation, the scattering amplitude is

f =
−a

1 + ika
. (F.42)

For small ak, this looks like a point interaction. For large values of ak, this looks like

a long-ranged 1/k potential.
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Figure F.11: Scattering length a for a spherical well of radius r and depth V0 =
q2/2m.

F.4.1 The pseudo-potential for an attractive spherical well

As an example, one can expand Eq. (F.34) in powers of k, finding

k cot δ =
−1

as
+
rek

2

2
(F.43)

as = r0 −
tan qr0
q

(F.44)

re = (
1

q
− r2

0q) cos qro + r0 sin qr0 +
q2r3

0 cos2 qr0/3

sin qr0 − qr0 cos qr0
. (F.45)

The effective range vanishes when as diverges. These quantities are plotted in Fig. F.11

and F.12.

F.5 Zero range potentials

For analytic calculations, the simplest potentials one can consider are zero-range

potentials. These play an important role in many theoretical works, so it is worth

considering them here. Zero range potentials are, by construction, singular. Thus,

despite their analytic simplicity, these potentials require taking careful limits.
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Figure F.12: Effective range re for a spherical well of radius r and depth V0 = q2/2m.

F.5.1 A structureless point scatterer

Consider a point scatterer with a potential V (r) = V0δ(r− r′). In momentum space,

Vk = V0. Scattering off this potential is described by the T -matrix equation (F.17),

Tkk′(ω) = Vkk′(ω +
∑

q

VkqG0(q)Tqk′(ω). (F.46)

Since Vkk′ is independent of the momentum indices, T will also be independent of

momentum. Using this result, the T -matrix is

T (ω) =
V0

1 − V0Θ
, (F.47)

where Θ is given by

Θ =
∑

k

G0(q, ω) =
∑

q

1

ω − q2/2m
. (F.48)

Replacing the sum with an integral,

Θ =
V

(2π)3

∫

d3q

ω − q2/2m
(F.49)

=
V

2π2

∫

dq q2

ω − q2/2m
, (F.50)
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one notices that the sum is ultraviolet divergent. This divergence is a consequence

of the short range of the potential, and reflects the fact that a point interaction is

unphysical. Any real potential will have a finite range, which will introduce a large q

cutoff, Λ in this integral. The integral is readily evaluated to be

Θ = Θ0 −
imV

√
2mω

2π
(F.51)

Θ0 = −V mΛ

π2
. (F.52)

The T -matrix is then of the form

T =
2π

m

as

1 + ias

√
2mω

, (F.53)

where the scattering length is

as ≡
m

2π

V0

1 − V0Θ0

. (F.54)

Note that if one takes the cutoff Λ to infinity at fixed V0, then the scattering length

vanishes. In this sense, there is no scattering off a delta-function potential in three

dimensions. Only by scaling V0 with Λ can a non-zero as be produced. This scaling

of V0 with Λ is the simplest example of renormalization which can be discussed. As

previously discussed, a T -matrix of the form (F.53) gives a phase shift

δ = arg(T ) = − arctan(ask). (F.55)

F.5.2 Scattering from a zero-range bound state

A simple generalization of the structureless point scatterer is to associate a bound

state with the impurity. In such a case, the scattering is energy dependent, and

Vk = V0 +
|α|2
ω − ǫ

, (F.56)

where V0 is a static potential at the origin, α is an amplitude for entering the bound

state, and ǫ is the energy of the bound state. To illustrate the role of the bound state

I set V0 = 0, in which case

T =
|α|2

ω −E + i(m/2π)|α|2
√

2mω
. (F.57)

The energy E is

E = ǫ+ |α|2Θ0. (F.58)
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For E to be finite as Λ → ∞ one must scale ǫ with Θ0.

The T -matrix (F.57) leads to a phase shift of the form

cot(δ) = − 1

ask
+ reffk

2/2, (F.59)

where

as =
−m|α|2

2πE
(F.60)

reff =
−2π

m2|α|2 . (F.61)

A resonance occurs when E = 0.

