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Atomic clouds in a rotating optical lattice are at the intellectual intersection

of several major paradigms of condensed matter physics. An optical lattice sim-

ulates the periodic potential ubiquitous in solid state physics, while rotation

probes the superfluid character of these cold atomic gases by driving the forma-

tion of quantized vortices. Here we explore the theory of vortices in an optical

lattice.

We first provide a detailed introduction section aimed at providing the

reader with the information necessary to understand and appreciate the re-

search presented in later chapters.

Next we study an infinite square lattice configuration of vortices in a rotat-

ing optical lattice near the superfluid–Mott-insulator transition. We find a se-

ries of abrupt structural phase transitions where vortices are pinned with their

cores only on plaquettes or only on sites. We discuss connections between these

vortex structures and the Hofstadter-butterfly spectrum of free particles on a

rotating lattice.

We then investigate vortex configurations within a harmonically trapped

Bose-Einstein condensate in a rotating optical lattice. We find that proximity

to the Mott insulating state dramatically affects the vortex structures. To illus-

trate we give examples in which the vortices: (i) all sit at a fixed distance from

the center of the trap, forming a ring, or (ii) coalesce at the center of the trap,



forming a giant vortex. We model time-of-flight expansion to demonstrate the

experimental observability of our predictions.

Finally for a trapped gas far from the Mott regime, the competition between

vortex-vortex interactions and pinning to the optical lattice results in a compli-

cated energy landscape, which leads to hysteretic evolution. The qualitative

structure of the vortex configurations depends on the commensurability be-

tween the vortex density and the site density – with regular lattices when these

are commensurate, and concentric rings when they are not. Again we model the

imaging of these structures by calculating time-of-flight column densities. As in

the absence of the optical lattice, the vortices are much more easily observed in

a time-of-flight image than in-situ.
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(

t̃, µ̃
)
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CHAPTER 1

OPTICAL LATTICES AND THE BOSE-HUBBARD HAMILTONIAN

1.1 Introduction

Modern atomic trapping and cooling techniques allow unprecedented control

over ultracold atomic gases. Using these systems, experimentalists can now

investigate a wide variety of many-body systems with properties (such as in-

teraction strength, impurity potential, and geometry) that can be precisely ad-

justed [1, 2]. Cold atomic systems also show excellent potential for performing

precision measurements: for example improved atomic clocks, fine-structure

constant measurements, and quantum-limited interferometry [3]. Also, trapped

cold-atom systems play a crucial role in several proposed schemes for quantum

computation [2, 4], as well as in the analysis of complex materials [2, 5].

I perform a theoretical study of ultracold atomic systems in a regime where

deep optical-lattice potentials and rotation produce exotic ground states. Un-

like previous theoretical studies of vortex structures in ultracold atomic gases,

which are restricted to a weakly-interacting limit (e.g, [6, 7, 8]), I will explore the

strongly-interacting regime. Technically, this means that instead of studying the

Gross-Pitaevsii equation, I will model the system by a Bose-Hubbard model.

This model, based upon a tight-binding approximation, is very accurate, de-

scribing both superfluid and insulating phases, and their coexistence [9]. My

calculations use a variational approach to numerically solve the Bose-Hubbard

model. Unlike most other treatments, I do not make a local-density approxima-

tion, and can therefore describe short length-scale structures which will be the

dominant feature of experiments.
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1.2 Optical Lattices

This dissertation investigates systems of neutral bosonic atoms trapped in ro-

tating optical lattices. The following subsection provides some background in-

formation on optical lattice trapping.

1.2.1 Trapping Ultracold Atoms in Optical Lattices

An optical lattice potential is a a periodic array of potential wells generated by

interfering laser beams [10]. The most common optical lattice setup consists of

counterpropagating laser beams, which, when placed in orthogonal directions,

generate 1-, 2- or 3-dimensional periodic potentials with a square-lattice geom-

etry. We focus on this setup. However, different laser configurations may be

used to produce optical lattices with a wide variety of geometries [11].

In one spatial dimension the simplest optical lattice is a sinusoidal stand-

ing wave pattern created by the interference of two counter-propagating laser

beams. The two beams must be phase locked. If the phase difference changes,

then the position of the standing wave changes accordingly. The phase lock-

ing is typically achieved by using a single laser, and generating the two beams

with a mirror or beam splitter. In two dimensions a square lattice is formed by

two such (orthogonally directed) standing waves, and a three-dimensional cu-

bic lattice is formed in the same fashion with three standing waves. In the above

setup, the lattice spacing d is half the wavelength of the laser light, λ. It will be

shown later how this is an important limitation. In order to adjust the lattice

spacing without changing λ one can instead engineer a setup where the optical

2



lattice is produced by interfering laser beams that propagate at a relative angle

θ. In this setup the lattice spacing is then given by

d =
λ

2 sin(θ/2)
. (1.1)

The above description does give a physical picture of the geometry of an

optical lattice potential, but leaves us with the important question of how an

optical standing wave traps ultracold atoms. I closely follow the treatment of

Pethick and Smith ([10], pp. 67-74) in describing this effect.

1.2.2 Interaction of a Neutral Atom with Laser Light

There are two main ways a neutral atom interacts with laser light. One is the

shift in atomic energy levels that can be considered semiclassically, using virtual

transitions (second-order perturbation theory). The second is radiation pressure

due to real transitions that correspond to absorption and emission of a single

photon. These real transitions can be accounted for by giving a finite lifetime

to the atom’s excited states. For the purpose of trapping cold atoms we wish to

take advantage of the shift of the atomic ground state, and seek to minimize the

effect of real transitions. Next I present some fundamentals of these effects.

First consider the interaction between a neutral atom and a real,

time-dependent electric field. In the dipole approximation, where we assume

that the wavelength of the radiation is much greater than the atomic scale, the

perturbation is given by

H′ = −~d · ~E (1.2)
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(a) (b)
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Figure 1.1: Diagrammatic representation of the AC Stark effect. Dia-
grammatic representation of the virtual transitions that cause
the ground state energy shift. We add the terms represented by
each diagram together to get the total shift. ‘e’ denotes the ex-
cited state, and ‘g’ denotes the bare ground state. The straight
line represents atom propagation and the wavy line represents
interaction with the electric field.

where ~d is the atomic dipole moment and ~E is the electric field defined by

~E = ε̂ (Eω exp (−iωt) + E−ω exp (iωt)) , (1.3)

where ε̂ is the polarization direction, and ω is the angular frequency of the ra-

diation. The Eω exp (−iωt) term represents absorption of a photon of frequency

ω, and the E−ω exp (iωt) term represents stimulated emission of a frequency ω

photon. And, since the electric field is real, then E−ω = E∗ω. We can now write

the energy shift of the ground state to second order using diagrammatic pertur-

bation theory as shown in Figure 1.1.

In Figure 1.1(a) the atom begins in its ground state, |g〉. At the intersection

of the straight and wavy line labeled by “ω” the atom absorbs a photon of fre-

quencyω, and makes a transition to an excited state, |e〉. Next, at the intersection

of the the straight line labeled by “e” (we call this the propagator for the excited

state), and the wavy line labeled by “−ω” the atom emits a photon of frequency

ω and returns to its original ground state. We may translate this diagram into a

mathematical expression by associating a factor with each “interaction vertex”

4



(that is, where the straight and wavy lines meet), and with the propagator for

the excited state. In Figure 1.1(a), the interaction vortex for absorption gives

〈e| − ~d · ~Eω|g〉, the vertex for stimulated emission gives 〈g| − ~d · ~E
∗
ω|e〉, and the

propagator for excited state gives (ω − (Ee − Eg))−1. Note that Ee is the energy

of the unperturbed excited state labeled by the index “e”, and Eg is the energy

of the unperturbed ground state. Now, using the same translation method, the

diagram in Figure 1.1(b) gives a similar term. Adding these terms and summing

over all possible excited states we find an expression for the atomic ground state

energy shift, ∆Eg,

∆Eg =

∑

e

|〈e| − ~d · ε̂|g〉|2
(

1
~ω − (Ee − Eg)

+
1

−~ω − (Ee − Eg)

)

|Eω|2

= −
1
2
α(ω)〈E2(r, t)〉t , (1.4)

where we have introduced the dynamic atomic polarizability, α(ω), and

〈E2(r, t)〉t = 2|Eω|2 is a time average. We can then identify the atomic polariz-

ability as

α(ω) =
∑

e

2(Ee − Eg)|〈e|~d · ε̂|g〉|2

(Ee − Eg)2 − (~ω)2
. (1.5)

Now, by considering the atomic length and energy scales (∼ bohr radius, eV)

we see that each term in α(ω) is very small unless ω is very close to a transition

frequency, ωeg = (Ee − Eg)/~. So if we work close to some ωeg then the corre-

sponding term in the sum for α(ω) dominates all other terms in the sum, and

we make the approximation

α(ω) ≈ |〈e|
~d · ε̂|g〉|2

Ee − Eg − ~ω
. (1.6)

The above polarizability accounts for the shift in atomic ground state energy

due to virtual transitions, but does not account for the radiation pressure on the

atom from real transitions due to spontaneous emission of excited states. This is
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because we started with a classical radiation field, and spontaneous emission is

a purely quantum phenomenon. Effectively we take this into account by letting

the excited state energy be complex, which can be explained by considering

the standard time-dependent amplitude oscillation of a quantum mechanical

stationary state, that is, exp (−iEet/~). For spontaneous emission to occur the

excited state must have a finite lifetime, that is, the state’s amplitude must decay

over time. It follows that Ee must have an imaginary part. If we label the lifetime

of the state 1/Γe, then

Ee → Ee − i
~Γe

2
, (1.7)

where Ee is now the real part of the excited state energy. By substituting equa-

tion (1.7) into equation (1.6) we find that the ground state energy perturbation

is now complex as well, that is,

∆Eg = Vg − i
~Γg

2
, (1.8)

where

Vg = −
1
2

Re{α(ω)}〈E2(r, t)〉t (1.9)

is now called the “energy shift”, and

Γg = −
1
~

Im{α(ω)}〈E2(r, t)〉t (1.10)

is the lifetime of the “dressed” ground state.

We now investigate the implications of this shift for trapping. First we define

the “detuning”, δ, which is the difference between the laser frequency and the

atomic transition frequency, defined by

δ = ω − ωeg , (1.11)

where we recall that ωeg is the transition frequency,

ωeg =
(Ee − Eg)

~
. (1.12)
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Conventionally, a positive value of δ is called “blue detuning” and a negative

value of δ is “red detuning”. Next we define the Rabi Frequency, ΩR, which

is just the magnitude of the Stark effect matrix element expressed in terms of

frequency

ΩR =
|〈e|~d · ε̂|g〉|

~
. (1.13)

Using equations (1.11), (1.12) and (1.13) we may rewrite the ground state energy

shift, Vg,

Vg =
~ δΩ2

R

δ2 + (Γe/2)2
. (1.14)

Equation (1.14) tells us about the force on the atoms due to the shifting of the

atomic ground state energy by virtual transitions. We see that if the laser is blue-

detuned then the atomic ground state energy is shifted to a higher value, and

the atoms will move toward regions of lower field. However, if the laser field is

red-detuned then the atoms move toward regions of higher field.

In addition, we must consider the force on the atom from radiation pressure

due to spontaneous emission. But this force should only be important if Γe is

larger than or comparable to the magnitude of the detuning, |δ|. That is, the

transition probability is a Lorentzian distribution of width Γe, centered at ωeg,

so if the detuning is much larger than Γe, then probabilty of a real transition

occuring will be very, very small. In practice [12], the optical lattice is create

using a blue detuned laser, far enough from the atomic resonance so that only

the force due to virtual transitions is important in trapping the atoms, and the

atoms occupy the minima of the standing wave that makes up the optical lattice.

The reason for this convention is that the standing wave minima are also photon

density minima, so the cross-section for atom-photon interactions is minimized

there as well. Generally we want to minimize loss mechanisms such as atom-

photon scattering.
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The resulting potential is most generally written

V(x, y, z) = V0,x sin2

(

πx
dx

)

+ V0,y sin2

(

πy
dy

)

+ V0,z sin2

(

πz
dz

)

, (1.15)

where {x, y, x} are orthogonal Cartesian coordinates, while {V0,x,V0,y,V0,z}

and {dx, dy, dz} are the corresponding lattice depths and lattice constants, respec-

tively. Equation (1.15) represents a three dimensional lattice of potential wells,

where the parameters are often controllably adjustable in experiment, although,

in practice, problems related to phase matching are always of concern. As noted

before, we can now clearly see why the ability to independently adjust d and λ

is important. That is, we can adjust the lattice spacing, d, without changing the

magnitude, sign, and stability of the optical trapping potential, which depend

on λ.

In experiment, constructing an asymmetric optical lattice introduces more

challenges to producing a viable trap. However, there have been some notable

successes. For instance, the dimensionality of the optical lattice can be reduced

by increasing V0 along a single axis so that atomic motion is restricted in that di-

rection. We then have a two-dimensional optical lattice system. This procedure

has been realized by several groups, including the NIST Gaithersburg team [13],

and is particularly important here because it is an experimental realization of the

trap geometry studied theoretically in this dissertation.

1.3 From Optical Lattice Trapping to the Bose-Hubbard Model

In their letter from October 12, 1998 Jaksch et. al. [9] proposed that a dilute gas

of ultracold bosons loaded onto an optical lattice could be well described by
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a Bose-Hubbard model (BHM). Furthermore, they showed the relationship be-

tween the model’s parameters and the microscopics of the underlying system,

as well as demonstrating how these parameters of the BHM could be control-

lably varied in experiments. They describe the creation of square-lattice geome-

tries where d = λ/2. We follow their argument to show how the effective BHM

arises from the more general continuum description.

We begin by stating the continuum Hamiltonian operator for our system,

Ĥ =

∫

d3~x ψ̂†
(

~x
)

(

− ~
2

2m
~∇2
+ VO

(

~x
)

+ VT
(

~x
)

)

ψ̂
(

~x
)

+
1
2

4πas~
2

m

∫

d3~x ψ̂†
(

~x
)

ψ̂†
(

~x
)

ψ̂
(

~x
)

ψ̂
(

~x
)

, (1.16)

where ψ̂
(

~x
)

is a bosonic field operator, VO
(

~x
)

is the optical lattice potential, and

VT
(

~x
)

is a slowly varying external trapping potential. Also, m is the mass of a

single boson, and as is the boson-boson s-wave scattering length. Note that we

have a priori made the pseudopotential approximation, so that the interatomic

interaction is a delta function proportional to as. Going forward, the basic pro-

gram is to formulate a tight-binding approximation to the Hamiltonian. This

will yield an effective hopping model, a Bose-Hubbard Model, to describe the

boson dynamics.

The tight-binding approximation is often used to described the low-energy

electron bands in a solid ([14], pp. 176-189), and the logic is as follows. First we

consider the solid to be a lattice of isolated atoms whose electrons occupy or-

bitals well localized at their lattice position. Real materials, however, are many-

body systems where electrons centered at a particular atomic nucleus will inter-

act with electrons centered at other atomic nuclei. To model this we must suit-

ably modify our description consisting of isolated atoms. The first correction

to the isolated-atoms picture is to additionally consider the overlap between
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orbitals on neighboring sites, the nearest-neighbor approximation. Analogously,

we consider bosons trapped in a periodic potential described by equation (1.15).

The periodic potential induces a band structure for our bosons, but the energy

scale of the boson dynamics is small enough so that we may confine our ar-

gument to the lowest energy band, that is, each boson occupies the ground vi-

brational state of a potential well, and thus we expect that the corresponding

wavefunctions are well localized about the minimum of their respective wells.

As a first correction to the picture of bosons isolated in a potential well, we con-

sider the mixing of vibrational states in neighboring wells.

Following this approach, one expects to find a Bose-Hubbard Hamiltonian:

Ĥ = −
∑

〈i, j〉

(

ti j â†i â j + h.c.
)

+
U
2

∑

i

n̂i (n̂i − 1) −
∑

i

µi n̂i , (1.17)

where 〈i, j〉 denotes the sum over pairs of nearest-neighbor sites. To clarify what

terms are included, we can think of each term as a bond connecting nearest-

neighbor sites, and the sum is over all distinct bonds. Also, ti j is the tunneling

(or “hopping”) matrix element for an atom tunneling from site j to site i, h.c.

refers to “hermitian conjugate”, â†i (â j) is the bosonic creation (annihilation) op-

erator for site i ( j), U is the pair interaction energy for two atoms sharing the

same site,
∑

i is the sum over all sites i, n̂i = â†i âi is the number operator for site

i, and µi is the local chemical potential at site i. Qualitatively, the first term on

the right-hand side of equation (1.17) is the contribution to the total energy due

to delocalization of the system by tunneling. The second term is the sum of the

on-site pair-interaction energies, and the third term is the potential energy offset

commonly due to an external trapping potential in addition to the optical lattice.

Equation (1.17) will be the starting point for the calculations performed in this

dissertation. We now show how to derive the parameters in this approximate
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Hamiltonian.

Quantitatively, we do this by expressing our bosonic field operators in terms

of tightly-peaked Wannier functions, w(x), that is,

ψ̂
(

~x
)

=

∑

j

â j w
(

~x − ~x j

)

(1.18)

where the sum runs over each lattice site, and â j is a bosonic annihilation oper-

ator for site j. The form of w (x) will be discussed shortly. Then we substitute

equation (1.18) into equation (1.16). This gives the parameters in equation (1.17)

in terms of the Wannier wavefunctions.

First we consider the interaction term from equation (1.16). Using equa-

tion (1.18) we have

∫

d3~x ψ̂†
(

~x
)

ψ̂†
(

~x
)

ψ̂
(

~x
)

ψ̂
(

~x
)

=

∑

i, j,k,l

â†i â†j âkâl

∫

d3~x w∗
(

~x − ~xi
)

w∗
(

~x − ~x j

)

w
(

~x − ~xk
)

w
(

~x − ~xl
)

. (1.19)

Now since the Wannier functions are so well localized, the dominant term is

when the site indices are all equal, that is, on-site interactions. It has been shown

that in most circumstances the next greatest term, the nearest-neighbor repul-

sion, is about two orders of magnitude smaller, and is thus omitted from the

effective Hamiltonian [9]. We can then make the identification

U =
4πas~

2

m

∫

d3~x |w
(

~x − ~xi
)

|4 . (1.20)

Next we consider the trapping potential term. Since the trapping poten-

tial, VT
(

~x
)

, is so slowly varying on the scale of the optical potential, we may

perform this integral as if there is only a static background to the Wannier func-

tions. Again, because the Wannier functions are very localized, the on-site term
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is dominant and the overlap terms may be truncated. We are then left with

∫

d3~x ψ̂†
(

~x
)

VT
(

~x
)

ψ̂
(

~x
)

≈
∑

i

n̂i

∫

d3~x VT
(

~x
)

|w
(

~x − ~xi
)

|2 , (1.21)

and we identify the integral as

ǫi =

∫

d3~x VT
(

~x
)

|w
(

~x − ~xi
)

|2 ≈ VT
(

~xi
)

, (1.22)

which is the energy offset at lattice site i due to the external potential. In addi-

tion, since we deal with the grand-canonical ensemble, we define the chemical

potential µ and write the full Hamiltonian, ĤFull = Ĥ − µ
∑

i n̂i. From now on we

drop the subscripts from Ĥ and, unless otherwise stated, always work with the

full Hamiltonian. The chemical potential term follows directly from the argu-

ment leading to ǫi. Since both parameters multiply the number operator, it is

convenient to define a local chemical potential for each site,

µi = µ − ǫi . (1.23)

Lastly, we analyze the term including the kinetic and optical lattice potential

energies,

∫

d3~x ψ̂†
(

~x
)

K̂
(

~x
)

ψ̂
(

~x
)

=

∑

i, j

â†i â j

∫

d3~x w∗
(

~x − ~xi
)

K̂
(

~x
)

w
(

~x − ~x j

)

, (1.24)

where K̂
(

~x
)

=

(

− ~
2

2m
~∇2
+ V0

(

~x
)

)

, and the sum is over all sites of the optical lattice.

First consider just the on-site term, where i = j. We find that this integral is ap-

proximately the ground state energy of a single boson in a potential well. This

energy is the same for each boson in the system, so the total energy contribu-

tion is constant for a constant number of bosons, and the energy contribution

connected to number fluctuations is already accounted for by the chemical po-

tential. Thus we can truncated this term without changing the physics of our
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effective model. Note that this is the “isolated boson” energy term in our tight

binding approximation. The first correction to the isolated boson energy is then

found by considering nearest-neighbor mixing. The next-nearest neighbor term

is characteristically two orders of magnitude smaller than the nearest-neighbor

term, so we omit it from our effective model, and thus make the identification

ti j = −
∫

d3~x w∗
(

~x − ~xi
)

K̂
(

~x
)

w
(

~x − ~x j

)

, (1.25)

where {i, j} denote nearest neighbor sites. The above sign convention is fixed so

that all the effective parameters in the BHM will be non-negative in the case of

a uniform system. It appears as though there is a minus sign missing from the

definition of the tunneling amplitude in Jaksch et. al. [9].

The only remaining step is to calculate the Wannier states. Generically, this

must be done numerically. We first comment on the qualitative effects of tun-

ing the laser intensity in an experiment. Recall that the optical-trap depth, V0,

is proportional to the intensity of the laser field, so the experimentalist may

control the trap depth. If we increase the trap depth, then each boson should

become more localized in its respective potential well. Thus there should be

more overlap of bosons occupying the same well so the magnitude of U should

increase, and tunneling should become more difficult, so the magnitude of ti j

should decrease. As a result the potential term becomes dominant in determin-

ing the ground state, and at a certain well depth we expect a phase transition

to a state with “commensurate filling of the lattice” [9], that is, a Mott Insulator

(MI). In the opposite limit the tunneling of bosons should dominate the form

of the ground state, and we expect that in this limit the ground state is highly

delocalized and phase coherent, that is, a superfluid (SF).

The qualitative insights made above are supported in experiment [12] and
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by highly-accurate numerical calculations [15]. We can also write a correspond-

ing analytic theory by approximating the region in the minimum of the well to

be a harmonic oscillator potential, where each boson is then in a harmonic oscil-

lator ground state. In this way we will get a sense of how the BHM parameters

should scale with respect to the experimental parameters. First we determine

the three harmonic oscillator angular frequencies (one for each spatial direction,

using separation of variables in Cartesian coordinates). We do this by taking the

second derivative of the optical lattice potential (see equation (1.15)) and find-

ing the value at the minimum of the well (x = 0 or y = 0 or z = 0) and setting it

equal to the standard form of the harmonic oscillator potential, V̂HO =
1
2mω2x2,

where m is the boson mass and ω is the angular frequency. We find that

ωi =

√

4ERV0,i

~
, (1.26)

where the index i denotes spatial direction, and ER(= ~
2k2/(2m)) is the recoil en-

ergy, where k is the laser wavenumber. We can then estimate the size of a single-

boson wavefunction by the corresponding oscillator length ℓi(=
√

~/(mωi)), and

now we have a context in which to present the self-consistency conditions for

the Bose-Hubbard model [9].

For our analysis to make sense we need as ≪ ℓ ≪ d, where ℓ ≪ d is the con-

dition for the tight-binding approximation. The condition as ≪ ℓ is required for

interactions to not excite atoms into higher bands. This is equivalent to setting

∆E j =
1
2Un j(n j − 1)≪ ~ω, where the subscript j denotes a lattice site. In practice

these inequalities are easily satisfied [9].