The Green’s function for the bound state is T/|α|2. Thus E is the energy of the

bound. When E > 0, this state has a finite lifetime

1

τ
=
m

2π
|α|2

√
2mE, (F.62)

which is the result one would expect from Fermi’s golden rule.

F.6 Feshbach resonances

As is clear from the above examples, tuning a resonance near zero energy has dramatic

consequences for atomic scattering properties. Experimentally such tuning is carried

out by applying magnetic fields. The field induced resonance is known as a Feshbach

resonance.

The underlying principle is that due to the hyperfine interaction, two colliding

atoms can form a bound state whose magnetic moment is not equal to the sum of the

magnetic moments of the incoming atoms (total angular momentum is conserved, not

total magnetic moment). Consequently, when a magnetic field is applied, the Zeeman

shift of the bound state can be different from the shift of the scattering states. Thus

the energy of the bound state is tunable. When its energy is set to zero one is at

the resonance. The scattering properties near the resonance are described well by the

model of Section F.5.2.

F.7 Multiple scattering

I now turn to the question of scattering off several small impurities which are much

farther apart than the range of their potentials. As detailed in Section F.4, low energy
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scattering off an individual impurity is described by the scattering length as. Letting

n denote the density of scatterers, I am particularly interested in the limit where na3
s

is of order 1. In this limit one encounters localization effects, and the scattering off

of one impurity depends on the presence of all others.

F.7.1 Elementary approach

In this Section I frame the problem in terms of elementary quantum mechanics.

Imagine that one has static impurities at positions r1, r2, . . . , rn. The phase shifts

for scattering off any of these impurities is δ0(k). In a scattering experiment, the

asymptotic wavefunction will be

ψ(r) = eikz +
∑

i

fi
eik|r−ri|

|r − ri|
, (F.63)

where the fi’s will be independent of space. This wavefunction should be good, except

on atomic distances close to individual impurities. Comparing with Eq. (F.1), the

scattering amplitude for scattering from the collection of impurities is

f(k, r̂) =
∑

i

fie
ikri ·̂r. (F.64)

The s-wave component of this scattering amplitude is

fs(k) =

∫

dΩ

4π
f(k) =

∑

i

fi
sin kri

kri
. (F.65)

In particular, when kri ≪ 1 then

fs(k) =
∑

i

fi. (F.66)

My goal is to calculate the phase shift δ given by

fs =
eiδ sin δ

k
. (F.67)

I now determine the fi’s via the restriction that at each impurity, the phase shift

is δ0. Once we know fi we know f . Near the ith impurity, the spherically symmetric

part of ψ is defined by

ψ
(s)
i (|r − ri|) =

∫

dΩ′

4π
ψ(r = r′ + ri), (F.68)
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where dΩ′ is a solid angle with respect to the variable r′, which is centered at the

impurity. The integration is straight forward and one finds

ψ
(s)
i (r − ri) =

(

eikzi +
∑

j,j 6=i

fj
eik|ri−rj |

|ri − rj|

)

sin k|r − ri|
k|r − ri|

+ fi
eik|r−ri|

|r − ri|
. (F.69)

I will use the symbol Ai for the term in large parentheses. We know that this term

must have the form

ψ
(s)
i (r − ri) =

sin(k|r − ri| + δ0)

k|r − ri|
. (F.70)

Equating these two expressions, one arrives at

fi = Ai
eiδ0 sin δ0

k
. (F.71)

Using this expression in the definition of Ai one finds that Ai satisfies the following

matrix equation,
(

δij − eiδ0 sin δ0
eik|ri−rj |

k|ri − rj|

)

Aj = eikzj . (F.72)

I denote the matrix on the left hand side of this equation by 1−g. Formally inverting

this matrix gives








A1

...