Next, we use 3-D harmonic-oscillator ground state wavefunctions for a

spherically symmetric potential to calculate analytic estimates for t and U for
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a cubic optical lattice. The wavefunction is ([16], pp. 31-44),

ψHO(r) =
1

π3/4ℓ3/2
exp

(

−
r2

2ℓ2

)

, (1.27)

where ℓ is the oscillator length, and ω is the corresponding angular frequency.

Next, by substituting equation (1.27) into equation (1.20), we find

U =

√

2
π

~ω
(as

ℓ

)

, (1.28)

which tells us that the interaction parameter, U, scales as (k2V0)3/4. For the uni-

form case, we estimate t by calculating the integral,

t ∼
∫

d3~xψ∗HO

(

x −
λ

2

)

[

−
~

2

2m
~∇2

]

ψ∗HO(x) , (1.29)

where we recall that (λ/2)(= π/k) is the lattice spacing. We find

t ∼
(

1
ℓ3

)

exp

(

− π2

4ℓ2k2

)

∼ (k2V0)
3/4 exp

(

−
√

m
8
π2

~

√
V0

k

)

, (1.30)

where we notice that the hoping parameter, t, is exponentially dependent on V0

and k. Thus t is much more strongly dependent on the experimental parameters

than U, although in general t/U is the important parameter for predicting the

behavior of the system. If nothing else, equations (1.30) and (1.28) give us a

general idea of how this ratio should scale as the trap parameters are modified.

In the next chapter we present some useful solutions to the Bose-Hubbard

model in both the weakly-interacting and strongly-interacting limits.
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CHAPTER 2

REPULSIVELY INTERACTING BOSONS IN THE TIGHT-BINDING LIMIT

2.1 Weakly-interacting limit

Non-interacting lattice bosons

The spatially uniform, non-interacting Bose-Hubbard model (BHM) is de-

scribed by the full Hamiltonian,

K̂ = Ĥ − µN̂ = −t
∑

<i, j>

(â†i â j + â†j âi) − µ
∑

j

â†j â j . (2.1)

As is often the case, the symmetry of the system leads us to the “good” quan-

tum numbers. The discrete translational symmetry of the square lattice in

one-, two- or three-dimensions suggests that equation (2.1) can be diagonalized

in the basis of (crystal) momentum. We take advantage of this by Fourier trans-

forming equation (2.1) to momentum space. Normalizing the lattice spacing to 1

and imposing periodic boundary conditions (BC), the correct Fourier transform

(FT) pair is

b̂k =
1
Ωd/2

∑

j

â j exp (−ik · j) , (2.2)

â j =
1
Ωd/2

∑

k

b̂k exp (ik · j) , (2.3)

where b̂k annihilates a boson of momentum k, Ω is the number of lattice sites

along each edge of the system , and d is the dimensionality of the system. The

j-sum runs over all the lattice sites, while the k-sum is over the aforementioned

crystal momentum (k = (2πp)/Ω, where p = {−⌊Ω/2⌋, ..., 0, ..., ⌊(Ω − 1)/2⌋}, see

Arfken and Weber [17], pp.840-3, for details on discrete FT).
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The number operator is easy to write in momentum space. Using the orthog-

onality relationship between Fourier components we find

−µ
∑

j

â†j â j = −µ
∑

k

b̂†k b̂k. (2.4)

The nearest-neighbor hopping term seems more difficult, however there is a

neat trick to diagonalize a square lattice of any dimension.

2.1.1 Diagonalizing The Nearest-Neighbor Hopping Term

Let’s first consider the situation in one spatial dimension, where our lattice is

just a chain of equally spaced sites. In this case, one can easily show that we

may replace the nearest neighbor sum over i and j with a sum over j, where we

have replaced the index i by j + 1, that is,

∑

<i, j>

(â†i â j + â†j âi) =
∑

j

(â†j+1â j + â†j â j+1) . (2.5)

Next we FT equation (2.5), and use orthogonality to diagonalize. The result is

∑

<i, j>

(â†i â j + â†j âi) = 2
∑

k

(cos (k))b̂†k b̂k . (2.6)

The procedure is similar for the two-dimensional case.

In the 2-D square lattice we may represent each point by an x- and a y-

component, for example, site j can be written ( jx, jy). Also, notice that each

site has four nearest neighbors, so that, in analogy with equation (2.5), we may

write
∑

<i, j>

(â†i â j + â†j âi) =
∑

j

(â†jx+1â j + â†j â jx+1 + â†jy+1â j + â†j â jy+1) , (2.7)
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where the sum over j can equivalently be written as two sums, one over each

component, that is,

∑

j

(â†jx+1â j + â†j â jx+1 + â†jy+1â j + â†j â jy+1)

=

∑

jx

∑

jy

(â†jx+1â j + â†j â jx+1 + â†jy+1â j + â†j â jy+1) . (2.8)

Also, the Fourier transform pairs are conveniently written in terms of x- and

y-components, that is,

â j =
1
Ω

∑

kx

∑

ky

exp (i(kx jx + ky jy))b̂k , (2.9)

and

â†j =
1
Ω

∑

kx

∑

ky

exp (−i(kx jx + ky jy))b̂
†
k , (2.10)

where our system is a square with Ω sites along each edge. Now substitute

equations (2.9) and (2.10) into equation (2.7), and use orthogonality to diagonal-

ize the 2-D hopping term

∑

<i, j>

(â†i â j + â†j âi) = 2
∑

kx

∑

ky

(cos (kx) + cos (ky))b̂
†
k b̂k , (2.11)

where k = (kx, ky).

Diagonalizing the three-dimensional square (or “cubic”) lattice case is ex-

actly the same, except we just extend our procedure for an additional spatial

dimension. Using the same logic as before we can immediately write the key

steps leading to the final result. First, our nearest neighbor sum takes the form

∑

<i, j>

(â†i â j + â†j âi) =
∑

jx

∑

jy

∑

jz

(â†jx+1â j + â†j â jx+1 + â†jy+1â j + â†j â jy+1 + â†jz+1â j + â†j â jz+1) .

(2.12)

The Fourier transform pair is

â j =
1
Ω3/2

∑

kx

∑

ky

∑

kz

exp (i(kx jx + ky jy + kz jz))b̂k , (2.13)
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and

â†j =
1
Ω3/2

∑

kx

∑

ky

∑

kz

exp (−i(kx jx + ky jy + kz jz))b̂
†
k . (2.14)

Then, by substituting equations (2.13) and (2.14) into equation (2.12) and using

orthogonality, we diagonalize the 3-D hopping term

∑

<i, j>

(â†i â j + â†j âi) = 2
∑

kx

∑

ky

∑

kz

(cos (kx) + cos (ky) + cos (kz))b̂
†
k b̂k , (2.15)

where k = (kx, ky, kz).

2.1.2 The Spectrum and Ground State of the Non-Interacting

BHM

Combining the results of the last section with equation (2.4) we may write the

full non-interacting Bose-Hubbard Hamiltonian in diagonal form. For the 1-D

chain we have

K̂ = −
∑

k

(µ + 2t cosk)b̂†k b̂k . (2.16)

For the 2-D square lattice we have

K̂ = −
∑

k

(µ + 2t(cos (kx) + cos (ky)))b̂
†
k b̂k . (2.17)

And for the 3-D cubic lattice we have

K̂ = −
∑

k

(µ + 2t(cos (kx) + cos (ky) + cos (kz)))b̂
†
k b̂k . (2.18)

We see that the form of equations (2.16), (2.17) and (2.18) are exactly the same

except for the cosine-term, where the generalization to a system of any dimen-

sionality is straightforward.
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Now, dropping the chemical potential, µ, from the above equations for K̂,

we find that the lowest energy single-particle state is the (k = 0)-state in 1-D,

the (kx = 0, ky = 0)-state in 2-D, and the (kx = 0, ky = 0, kz = 0)-state in 3-D. Then,

since bosons are free to multiply occupy states, the normalized ground state of

non-interacting bosons at zero temperature is

|ψ0〉 =
(b̂†0)

N

√
N!
|0〉 , (2.19)

where N is the total number of particles, |0〉 is the boson vacuum state, and b̂†0

represents the creation operator for the zero momentum state in any dimension.

The chemical potential is actually defined by the ground state energy, that

is, µ = ∂E0
∂N , and just sets the minimum value of the grand canonical energy at

zero1. However, |ψ0〉 is the same regardless of whether µ is included or not.

Equation (2.19) is a pure Bose-Einstein Condensate (BEC), that is, each boson

populates the lowest energy single-particle state. In general we define BEC as

a macroscopic population of the single-particle ground state. In a real system

the BEC is depleted by thermal motion, and also by scattering due to boson-

boson interaction. Since optical lattice experiments investigate bosons at tem-

peratures much lower than the BEC-transition temperature (see, for example,

Greiner et. al. [12]), we choose to calculate the depletion of the BEC caused

purely by interactions. We ignoring the effects due to finite temperature, which

should be small in comparison.

1In this section I refer to the eigenvalues of Ĥ as energy and the eigenvalues of K̂ = Ĥ − µN̂
as grand-canonical energy. In most other sections of this dissertation the convention is to always
deal with the full Hamiltonian, label it Ĥ and refer to it’s eigenvalues or expectation values as
“energy”. However it is important for the argument in this section to differentiate between Ĥ
and K̂.
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Bogoliubov diagonalization procedure

Now we consider the case where we have a finite interaction that depletes the

population of a spatially uniform condensate (zero-momentum state). Suppose

we tune the interaction so that it is weak enough that the overwhelming major-

ity of bosons still occupy the zero-momentum single–particle state, but a finite

amount of the bosons inhabit nonzero-momentum states. There are many ap-

proaches to finding the excitation spectrum and ground state for this system2 .

Here, I present the way that I feel is most systematic.

We begin with grand-canonical Hamiltonian for the nearest–neighbor BHM

with interactions

K̂ = Ĥ − µN̂ = −t
∑

<i, j>

(â†i â j + â†j âi) +
Vo

2

∑

j

â†j â
†
j â jâ j − µ

∑

j

â†j â j . (2.20)

Everything in equation (2.20) is identical to equation (2.1) except we now have

an interaction term where V0 is the effective boson-boson interaction parame-

ter. Using the commutation relations for bosonic operators, we can rewrite the

interaction term with respect to the number operators for each site,

Vo

2

∑

j

â†j â
†
j â jâ j =

Vo

2

∑

j

n̂ j(n̂ j − 1) . (2.21)

Recall that for n objects there are n(n−1)
2 distinct pairs, so the interaction term

in equation (2.20) makes an energy contribution corresponding to V0 for each

distinct pair of bosons on the same lattice site. Also, since the condensate is

spatially uniform µ and V0 have no spatial dependence.

In order to find the excitations and the new ground state that results from

weak interactions, we perturb the spatially uniform condensate. In practice we

2See, for example, Pethick and Smith, pp. 204-16 [10]; Fetter, pp. 67-72 [18]; or
Pitaevskii, pp. 26-33 [19]
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set each boson operator in position space equal to a uniform condensate term

plus a tiny, site-dependent, bosonic fluctuation operator:

â j = φ̂0 + δâ j , (2.22)

where φ̂0 is the annihilation operator for the zero–momentum state (the con-

densate), and δâ j is an annihilation operator for site j with no zero–momentum

component. We use δâ j as the small parameter to determine the corrections to

the non-interacting ground state. We justify this by noting that In the Hamil-

tonian, the small parameter is the interaction strength, V0, which implies δâ j

should also be a small parameter.

Next we use the so-called “Bogoliubov prescription” (Pitaevskii and

Stringari, pp. 28 [19]),

φ̂0 =
√

n0 , (2.23)

where n0 is the density of the condensate. This prescription is valid due to the

fact that the condensate population, N0 = n0Ω, is macroscopic, that is,

N0 ≫ 1 . (2.24)

In light of equation (2.24) we expect that creating or annihilating some small

amount (order unity) of zero momentum bosons should have little effect on the

system (see Nozieres and Pines, pp. 133-5 [20]). Quantitatively,

φ̂0|ψ0(N0)〉 =
√

N0|ψ0(N0 − 1)〉 ∼
√

N0|ψ0(N0)〉 , (2.25)

and

φ̂†0|ψ0(N0)〉 =
√

N0 + 1|ψ0(N0 + 1)〉 ∼
√

N0|ψ0(N0)〉 . (2.26)

It follows that φ̂0 and φ̂†0 commute with each other as well as all nonzero mo-
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mentum operators, and equation (2.23) is justified3. Now, using equation (2.23),

we rewrite equation (2.22),

â j =
√

n0 + δâ j . (2.27)

Next we substitute equation (2.27) into equation (2.20) and expand this new

expression through quadratic order in the fluctuation operators. We expand to

quadratic order since the first-order variation of the Hamiltonian must vanish

in order to minimize the energy of the condensate, and this leaves the quadratic

variation as the highest-order nonvanishing correction to the noninteracting

system. Also, we justify stopping at quadratic order by noting that, since the

fluctuations are tiny, the quadratic correction is far larger than any higher-order

correction. Now, after some algebra, our result is

K̂ = K0 + K̂1 + K̂2 , (2.28)

K0 = −(2d t + µ)Ωdn0 +
1
2

V0Ω
dn2

0 , (2.29)

K̂1 =
√

n0(−2d t + V0n0 − µ)
∑

j

(δâ j + δâ
†
j) , (2.30)

K̂2 = −t
∑

<i, j>

(δâ†i δâ j + δâ
†
jδâi) +

1
2

V0n0

∑

j

(δâ†jδâ
†
j + δâ jδâ j) +

∑

j

(2V0n0 − µ)δâ†jδâ j ,

(2.31)

where K0 is the grand-canonical energy of the condensate (zeroth order term),

K̂1 is the first order variation of the condensate energy with respect to the quan-

tum fluctuation operators, K̂2 is the second order variation of the condensate

energy, and d is the dimensionality of the system. To minimize the energy of the

condensate the first-order variation of the condensate energy must vanish, that

is,

−2d t + V0n0 − µ = 0 . (2.32)

3Note that if one writes |ψ0〉 = exp
(√

N0b̂†0
)

|0〉 then φ̂0|ψ0〉 =
√

N0|ψ0〉. The particle number in
this |ψ0〉 is Poisson distributed about N0, and as N0 gets larger, the distribution becomes tighter
about N0. This helps explain the validity of equations (2.25) and (2.26).
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As a consistency check, note that we get the same condition by setting

∂K0

∂n0
= 0 . (2.33)

Equation (2.32) is the Gross-Pitaevskii equation (GPE) for a uniform gas on

a lattice with no external field. In this case there are no spatial or temporal

dynamics, so the GPE just sets the value of the chemical potential µ. Using

equation (2.32), the grand-canonical energy of the condensate is then

K0 = −
1
2

N0n0V0 . (2.34)

Next we write what is called the “Bogoliubov Hamiltonian” (Fetter, p. 70 [18]),

K̂B, which generally consists of a zeroth-order term and a quadratic-order term:

K̂B = −
1
2

N0n0V0 − t
∑

<i, j>

(δâ†i δâ j + δâ
†
jδâi) +

1
2

V0n0

∑

j

(δâ†jδâ
†
j + δâ jδâ j)

+

∑

j

(V0n0 + 2d t)δâ†jδâ j . (2.35)

Now recall that in the non-interacting case we guessed that crystal momenta

were the good quantum numbers due to the discrete translational symmetry of

the lattice. Here we make the same assumption, and our next step is to Fourier

transform equation (2.35) into momentum space. First recall that δâ j is a site-

basis operator with no zero-momentum component. It follows that the correct

FT pair is

b̂k =
1
Ωd/2

∑

j

δâ j exp (−ik · j) , (2.36)

δâ j =
1
Ωd/2

∑

k,0

b̂k exp (ik · j) , (2.37)

where b̂†k and b̂k are the creation and annihilation operators, respectively, for

bosons of crystal momentum k. Also assume that the site index j represents
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a site in any dimension and the crystal momentum k represents a momen-

tum in any dimension. Substituting equation (2.37) and its hermitian conju-

gate into equation (2.35), and using the orthogonality of Fourier components,

as well as the results for diagonalization of a nearest neighbor sum (see equa-

tions (2.6), (2.11) and (2.15)), we can write K̂B in the momentum representation4.

Note that this result has the same form regardless of dimensionality. The only

difference is that “k” has one, two or three components, the cosine term is dif-

ferent (again see equations (2.6), (2.11) and (2.15)), and the chemical potential

term is different as well (see equation (2.32)). It turns out that this generality

will extend to all future results in this paper. For convenience, I will use the 1-D

cosine and chemical potential terms, that is, (cos (k)−1), to present these results.

Here we have

K̂B = −
1
2

N0n0V0 +

∑

k,0

[

(V0n0 − 2t(cosk − 1))b̂†k b̂k +
1
2

V0n0(b̂
†
k b̂†−k + b̂kb̂−k)

]

, (2.38)

where the 2- and 3-D results are immediately acquired by substituting the ap-

propriate cosine term, that is, (cos (kx)+cos (ky)−2) in 2-D and (cos (kx)+cos (ky)+

cos (kz) − 3) in 3-D, for “cos (k) − 1”.

From equation (2.38) it is straightforward to determine the eigenvalue spec-

trum using the Heisenberg equations of motion (HEOM) and a linear (Bogoli-

ubov) transformation to quasiparticle operators that diagonalize KB (Pethick

and Smith, pp. 214-6 [10]). The process is as follows. First, write the HEOM

using the fact that the fluctuation operators obey boson commutation relations

i
∂b̂q

∂t
= [b̂q, K̂B] = (g n0 − 2t(cosq − 1))b̂q + (V0 n0)b̂

†
−q , (2.39)

4Knowing that crystal momenta are the good quantum numbers, we could have immediately
Fourier transformed equation (2.20) into momentum space and then decomposed each term into
zero- and nonzero-momentum pieces. This process also gives equation (2.38), but it is not as
general as the procedure we used in that it only works when momentum is the good quantum
number, and so, for example, would fail if we added a harmonic potential.
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where ~ = 1. Then, in order to solve for the excitation spectrum we use a Bo-

goliubov transformation

b̂q = uq exp [−iǫqt] β̂q − ν∗−q exp [iǫqt] β̂†−q , (2.40)

b̂†−q = u∗−q exp [iǫqt] β̂†−q − νq exp [−iǫqt] β̂q , (2.41)

where we choose β̂q so that the time-dependent bosonic quasiparticle operator,

β̂q(t) = exp [−iǫqt]β̂q, diagonalizes K̂B, and ǫq is the quasiparticle spectrum. This

claim is verified by the HEOM for β̂q(t), that is,

ǫqβ̂q(t) = [β̂q(t), K̂B] , (2.42)

which implies that K̂B is of the form

K̂B = (Constant) +
∑

q

ǫq β̂
†
qβ̂q . (2.43)

Next, substitute equations (2.40) and (2.41) into equation (2.39) and we get one

equation each by equating the coefficients of β̂q and β̂†−q:

ǫquq = (V0 n0 − 2t(cosq − 1))uq − V0 n0 νq (2.44)

and

−ǫqνq = (V0 n0 − 2t(cosq − 1))νq − V0 n0 uq , (2.45)

respectively. It is simple to solve equations (2.44) and (2.45) for ǫq, and the result

is

ǫq =
√

(V0 n0 − 2t(cosq − 1))2 − (V0 n0)2 , (2.46)

which is the exact expression for the 1-D chain. Using our prescription for ex-

tending results to higher dimensions we can immediately write the expression

for the excitation spectrum on a 2-D square lattice,

ǫq(2D) =
√

(V0 n0 − 2t(cos (qx) + cos (qy) − 2))2 − (V0 n0)2 , (2.47)
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and on a 3-D cubic lattice

ǫq(3D) =
√

(V0 n0 − 2t(cos (qx) + cos (qy) + cos (qz) − 3))2 − (V0 n0)2 . (2.48)

Note that regardless of dimensionality we must choose the “+”–sign solution,

since negative energy excitations would make the condensate unstable. A good

check of equations (2.46)-(2.48) is to explore the long wavelength (small q) limit.

In the long wavelength limit, where q is much smaller than the inverse lattice

spacing, we expect the lattice excitation spectrum to approach the form of the

excitation spectrum for the continuous case, that is (Pitaevskii and Stringari, p.

32 [19]),

ǫ(p) =

√

(

p2

2m

)2

+
g n0

m
p2 , (2.49)

where m is the mass of a single boson, p is the magnitude of the momentum

(with units (length)−1), and g is the boson-boson coupling constant. Whereas V0

(in equation (2.46)) is the effective interaction between two bosons sharing the

same lattice site, and is determined by the size of the lattice site [9], g (=4π~2a/m)

(in equation (2.49)) is determined by measuring the scattering length a. Also,

where q (in equation (2.46)) is a unitless momentum scaled by the inverse lattice

spacing, p (in equation (2.49)) is momentum with units (length)−1.

Now, considering ǫq in the small q limit (cos(q) ≈ 1− q2

2 ), we find that equa-

tion (2.46) gives

ǫq ≈
√

(t q2)2 + 2V0 n0 t q2 , (2.50)

where this expression looks the same for a square lattice of any dimension if

we keep in mind that q here is the magnitude of the momentum. If we then let

q = d p, where d is the lattice spacing, and define an effective mass,

m∗ =
1

2t d2
, (2.51)
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then we may rewrite equation (2.50) as

ǫp ≈

√

(

p2

2m∗

)2

+
V0n0

m∗
p2 . (2.52)

Comparing equation (2.52) with equation (2.49), we see that in the long wave-

length limit the excitation spectrum for the lattice has the same form as the exci-

tation spectrum in the continuous case. This result suggests that equation (2.46)

is correct.

Our next task is to find uq and ν−q, which are determined so that K̂B is indeed

diagonalized by β̂q and β̂†q. First, we won’t worry about time dependence any-

more, so let t = 0 in the Bogoliubov transformation (equations (2.40) and (2.41)).

Next, substitute these equations into K̂B (equation (2.38)) and group the result

into diagonal and off-diagonal terms5

K̂B = K̂D + K̂OD , (2.53)

K̂D = −1
2

N0n0V0 +

∑

k

[

(V0 n0 − 2t (cosk − 1)) |νk|2 −
1
2

V0 n0
(

ν∗kuk + u∗kνk
)

]

+

∑

k

β̂†kβ̂k

[

(V0 n0 − 2t (cosk − 1))
(

|uk|2 + |νk|2
)

− V0 n0
(

ν∗kuk + u∗kνk
)

]

,

(2.54)

K̂OD =

∑

k

β̂†kβ̂
†
−k

[

(V0 n0 − 2t (cosk − 1))
(

−ν∗−ku
∗
k

)

+
V0 n0

2
(

ν∗−kν
∗
k + u∗ku

∗
−k

)

]

+

∑

k

β̂kβ̂−k

[

(V0 n0 − 2t (cosk − 1)) (−ν−kuk) +
V0 n0

2
(ν−kνk + uku−k)

]

,

(2.55)

where K̂D is the ground state energy plus the diagonal β̂q term, and K̂OD is the

off-diagonal term. We know that K̂OD must vanish, so this gives us a condition

5I identify “diagonal” and “off-diagonal” terms by considering the matrix elements of each
term with respect to an occupation number basis in the momentum representation.

28



for determining uk and νk . Since all of the coefficients are real, we can choose

a real solution to the position basis eigenfunctions, that is, the FT of uk and ν−k.