An









=
1

1 − g









eikz1

...

eikzn









. (F.73)

The total scattering amplitude f is then

f(k, k̂, r̂) =
eiδ0 sin δ0

k

(

e−ikr̂·r1 · · · e−ikr̂·rn
) 1

1 − g









eikk̂·r1

...

eikk̂·rn









(F.74)

=
eiδ0 sin δ0

k

∑

ij

eik(k̂·ri−r̂·rj)
(

1

1 − g

)

ij

. (F.75)

Formally we are now done. If kri ≪ 1 we neglect the eikri’s and get

eiδ sin δ = eiδ0 sin δ0
∑

ij

(

1

1 − g

)

ij

. (F.76)

In this same approximation

gij =

{

eiδ0 sin δ0
k|ri−rj | i 6= j

0 i = j.
. (F.77)
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In the pseudo-potential approximation,

eiδ0 sin δ0 =
−ask

1 + iask
. (F.78)

It is useful to study the structure of (1−g)−1. The matrix g has the property that

gij is a function only of the distance |ri − rj |, and is essentially a scattering ampli-

tude times a propegator. One graphically thinks of gij as a directed line connecting

impurity i to impurity j. Then ((1− g)−1)ij is the sum over all paths connecting i to

j.

F.7.2 T-matrix approach

With less work (but using more machinery) one can derive the results as the last

Section by directly calculating the T -matrix, defined by

T = V + V
1

H0 −E
T. (F.79)

In the present case, V =
∑

i Vi is the sum of the potentials for each scatterer. If one

defines Ti as the sum of scattering off an individual impurity,

Ti = Vi + Vi
1

H0 −E
Ti, (F.80)

then T is given by a sum over all paths between scatters of Ti’s with propegators

between them,

T =
∑

i

Ti +
∑

i6=j

Ti
1

H0 − E
Tj + · · · , (F.81)

=
∑

i

Ti +
∑

ij

Ti(1 − δij)
1

H0 −E
Tj + · · · . (F.82)

I introduce a matrix Gij by

Gij = (1 − δij)
1

H0 − E
Tj , (F.83)

so that the T-matrix is formally

T =
∑

ij

Ti

(

1

1 −G

)

ij

. (F.84)

To go any farther one needs to choose a basis. The most convenient basis for

the current problem is in momentum space. If we treat the Ti’s within the pseudo-

potential approximation, then

Ti(k, k
′, q) = 〈k′|Ti(E = q2/2m)|k〉 = ei(k−k′)ri

(−2π

mq
eiδ0 sin δ0

)

. (F.85)
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For notational simplicity, I use the symbol x for the parentheses. The operator

Ti(H0 −E)−1Tj is evaluated by inserting a resolution of the identity

〈k′|Ti(H0 − E)−1Tj |k〉 =

∫

d3k̄

(2π)3
T (k, k̄, q)

2m

k̄2 − q2
T (k̄, k′, q) (F.86)

= x2ei(krj−k′ri)
m

2π

eiq|ri−rj |

q|ri − rj |
. (F.87)

In Eq. (F.81) all of the eik̄ri ’s cancel, except for the one at the end and the one at the

beginning. Thus T is given by

T (k, k′, q) = x
∑

ij

ei(kri−k′rj)Mij(q), (F.88)

where Mij(q) is the sum of all paths going from i to j, each segment of the path going

from impurity µ to impurity ν contributing x(m/2π)eiq|rµ−rν |/(q|rµ − rν |), which is

readily seen to be identical to (F.75).

F.7.3 Two scatterers

Given the positions r1, r2, . . . , rn of the scatterers we can now calculate δ in terms

of δ0. The simplest example of this procedure uses two scatterers. The matrix gij is

given by

g =

(

0 x

x 0

)

(F.89)

x =
eik|r1−r2|

k|r1 − r2|
sin δ0e

iδ0 (F.90)

≈ −as(1 + ikr)/r

1 + ikas
, (F.91)

where r ≡ |r1 − r2| and as is the scattering length for scattering off a single impurity.