This implies that uk = u∗−k and νk = ν
∗
−k , so the condition becomes

(V0 n0 − 2t (cosk − 1)) ukν−k =
1
2

V0 n0

(

|ν−k|2 + |uk|2
)

. (2.56)

The second condition for for uk and ν−k results from the Bose commutation rela-

tions of b̂k and b̂†k :

[b̂k , b̂†k′ ] = δk,k′ , (2.57)

[b̂k, b̂k′ ] = 0 , (2.58)

as well as the analogous commutators for β̂k and β̂†k . Using the Bogoliubov trans-

formations (equation (2.40) and (2.41)) and equation (2.57) we find

|uk|2 − |ν−k|2 = 1 . (2.59)

In the same style we use equation (2.58) to find

ukν
∗
k − ν∗−ku−k = 0 . (2.60)

Now, since the coefficients of equation (2.56) are real, then a real solution

is guaranteed to exist for uk and ν−k. Assuming uk and ν−k are real, and using

equation (2.59) we can solve equation (2.56) for u2
k :

u2
k =

1
2

(

1± V0 n0 − 2t(cosk − 1)
ǫk

)

. (2.61)

Since uk is real, then u2
k should be positive, and we must make the sign choice in

equation (2.61) accordingly. However, this choice will depend on the sign of V0.

Up to this point we have not specified what range of values V0 could take, but

we can do this now by investigating the condition for thermodynamic stability

of the condensate. Let’s take a short aside to calculate this.
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We first guarantee that the condensate is thermodynamically stable, and it

turns out that this specifies the sign that V0 must have. The conditon for ther-

modynamic stability can be stated (Pitaevskii and Stringari, p.29 [19])

∂n0

∂P
> 0 , (2.62)

where n0 is the density of the condensate and P is the pressure (P = −∂E0
∂Ω

). E0 is

the ground state energy (energy of the condensate) and Ωd is the volume of the

system. To lowest order approximation, the ground state energy is (see equa-

tion (2.29), and let µ = 0).

E0 =
N2

0 V0

2Ωd
− 2d t N0 , (2.63)

where N0 is the number of bosons in the condensate. From these expressions we

find

∂n0

∂P
=

1
V0n0

, (2.64)

thus V0 must be greater than zero to ensure thermodynamic stability. For the

remainder of the paper I will assume V0 > 0, as suggested by the above result.

Since I now assume V0 > 0 we must choose the “+”–sign in equation (2.61)

to ensure u2
k > 0. Next, from equation (2.59) we may immediately write ν2

−k , and

then we have determined uk and ν−k to within a sign:

uk = ±

√

1
2

(

V0 n0 − 2t(cosk − 1)
ǫk

+ 1

)

, (2.65)

ν−k = ±

√

1
2

(

V0 n0 − 2t(cosk − 1)
ǫk

− 1

)

. (2.66)

We constrain the sign choice and check the above result by substituting equa-

tions (2.65) and (2.66) into the coefficient of β̂†kβ̂k in equation (2.54). The resulting

spectrum must be equal to the quasiparticle spectrum, ǫk (equation (2.46)), for uk
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and ν−k to be viable solutions. We find that we must either choose “+” in equa-

tions (2.65) and (2.66) or “−” in both equations, in order to be consistent with ǫk.

Choosing the “+”-sign convention for uk and ν−k, we then substitute these into

the higher order ground state grand-canonical energy term from equation (2.54),

that is,

E0,GC = −
V0N2

0

2Ω
+

∑

k,0

[

(V0 n0 − 2t(cosk − 1)) ν2
k − V0 n0 νkuk

]

, (2.67)

where E0,GC is the total ground state grand–canonical energy. Also, note that we

have used the fact that uk and νk are real functions, and also even functions with

respect to k.6 The resulting expression for ground state grand-canonical energy

is then (for dimensions one through three):

E0,GC(1D) = −
V0N2

0

2Ω
+

1
2

∑

k,0

[ǫk − V0 n0 + 2t(cosk − 1)] , (2.68)

E0,GC(2D) = −
V0N2

0

2Ω2
+

1
2

∑

k,0

[

ǫk − V0 n0 + 2t(cos (kx) + cos (ky) − 2)
]

, (2.69)

E0,GC(3D) = −
V0N2

0

2Ω3
+

1
2

∑

k,0

[

ǫk − V0 n0 + 2t(cos (kx) + cos (ky) + cos (kz) − 3)
]

, (2.70)

and K̂B in full diagonal form is

K̂B = E0,GC +

∑

k,0

ǫkβ̂
†
kβ̂k . (2.71)

Now that we have determined the ground state grand–canonical energy and ex-

citation spectrum of the weakly–interacting Bose gas, let’s determine the actual

ground state.

6Note that these quantities are functions only of the magnitude of k.
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2.1.3 The Weakly Interacting Ground State

The ground state in the weakly–interacting case is defined as the quasiparticle

vacuum, that is,

β̂k|GS 〉 = 0 , (2.72)

where |GS 〉 is the weakly–interacting ground state. The weakly–interacting

ground state is written in the form of a “squeezed state” , that is,

|GS 〉 = exp















−
∑

k,0

λkb̂
†
k b̂†−k















|ψ0〉 , (2.73)

where |ψ0〉 is the non–interacting ground state (equation (2.19)). All we are left

to do is to determine λk. But first let’s give a physical interpretation of equa-

tion (2.73). Using properties of the exponential function we can rewrite equa-

tion (2.73) as

|GS 〉 =
∏

k,0

∞
∑

q=0

(−λk)q

q!
(b̂†k b̂†−k)

q|ψ0〉 . (2.74)

So |GS 〉 is a product of |k|–states, where each |k|-state is a linear combo of all

possible occupancies that contribute zero momentum. The weakly–interacting

ground state is defined as a zero momentum eigenstate (see equation (2.72)),

and equation (2.73) is a very general way of writing this, while allowing finite

occupancy of nonzero–momentum single–particle states. Next we shift our at-

tention to determining λk.

The first step is to write equation (2.72) where β̂k is expressed in terms of the

bare bosonic operators, that is,

(ukb̂k + νkb̂
†
−k) exp















−
∑

k,0

λkb̂
†
k b̂†−k















|ψ0〉 = 0 . (2.75)

Then using the Taylor Series expansion and the commutation relations of b̂k and

b̂†k (see equations (2.57) and (2.58)) we can show that, for any analytic function,
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F(b̂†k),

[b̂k, F(b̂†k)] = F′(b̂†k) (2.76)

is generally true (Cohen-Tannoudji, Diu, and Laloë, pp.171-2 [21]). Using equa-

tions (2.75) and (2.76) we arrive at the following expression,

(−λkuk + νk)b̂
†
−k|GS 〉 = 0 , (2.77)

which is easily solved for λk, so we can fully specify the weakly–interacting

ground state,

|GS 〉 = exp















−
∑

k,0

νk

uk
b̂†k b̂†−k















|ψ0〉 = 0 . (2.78)

In addition to determining the form of the weakly interacting ground state,

we may use equation (2.72) to determine the density of noncondensed bosons,

nnc, where

nnc =
1
Ωd

∑

k,0

〈b̂†k b̂k〉 , (2.79)

and in the thermodynamic limit

nnc =

(

1
2π

)d ∫

ddk 〈b̂†k b̂k〉 , (2.80)

where we integrate over all momentum space. First we calculate 〈b̂†k b̂k〉,

〈b̂†k b̂k〉 = 〈GS |b̂†k b̂k|GS 〉 , (2.81)

where |GS 〉 is determined above, and defined by equation (2.72). In order to take

advantage of equation (2.72) to calculate 〈b̂†k b̂k〉we use the Boguliubov transfor-

mation in equations (2.40) and (2.41) (at t = 0) to express equation (2.81) in terms

of the Bogoliubov quasiparticle operators, β̂k and β̂†k . Then it is easy to find

〈b̂†k b̂k〉 = ν2
k , (2.82)

where ν2
k is specified by equation (2.66).
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We are most interested in the long-wavelength limit where k ≪ 1, so (cos (k)−

1 ≈ − k2

2 ), and the 2- and 3-D cases also return − k2

2 , where k is the magnitude of

the momentum. In this limit,

ν2
k =

1
2

(

1+ y
(y2 + 2y)1/2

− 1

)

, (2.83)

where we have defined the unitless parameter y = t
V0 n0

k2. Now it remains to

perform the integral from equation (2.80) in 1-, 2- and 3-dimensions. In one di-

mension we find that the integral does not converge, that is, the number of non-

condensed bosons is infinite. At the beginning of this calculation we assumed

that the number of noncondensed bosons would be tiny, so our calculation in

one dimension is not self-consistent, and is thus fatally flawed in the thermody-

namic limit. However, in two and three dimensions we get finite results:

nnc(2D) =
1
8π

V0 n0

t
, (2.84)

and

nnc(3D) =
1

6π2
√

2

(V0 n0

t

)3/2

. (2.85)

Since we are in the weakly interacting limit, V0/t is a small parameter, and we

may specify that V0 is small enough so that {nnc(2D), nnc(3D)} ≪ n0, as required

to ensure self-consistency.

2.2 Strongly-interacting limit

In this section I demonstrate some important strategies for calculating ground

states of the Bose-Hubbard model in the limit of strong interactions. The

strongly-interacting limit implies a system where the interaction strength is the

dominant energy scale and the hopping part of the Hamiltonian is treated as
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a perturbation. Quantitatively we can state this limit with respect to the pa-

rameters of the Bose-Hubbard Hamiltonian, that is, t/U ≪ 1, and where the

Gutzwiller ansatz provides an accurate description of the system. This regime

of the Bose-Hubbard model has been studied rather extensively [9, 22, 23]. In

this section I present the mean-field theory of the zero-temperature phase dia-

gram, using both analytic and the numerical techniques.

2.2.1 Phase diagram of the repulsive Bose-Hubbard Hamilto-

nian in the mean-field approximation

We begin by writing the Bose-Hubbard hamiltonian for a uniform system:

Ĥ = −t
∑

〈i, j〉

(

â†i â j + â†j âi

)

+
1
2

U
∑

i

n̂i (n̂i − 1) − µ
∑

i

n̂i , (2.86)

where t is the hopping matrix element, U is the on-site interaction strength, and

µ is the chemical potential. The indices refer to sites, and 〈...〉 surrounding the

indices denotes a nearest neighbor sum. We determine the phase diagram by

calculating the expectation value of Ĥ in the mean-field approximation. The

basis of our mean-field theory is the Gutzwiller product ansatz,

|G〉 =
∏

i















∑

n

f i
n|n〉i















, (2.87)

where |n〉i is the n-particle occupation number state at site i, f i
n is the correspond-

ing amplitude, the sum is over all possible occupation numbers, and the prod-

uct is over all sites. Since the system is uniform, we are left with a single-site

problem. The grand-canonical energy per site is

〈Ĥ〉 = 1
M U
〈G|H|G〉 = −t̃|〈â〉|2 + 1

2

(

〈n̂2〉 − 〈n̂〉
)

− µ̃〈n̂〉 , (2.88)
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where M is the total number of sites, t̃ = tσ/U, µ̃ = µ/U, andσ is the coordination

number of the lattice. Using the triangle inequality, one finds that, for global

minima, 〈Ĥ〉(| fm|) ≤ 〈Ĥ〉( fm). Thus, we may assume that the fm’s are nonnegative

and purely real.

We determine the superfluid energy by minimizing 〈Ĥ〉 with respect to the

normalization constraint
∑

m

f 2
m = 1 , (2.89)

and the self-consistency equation of the superfluid order parameter, i.e.,

〈â〉 =
∑

m

√
m fm−1 fm. (2.90)

Of course,

〈n̂〉 =
∑

m

m f 2
m , (2.91)

and

〈n̂2〉 =
∑

m

m2 f 2
m . (2.92)

We use Lagrange minimization to construct an eigenvalue equation for the fm’s.

We then determine the fm’s by an iterative numerical procedure 7 that is self-

consistent with equation (2.90). We then calculate the energy by substituting

the fm’s into 〈Ĥ〉. In general the fm’s will all be nonzero, so 〈â〉 , 0, and 〈Ĥ〉 is the

mean-field ground state energy per site for the superfluid phase.

The competing phase in this Bose-Hubbard model is the zero-temperature

Mott insulator. The Mott insulator phase consists of each site being filled by the

number of particles that minimizes the local potential. Furthermore, tunneling

between sites is completely suppressed, so 〈â〉 = 0 and 〈n〉 = nMI =
[

µ̃ + 1
2

]

, where

the brackets denote rounding to the nearest integer. The energy of the Mott

7We elaborate on this procedure in chapter 4
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phase is calculated by substituting nMI into 〈Ĥ〉(〈â〉 = 0). The resulting energy of

the zero temperature Mott insulator state is

EMI =
1
2

(

n2
MI − nMI

)

− µ̃nMI . (2.93)

We construct the phase plot for equation (2.86) by calculating the difference

between EMI and 〈Ĥ〉 over the domain of interest for
(

µ̃, t̃
)

. The phase with the

lowest energy is the ground state. The resulting phase diagram is plotted in

Figure (2.1). Due to their shape, the Mott insulator regions are commonly re-

ferred to as “Mott lobes”. Including the constant 〈n̂〉 contours in the superfluid

region of Figure (2.1), we find that the n-particle Mott lobe has an 〈n̂〉 = n con-

tour emerging at the critical point, t̃c. In the next section we calculate an analytic

expression for t̃c within Gutzwiller mean-field theory.

2.2.2 Determination of t̃c

Assume that we are approaching the critical point of the n-particle Mott lobe

on the 〈n̂〉 = n contour, and thus are operating in the canonical ensemble where

we may set µ̃ = 0. Inside the Mott lobe we know that the ground state solution

must be fn = 1. Outside the Mott lobe we know that the ground state phase is

superfluid, i.e., 〈â〉 , 0, so there must be adjacent f ′ms , 0. Our ansatz consists of

making a guess about the form of the mean-field solution for t̃ just above t̃c, i.e.,

where the reduced hopping amplitude, τ (=
(

t̃ − t̃c
)

/t̃c), is ≪ 1, but still greater

than zero.

Within mean-field theory the distribution of fm’s in the ground state deep in

the superfluid regime (t̃ ≫ t̃c) is Poissonian, and is peaked about fn. As t̃ de-

creases, the number fluctuations of the ground state solution decrease. That is,
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Figure 2.1: Phase plot of the uniform Bose-Hubbard model. The super-
fluid ground state dominates in the white region. The black
regions are the Mott insulator phases labeled by their respec-
tive particles-per-site. The horizontal (vertical) axes are hop-
ping parameter (chemical potential) scaled by the on-site inter-
action. The red lines are contours of constant total-particle den-
sity, where from bottom to top they represent 〈n̂〉 = {0.75− 3.5}
with a spacing of 0.25. As µ/U increases, the Mott lobes con-
tinue with the same general shape, but with decreasing values
of tcritical.
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the distribution of fm’s in the ground state solution become more tightly peaked

about fn. Below the critical point the distribution is a delta function peak at fn.

So for t̃ just above the critical point we expect the distribution to be very close

to that. Specifically, we guess that fn is just below 1, and only the f’s directly

adjacent to fn have nonzero values. If we assume that there is particle-hole sym-

metry in this region (i.e., fn−1 = fn+1) then our ansatz is

( fn−1, fn, fn+1) =
(

ε,
√

1− 2ε2, ε
)

, (2.94)

where ε (≪ 1) is the order parameter. One should note that equation (2.94) is

properly normalized and has 〈n̂〉 = n. If ε , 0 (and thus 〈â〉 , 0) then our

solution is a superfluid, while if ε = 0, then the solution is a Mott insulator.

The value of t̃ where ε first vanishes to minimize the energy is the critical value,

t̃ = t̃c.

The recipe for finding this point is well documented in the mean-field treat-

ment of critical phenomena [24]. We just write 〈Ĥ〉 as power series in ε, and we

find a standard ε4-theory:

〈Ĥ〉 = 2t̃
(

(2n + 1) + 2
√

n (n + 1)
)

ε4
+

(

1− t̃
(

(2n + 1) + 2
√

n (n + 1)
))

ε2
+

1
2

(

n2 − n
)

(2.95)

To analyze equation (2.95), first re-scale ε, so that it is no longer ≪ 1. Then

one can see that at large ε the ε4-term dominates and 〈Ĥ〉 grows monotonically.

Now, letting

〈Ĥ〉′′ (ε = 0) =
∂2〈Ĥ〉
∂ε2

∣

∣

∣

∣

∣

∣

ε=0

=

(

1− t̃
(

(2n + 1) + 2
√

n (n + 1)
))

, (2.96)

we can see that if 〈Ĥ〉′′ < 0 then 〈Ĥ〉 has minima at ε , 0, and if 〈Ĥ〉′′ > 0 then

〈Ĥ〉 is minimized at ε = 0. The critical point corresponds to the crossing point

between the aforementioned solutions, that is, when 〈Ĥ〉′′ = 0. It follows that

t̃c =

[

(2n + 1)+ 2
√

n(n + 1)
]−1

, (2.97)
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The entire Mott lobe is obviously not particle/hole symmetric, but in the

next section we show that a suitable generalization of equation (2.94) yields the

expression for the entire coexistence curve.

2.2.3 Calculation of µ̃c and the SF-MI coexistence curve

We begin with an ansatz similar to equation (2.94), with one important differ-

ence. In equation (2.94) we assumed that we approached the critical point on

the contour 〈n〉 = n so it was natural to guess that fn−1 = fn+1 which enforces this

constraint. However, to determine µ̃c we will approach the critical point on the

line of constant t̃, so that 〈n〉 is not fixed. Of course 〈n〉 = n at the critical point,

but the value of µ̃c will depend on how 〈n〉 approaches n as µ̃ approaches µ̃c.

Thus we make the slightly more general ansatz:

( fn−1, fn, fn+1) =
(

ε1,

√

1− ε2
1 − ε2

2, ε2

)

, (2.98)

where ε1 and ε2 are independent parameters, and thus 〈n〉 is allowed to vary

close to the critical point.

We already know the value of t̃c, so if we solve for µ̃ with respect to t̃ then we

will have automatically determined µ̃c. To solve for µ̃ we write the expectation

value of the total Hamiltonian, i.e., 〈Ĥ〉 − µ̃〈n̂〉 to the lowest order in ε’s that

includes µ̃ and t̃:

〈Ĥ〉 − µ̃〈n̂〉 = f (ε1, ε2) = −
(

nt̃ + (n − 1) − µ̃
)

ε2
1 +

(

n − (n + 1) t̃ − µ̃
)

ε2
2

− 2t̃
√

n (n + 1)ε1ε2 +
1
2

(

n2 − n
)

− µ̃n . (2.99)

It is perhaps prudent to pause here and justify writing the expression above

which is cut off at second order in the ε’s. We know that close enough to the
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critical point only fn−1 and fn+1 will be nonzero (aside from fn, of course, which

is very close to 1), but these adjacent f ’s are very small with respect to fn, which

is the same as saying that ε1 and ε2 are ≪ 1. Since the ε’s are so small we only

choose the lowest order that can provide the desired expression (in this case µ̃

with respect to t̃). The higher order terms will be very small compared to the

leading order unless the leading order does not give an expression, i.e., if we

were to find 0 = 0 or an expression for µ̃ that does not depend on t̃. If this

happened then we would merely go to the next highest order, and again try

to solve for µ̃. We repeat the process until we find the dependence of µ̃ on t̃.

This is equivalent to discovering a degeneracy (i.e., no correction) at the leading

order in perturbation theory and thus moving on to higher orders until this

degeneracy is broken. But of course, we always start off with the lowest non-

vanishing order equation and only move on to higher orders if necessary. In

this case we will find that it is not necessary to consider higher orders in ε.

By minimizing f (ε1, ε2) with respect to ε1 we get the condition

(

nt̃ + (n − 1) − µ̃
)

ε1 + t̃
√

n (n + 1)ε2 = 0 , (2.100)

while minimizing f (ε1, ε2) with respect to ε2 yields,

(

n − (n + 1) t̃ − µ̃
)

ε2 − t̃
√

n (n + 1)ε1 = 0 . (2.101)

Equations (2.100) and (2.101) constitute an eigenvalue problem for µ̃, which is

easily solved to give

µ̃± =

(

n − 1
2
(

1+ t̃
)

)

±

√

1
4

t̃2 −
(

n +
1
2

)

t̃ +
1
4
. (2.102)

µ̃+ is the expression for the coexistence curve of the n-particle lobe when µ̃ >

µ̃c, while µ̃− is the expression when µ̃ < µ̃c. When t̃ = t̃c the square-root term
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Figure 2.2: Comparison of numerical and analytic calculations. The
white and black regions reflect the results of the numerical cal-
culation of the phase diagram. The superfluid ground state
dominates in the white region. The black regions are the Mott
insulator phases labeled by their respective particles-per-site.
The horizontal (vertical) axes are hopping parameter (chemi-
cal potential) scaled by the on-site interaction. The red curve is
the coexistence curve calculated analytically from mean-field
theory (equation (2.103)).
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in equation (2.102) vanishes, and we obtain the value of the critical chemical

potential for the n-particle lobe, that is,

µ̃c = n −
1
2
(

1+ t̃c
)

. (2.103)

In Figure (2.2) we plot the first three Mott lobes from numerical mean-field the-

ory, as well as the analytic coexistence curves determined immediately above

(equation (2.103)). The close agreement in Figure (2.2) suggests that our ana-

lytic expression is correct.
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CHAPTER 3

BOSONS ON A ROTATING OPTICAL LATTICE

The final ingredient for understanding the work presented later in this dis-

sertation, is a basic knowledge of the response of ultracold lattice bosons to ro-

tation of the lattice. In this chapter I describe how to modify the Bose-Hubbard

Hamiltonian to account for the effects of rotation, and then how to calculate a

vortex ground state using Gutzwiller mean-field theory.

3.1 The Bose-Hubbard Hamiltonian in a rotating frame

In Chapter 1 we showed how the tight-binding approximation connects the

continuum model of lattice bosons to the Bose-Hubbard model. In the cur-

rent section, we will show how the same reasoning can be used to arrive at a

tight-binding model for a rotating lattice system. We start with a continuum

description of a Bose gas with a point interaction

Ĥ =

∫

d3~x ψ̂†
(

~x
)

(

−
~

2

2m
~∇2
+ VO

(

~x
)

− µ
)

ψ̂
(

~x
)

+
1
2

g
∫

d3~x ψ̂†
(

~x
)

ψ̂†
(

~x
)

ψ̂
(

~x
)

ψ̂
(

~x
)

, (3.1)

where ψ̂
(

~x
)

is a boson field operator, VO
(

~x
)

is the optical lattice potential, µ is

the chemical potential, and g is the usual interaction parameter dependent on

the s-wave scattering length. We then expand the field operators in the basis of

Wannier states, w
(

~x − ~xi
)

,

ψ̂
(

~x
)

=

∑

i

âi w
(

~x − ~xi
)

, (3.2)

where âi is a boson annihilation operator for optical lattice site i. Substituting

equation (3.2) into equation (3.1), and using the fact that each Wannier state is
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tightly localized about its respective optical lattice sight, we may then argue for

the following effective Hamiltonian,

Ĥ = −t
∑

〈i, j〉

(

â†i â j + â†j âi

)

+
1
2

U
∑

i

n̂i (n̂i − 1) − µ
∑

i

n̂i , (3.3)

where

t =
∫

d3~x w∗
(

~x − ~xi
)

(

− ~
2

2m
~∇2
+ VO

(

~x
)

)

w
(

~x − ~x j

)

(3.4)

is the hopping matrix element between nearest neighbor sites i and j, and

U = g
∫

d3~x |w
(

~x − ~xi
)

|4 (3.5)

is the on-site interaction parameter. Next, we construct a Bose-Hubbard model

for a gas of bosons in a rotating frame. We will find that this is easily done when

we take for granted the procedure outlined above.