Since g is proportional to a Pauli matrix, g2 = x2 is proportional to the identity.

Thus (1 − g)−1 is (1 − x2)−1(1 + g). The scattering amplitude is then

f =
eiδ0 sin δ0

k

∑

ij

(

1

1 − g

)

ij

(F.92)

=
eiδ0 sin δ0

k

1

1 − x2
(2 + 2x) (F.93)

=
−
(

2as

1+as/r

)

1 + i
(

2as

1+as/r

)

k
. (F.94)
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The last line follows from some simple algebraic rearrangements. The end result is

that the scattering from two impurities looks like scattering from a single one with

an effective scattering length

a2 =
2as

1 + as/r
. (F.95)

For as ≪ r the scattering is just additive. For as ≫ r the effective scattering length

is cut off by the distance between the two impurities, and a2 → 2r.

It should be clear from this result that when particles are packed closer than their

scattering lengths one cannot consider the scattering from each particle independently.

F.7.4 Low density limit

In the low density limit, na3
s ≪ 1, the matrix elements gij are small, and the single

scattering dominates. The phase shift for scattering off the collection of impurities is

then additive, δ = Nδ0.

F.8 Scattering in the many body problem

This thesis is concerned with clouds of interacting atoms, described via a density n and

scattering length as. In the dilute limit na3
s ≪ 1, multiple scattering is suppressed,

and the interaction can be treated perturbatively (see Chapter 2 and Appendix E).

Most alkali gas experiments are in this regime. By using Feshbach resonances one

should be able to tune the scattering length so that na3
s is no longer small. Un-

derstanding this strongly interacting regime is a major challenge facing the cold gas

community.
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(2000) L779 (2000).

[39] P. Arnold and G. Moore, cond-mat/0103228 (2001).

[40] V. Kashurnikov, N. Prokof’ev N, and B. Svistunov, cond-mat/0103149 (2001).

[41] G. Baym and C. Pethick Landau Fermi liquid theory: concepts and applications,
(J. Wiley and Sons, New York, 1991).

[42] Illuminati F, Navez P, and Wilkens M 1999 J. Phys. B: At. Mol. Opt. Phys.
32, L461.

[43] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4633 (1996).

[44] P. Arnold and B. Tomasik, cond-mat/0105147.

[45] O. Penrose, Phil. Mag. 42, 1373 (1951).

[46] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

[47] P. Nozières and D. Saint James, J. Physique 43, 1133 (1982).

[48] M. Girardeau, Phys. Fluids 5, 1468 (1962).

[49] F. Pollock, Phys. Fluids 10, 473 (1967).

[50] E. J. Mueller, T.-L. Ho, G. Baym, and M. Ueda, to be submitted to Physical
Review A (2001).

[51] H. G. Vaidya and C. A. Tracy, Phys. Rev. Lett. 42, 3 (1979).

191



[52] P. C. Hohenberg and P. C. Martin, Ann. Phys. 34, 291 (1965).

[53] Yu. Kagan, V. A. Kashurnikov, A. V. Krasavin, N. V. Prokof’ev, and B. V.
Svistunov, Phys. Rev. A 61, 043608 (2000); J. M. Kosterlitz and D. J. Thouless,
J. Phys. C 6 1181 (1973).

[54] D.S. Petrov, G.V. Shlyapnikov, and J.T.M. Walraven cond-mat/0104373.

[55] Yu. Kagan and B. V. Svistunov Phys. Rev. Lett. 79, 3331 (1997).

[56] C. N. Yang, Rev. Mod. Phys. 34, 694 (1963).

[57] W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1 (1970).

[58] I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A. 57, R28 (1998).

[59] Y. Castin and C. Herzog, “Bose-Einstein condensates in symmetry breaking
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