First, we write the classical relationship between the Hamiltonian in the non-

rotating reference frame, HNR, and the Hamiltonian in the rotating reference

frame, HR,

HR = HNR − ~Ω · ~L , (3.6)

where ~Ω is the rotation velocity, and ~L is the angular mometum. Writing out the

terms explicitly we have

HR =
p2

2m
− ~Ω ·

(

~x × ~p
)

+ V(~x) , (3.7)

where V(~x) is the sum of the optical lattice potential, VO
(

~x
)

, and the external

trapping potential, VT
(

~x
)

, minus the chemical potential, µ. Next recall that the

quantity ~Ω ·
(

~x × ~p
)

is cyclically invariant, and thus we complete the square with

respect to ~p,

HR =
1

2m

(

~p− m(~Ω × ~x)
)2
− 1

2
mΩ2x2

+ V(~x) . (3.8)
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Next, since VT
(

~x
)

and −1
2mΩ2x2 are both slowly varying near the center of

the trap, then we may set Ω so that they effectively cancel [25]. Using this can-

cellation, and substituting the first quantization operator for momentum, we

have

HR = −
~

2

2m

(

~∇ − i ~A
(

~x
)

)2
+ VO

(

~x
)

− µ , (3.9)

where ~A
(

~x
)

=
m
~

(

~Ω × ~x
)

. Next we write equation (3.9) in second-quantized form

using bosonic field operators and adding a point interaction,

Ĥ =

∫

d3~x ψ̂†
(

~x
)

(

− ~
2

2m

(

~∇ − i ~A
(

~x
)

)2
+ VO

(

~x
)

− µ
)

ψ̂
(

~x
)

+
1
2

g
∫

d3~x ψ̂†
(

~x
)

ψ̂†
(

~x
)

ψ̂
(

~x
)

ψ̂
(

~x
)

. (3.10)

Comparing equation (3.10) with equation (3.1) we see that the only difference

is the rotation potential ~A
(

~x
)

. Our strategy will be to expand the operators in

a basis that essentially reduces the physics of equation (3.10) to the physics of

equation (3.1), so that we may then use the same argument as before to arrive at

a Bose-Hubbard Hamiltonian analogous to equation (3.3).

We guess a solution consisting of an expansion with respect to a basis of

Wannier functions (as before) with an additional phase factor dependent on

~A
(

~x
)

,

ψ̂
(

~x
)

=

∑

j

â j w
(

~x − ~x j

)

exp













i
∫ ~x

~x j

d3~r · ~A
(

~r
)













. (3.11)

This guess is physically motivated in that we expect the same order of mag-

nitude arguments (related to localization about lattice sites) to hold in the rotat-

ing case, as were used in the non-rotating case. The phase factor is a convenient

choice because it has the effect of reducing the Hamiltonian (3.10) to the form
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of (3.1), that is,

(

~∇ − i ~A
(

~x
)

)2












w
(

~x − ~x j

)

exp













i
∫ ~x

~x j

d3~r · ~A
(

~r
)

























=

(

~∇2w
(

~x − ~x j

))

exp













i
∫ ~x

~x j

d3~r · ~A
(

~r
)













.

(3.12)

Now, since the exponential term cannot be greater than one, we may use the

same order of magnitude arguments as in the non-rotating case to arrive at a

Bose-Hubbard Hamiltonian in the rotating reference frame,

ĤR,BH = −t
∑

〈i, j〉













â†i â j exp













i
∫ ~xi

~x j

dr · ~A
(

~r
)













+ h.c.













+
1
2

U
∑

i

n̂i (n̂i − 1)−µ
∑

i

n̂i . (3.13)

This Hamiltonian has now been used extensively in the study of ultracold

atoms, beginning with Wu et. al. [25]. Historically, its development began in

the problem of lattice electrons in a magnetic field, where the procedure of re-

placing ~~k with ~p−e ~A
(

~x
)

/c in the tight-binding Bloch functions is known as the

Peierls substitution [26]. Next, it is appropriate to analyze our derivation proce-

dure, as well as the validity of equation (3.13).

One important point is whether the tight-binding approximation used above

is really valid in the presence of fast rotation, and a harmonic trapping potential.

One might worry that we must self-consistently calculate t and U at each site.

For sufficiently deep lattices this worry is unfounded. If rotation and the exter-

nal trapping potential do not deform the atomic wavepackets centered at each

site, then the tight-binding approximation is valid. We check this by comparing

the effective “oscillator length” for each confining potential; the oscillator length

is the length scale on which the potential deforms a wavefunction. For our sys-

tem the oscillator lengths are dOL =
√

~/mωOL, dRot =
√

~/mΩ, and dext =
√

~/mω,

where ωOL, Ω, and ω are the angular frequencies representing a single optical-

lattice well, rotation, and the external harmonic trap, respectively. Each site-

centered atomic wavepacket has length scale dOL, so as long as dOL ≪ {dRot, dext},
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then the hamiltonian above is valid.

3.2 A single 2π-vortex

In this section our goal is to simulate a singly-quantized vortex that is part of

an infinite square lattice of such vortices. We do this using the above Bose-

Hubbard Hamiltonian in a rotating reference frame (equation (3.13)), and using

Gutzwiller mean-field theory. First let’s discuss how the quantized circulation

of a superfluid constrains the solutions of this Hamiltonian.

3.2.1 quantized circulation

Since a superfluid can be described by a macroscopic wavefunction with a well-

defined phase, its velocity is written ~v = ~

m
~∇φ, where φ is the phase of the su-

perfluid order parameter. It follows that the velocity field is irrotational, that is,

~∇ × ~v = 0, except where φ is singular.

Since the condensate wavefunction must be single valued, then the differ-

ence in the phase around a closed contour must be an integer multiple of 2π,

that is,

∆φ =

∮

~∇φ · d~s = 2πℓ, (3.14)

where ℓ is an integer. The quantization of the circulation, Γ, is then easily dis-

covered,

Γ =

∮

~v · d~s = ~

m
2πℓ = ℓ

h
m
. (3.15)

48



Now let’s define our rotation velocity, ~vR,

~vR =
~Ω × ~r , (3.16)

thus

~A =
m
~
~vR . (3.17)

Then, using equations (3.15) and (3.17) we find that

∮

~A · d~s = 2πℓ . (3.18)

Next, we specify that our calculation takes place on a square region with side

length L, where the lattice geometry is square and we have scaled all lengths by

the nearest-neighbor lattice spacing. We simulate a singly-quantized vortex in

this region, so it follows that equation (3.18), with ℓ = 1, holds when the closed

loop is the boundary of our square region. By performing this integral we find

the value ofΩ fixed by our circulation constraint. First, let ~Ω = Ωẑ, d~s = dxx̂+dyŷ,

and let the bottom left-corner of our region be labeled (x0, y0). We can then write

the total contour integral as the sum of four 1-D integrals (one for each boundary

edge),

I.
∫ x0+L

x0

~A · d~s = −mΩ
~

y0L (3.19)

II.
∫ y0+L

y0

~A · d~s = mΩ
~

(x0 + L)L (3.20)

III.
∫ x0

x0+L

~A · d~s =
mΩ
~

(y0 + L)L (3.21)

IV.
∫ y0

y0+L

~A · d~s = −
mΩ
~

x0L . (3.22)

Using equation (3.18), we then find Ω = (π~)/(mL2).
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3.2.2 The Gutzwiller approach to a system of rotating bosons

Our goal here is to calculate the density and the superfluid density for each site

in our lattice. We does this by treating our Hamiltonian (equation (3.13)) self-

consistently. The first step is to calculate the expectation value of the Hamilto-

nian using the Gutzwiller ansatz for the ground state,

|Ψ〉 =
∏

i















∑

n

f i
n|n〉i















, (3.23)

where i is the site index and {|n〉} is the orthonormal single-site occupation num-

ber basis, and we assume that the wavefunction for each site is normalized,

∑

n

| f i
n|2 = 1 . (3.24)

Next we calculate the expectation value of the Hamiltonian piece-by-piece.

The expectation value of the density is written

〈n̂ j〉 = 〈Ψ|n̂ j|Ψ〉 =
∑

n

n| f j
n |2 , (3.25)

and the density-squared is

〈n̂2
j〉 =

∑

n

n2| f j
n |2 . (3.26)

The expectation value of the hopping term is written

〈â†i â j〉 = 〈â†i 〉〈â j〉 =














∑

n

√
n + 1( f i

n+1)
∗ f i

n





























∑

n

√
n( f j

n−1)
∗ f j

n















. (3.27)

We now proceed with Lagrange minimization. Equation (3.24) gives the set

of normalization constraints, and thus the equation to minimize is

G = 〈Ĥ〉 +
∑

i

λi















∑

n

| f i
n|2 − 1















, (3.28)
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where the λi’s are the Lagrange multipliers. Next we minimize this equation by

setting

∂G
∂( f i

m)∗
= 0 , (3.29)

which returns coupled eigenvalue equations, one for each site,

∂G
∂( f i

m)∗
= −t

∑

j, nn of i

(

〈â j〉
√

m f i
m−1Ri j + 〈â†j〉

√
m + 1 f i

m+1R ji

)

+

(U
2

m2 −
(

µ +
U
2

)

m + λi

)

f i
m = 0 . (3.30)

In equation (3.30) the sum is over j that are nearest neighbors of i, and

Ri j = exp













i
∫ ~xi

~x j

d~r · ~A
(

~r
)













, (3.31)

where the i inside the exponential is just
√
−1, and ~xi is the position of site i.

We may rewrite equation (3.30) in more explicit fashion by using the fact that

we are referring to a two-dimensional square lattice.

− t
(

〈âix+1〉Ri,ix+1 + 〈âix−1〉Ri,ix−1 + 〈âiy+1〉Ri,iy+1 + 〈âiy−1〉Ri,iy−1

) √
m f i

m−1

− t
(

〈â†ix+1〉Rix+1,i + 〈â†ix−1〉Rix−1,i + 〈â†iy+1〉Riy+1,i + 〈â†iy−1〉Riy−1,i

) √
m + 1 f i

m+1

+

[U
2

m2 −
(

µ +
U
2

)

m
]

f i
m = −λi f i

m , (3.32)

where the Cartesian coordinates (ix, iy) refer to site i. Also, we use some short-

hand notation in equation (3.32), for example,

Ri,ix+1 is equivalent to R(ix,iy),(ix+1,iy) , (3.33)

and

〈âix+1〉 is equivalent to 〈â(ix+1,iy)〉 . (3.34)

By simple calculation we find that

Rix+1,i = Ri,ix−1 = exp
[

−i
π

L2
(iy)

]

= R∗i,ix+1 = R∗ix−1,i , (3.35)
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and

Riy+1,i = Ri,iy−1 = exp
[

i
π

L2
(ix)

]

= R∗i,iy+1 = R∗iy−1,i . (3.36)

Next we write the elements of the eigenvalue matrix, M, for each site:

M[m,m] =
U
2

m2 −
(

µ +
U
2

)

m , (3.37)

M[m + 1,m] = − t
√

m + 1
(

〈âix+1〉 exp
[

i
π

L2
(iy)

]

+ 〈âix−1〉 exp
[

−i
π

L2
(iy)

])

− t
√

m + 1
(

〈âiy+1〉 exp
[

−i
π

L2
(ix)

]

+ 〈âiy−1〉 exp
[

i
π

L2
(ix)

])

,

(3.38)

and

M[m − 1,m] = − t
√

m
(

〈â†ix+1〉 exp
[

−i
π

L2
(iy)

]

+ 〈â†ix−1〉 exp
[

i
π

L2
(iy)

])

− t
√

m
(

〈â†iy+1〉 exp
[

i
π

L2
(ix)

]

+ 〈â†iy−1〉 exp
[

−i
π

L2
(ix)

])

.

(3.39)

We must now specify the geometry of the region on which we will perform

calculations.

We perform calculations on a two-dimensional square lattice with L sites per

side, and where the lattice spacing is scaled to unity. We now specify that the

coordinate origin is the center of rotation, so that the sites of this lattice are la-

beled by the Cartesian coordinates (−L/2,−L/2) for the bottom left-hand corner

and (L/2−1, L/2−1) for the top right-hand corner. Since the eigenvalue equation

for each site depends upon the value of the superfluid order parameter (〈â〉) at

each nearest-neighbor site. Thus we must specify boundary conditions, which

turn out to be quite important in determining the ground state. The choice of

boundary conditions is the topic of the next subsection.
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3.2.3 Boundary conditions for a square vortex lattice

In a fast enough rotating condensate the angular momentum of the fluid is

stored in a vortex lattice. In a free condensate the lattice geometry is triagonal,

however, if the condensate is trapped by a deep enough optical lattice, then the

vortex lattice will share the geometry of the optical lattice [8, 27, 28]. Here we

treat one singly-quantized vortex that is part of a square lattice of such vortices,

and then develop the appropriate boundary conditions.

The order parameter 〈â〉 can be conveniently written as a complex number in

the polar representation, that is, 〈â〉 = α = |α| expiφ. The magnitude of the order

parameter, |α|, is just the square root of the local condensate density1, and φ is

the local phase of the condensate wavefunction. Since the position of the vortex

cores is periodic and the underlying potential is uniform, then it is natural to

assume that each core has the same condensate density profile, so

|α(x0 + nL, y0 + mL)| = |α(x0, y0)| , (3.40)

where n and m are integers. The more complicated matter is determining the

boundary conditions for φ. The most natural way to develop these conditions is

through the group theory treatment of Zak [29, 30], while the analogous “mag-

netic boundary conditions” for electrons on a two-dimensional lattice are dis-

cussed in Thouless et. al. [31]. The boundary conditions are:

α (x + L, y) = −α (x, y) exp
[

−i
π

L
(2yv − y)

]

,

α (x, y + L) = −α (x, y) exp
[

+i
π

L
(2xv − x)

]

, (3.41)

where (xv, yv) is the shift of the central vortex core off the center of rotation.

1In the Gutzwiller mean-field approximation “condensate density” and “superfluid density”
are equivalent.
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Figure 3.1: Simulation of a vortex lattice. Results of a vortex lattice cal-
culation performed with the methods outlined in this chap-
ter. The calculations are performed over a square lattice re-
gion where the Cartesian coordinates denoted (x, y) are scaled
by the optical lattice constant. The central vortex region was
calculated using numerical self-consistency and the appropri-
ate boundary conditions. The outer vortices are generated by
applying the boundary conditions to the solution there. (a)
Density, ρ: The density is peaked in the vortex cores due to
the emergence of the Mott insulator phase there. (b) Super-
fluid density, n: The superfluid density vanishes at the cen-
ter of each vortex core and then gradually “heals” toward its
bulk value. (c) Complex phase field, where [0, 2π] is denoted
by “Hue”. Continuous cycling of the phase about a point in-
dicates a vortex core there. In this case each vortex is singly
quantized (has a phase winding of 2π). Black circles are drawn
around vortex cores as a guide to the eye.

Using these boundary conditions we numerically simulate a vortex lattice of

bosons on a rotating optical lattice (Figure (3.1)). We use the mean-field theory

developed in the previous section to calculate the density profile of the central

vortex, and then use boundary conditions to extend the result. Notice that the

density profile and condensate density profile are qualitatively different. This

is due to the emergence of the Mott insulator phase in the vortex core. This

phenomenon was first calculated in the context of ultracold lattice bosons by
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Wu et. al. in 2004 [25].

In the next chapter we use the methods developed here to investigate the

structural phases of vortex lattices of bosons in a deep rotating optical lattice.
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CHAPTER 4

STRUCTURAL PHASE TRANSITIONS FOR VORTEX LATTICES OF

BOSONS IN DEEP ROTATING OPTICAL LATTICES NEAR THE MOTT

BOUNDARY

The contents of this chapter are adapted from work originally published as

Vortex lattices of bosons in deep rotating optical lattices, Phys. Rev. A, 77, 033629

(2008).

In this chapter we study vortex-lattice phases for a Bose gas trapped in a

rotating optical-lattice near the superfluid–Mott-insulator transition. We find

a series of abrupt structural phase transitions where vortices are pinned with

their cores only on plaquettes or only on sites. We discuss connections between

these vortex structures and the Hofstadter-butterfly spectrum of free particles

on a rotating lattice.

4.1 Introduction

Two of the most exciting directions in cold-atom research involve studying lat-

tice systems and rotating systems [1]. By increasing the importance of interac-

tions compared to kinetic energy, lattices allow one to study strongly correlated

phenomena such as the boson superfluid–Mott-insulator transition [12]. These

lattice systems are ideal for studying model many-body systems and protocols

for quantum information processing [2]. Rotating gases lead to interesting vor-

tex physics [32, 33, 34, 35], and the promise of exotic states such as those which

give rise to analogs of fractional quantum-Hall effects [36, 37]. Here we study

the interplay of lattice physics and rotation physics by calculating the vortex-
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lattice structures near a Mott transition.

In the absence of an optical lattice a rotating Bose-Einstein Condensate (BEC)

develops a triangular lattice of singly quantized vortices [33, 34]. This triangular

configuration minimizes the logarithmic vortex-vortex interaction. However,

as seen in recent experiments far from the Mott regime [28], a sufficiently deep

optical-lattice potential will pin these vortices at the maxima of that potential

[8, 27, 38].

In this chapter we show that qualitatively different behavior can be seen in

the superfluid state near the Mott-insulator phase. We find that due to changes

in the structure of the vortex cores the vortices can actually be pinned at the

minima of the potential. In Sec. II we perform numerical mean-field calcula-

tions, and find a sequence of first-order transitions between site-centered and

plaquette-centered vortex lattices. In Sec. III we use a reduced basis ansatz to

perform analytic calculations near the Mott boundary, and as a result show how

the theory at the Mott boundary is related to the Hofstadter butterfly spectrum.

In Sec. IV we summarize our results.

4.2 Numerical calculation of vortex-lattice states

4.2.1 Mean-field theory of the rotating Bose-Hubbard model

We consider a deep lattice where we can make a tight-binding approxima-

tion [9], and the system is described in the rotating frame by a Bose-Hubbard
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Hamiltonian [25],

ĤRBH = −t
∑

〈i, j〉













â†i â j exp













i
∫ ~ri

~r j

d~r · ~A(~r)













+ H.c.













+
1
2

U
∑

i

n̂i (n̂i − 1) − µ
∑

i

n̂i . (4.1)

Above, the operator â†i (âi) creates (destroys) a boson and n̂i is the number oper-

ator at optical-lattice site i. The subscript 〈i, j〉 denotes a nearest-neighbor sum.

The parameters t, U, and µ are the hopping matrix element, the on-site repulsion

strength, and the chemical potential, respectively. Rotation produces the vector

potential ~A(~r) = (m/~)
(

~Ω × ~r
)

= πν (xŷ − yx̂), where ν is the number of circulation

quanta (h/m, where m is the atomic mass, and h is 2π times Planck’s constant ~)

per optical-lattice site. Rotation also produces a harmonic centrifugal-potential

which we have assumed is cancelled by a harmonic trap. Although we choose

to work in the symmetric gauge our results are not gauge dependent. Scaling

energies by U and distances by the lattice constant, the system is characterized

by the unitless parameters t̃ (= t/U), µ̃ (= µ/U) and ν.

We choose to model a uniform system, rather than explicitly considering a

harmonic trap, because we feel that this approach gives more understanding

of the phenomena. In addition, we also restrict ourselves to two dimensions,

where the physics we are investigating is particularly clear. This geometry can

be engineered by applying a sufficiently strong optical lattice in the z-direction

which prevents hopping in that direction [39]. Also, a rapidly-rotating BEC can

assume a similar geometry through centrifugal distortion of its density profile

[35]. Furthermore, we restrict ourselves to the case where the rotation speed is

tuned so that ν is a rational fraction, thus avoiding the commensurability issues

which generically occur [28]. In the strong optical-lattice limit, the vortex lattice

will share the geometry of the optical lattice [8, 27, 38].

As one approaches the superfluid-Mott boundary from weak coupling, the
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vortex cores evolve from empty to containing the Mott phase [25]. This hap-

pens because when the superfluid order is suppressed in the vortex core, the

Mott phase is energetically favorable compared to the vacuum. This raises the

possibility that the energy of the vortex lattice will be reduced if the cores are

centered on optical-lattice minima, “sites”, rather than at the potential maxima,

“plaquettes”. A competing effect is that if the vortices are site-centered then the

overlap of atomic wavepackets centered at neighboring sites will be reduced,

raising the kinetic energy. We find that the interplay between these effects leads

to a rich structure.

To model an infinite vortex-lattice we perform self-consistent Gutzwiller

mean-field calculations on a two-dimensional square-lattice supercell made up

of L sites per side, where each site is an optical-lattice potential minimum. We

focus on the simplest case where each supercell contains one quantum of circu-

lation, which produces a ground-state solution containing one singly-quantized

vortex per supercell, and ν =
(

1/L2
)

. The Gutzwiller mean-field theory can

be viewed as a variational calculation where one minimizes 〈ĤRBH〉 over the

Gutzwiller product-states [9], |Ψ〉 =
∏

i

(

∑

n f i
n|n〉i

)

, where i is the site index, n is

the particle number, and |n〉i is the n-particle occupation-number state at site i.

Minimizing 〈ĤRBH〉with respect to f i∗
n with the constraint

∑

n | f i
n|2−1 = 0 gives L2

nonlinear eigenvalue equations, one for each site,

−t
∑

k, nn of j

(

〈âk〉
√

m f j
m−1R jk + 〈â†k〉

√
m + 1 f j

m+1Rk j

)

+

(U
2

m2 −
(

µ +
U
2

)

m + λ j

)

f j
m = 0 ,

(4.2)

where the sum is over all nearest neighbors of site j, m is the particle-number

index, λ j is a Lagrange multiplier, and R jk = exp
[

i
∫ ~r j

~rk
d~r · ~A(~r)

]

, where i =
√
−1.

We iteratively solve these equations: first choosing a trial order-parameter field
{

α(0)
j

}

, where α j = 〈â j〉; then updating it by α
(p)
j =

∑

n

√
n f j∗

n−1

({

α
(p−1)
j

})

f j
n

({

α
(p−1)
j

})

,
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where p is the iteration index. Similar calculations were performed by Oktel

et. al. [40] (in a strip geometry) and Wu et. al. [25] (in a square geometry) to

produce vortex lattices.

We perform calculations in the neighborhood of the n = 1 Mott phase, so

the occupation-number distribution of each site will be peaked about 1, with

small variance. Hence we only need to allow f j
0 , f j

1 and f j
2 to be nonzero. In

most cases f j
2 and f j

0 will be much smaller than f j
1 . We find that using a larger

occupation-number basis causes slight shifts of the boundary curves and the en-

ergy differences between plaquette- and site-centered vortex-lattice states, but

the position of the Mott-lobe is unchanged. To model the infinite vortex lattice

with our (LxL)–supercell we use magnetic boundary conditions [29, 30]

α (x + L, y) = −α (x, y) exp
[

−i
π

L
(2y0 − y)

]

, (4.3)

α (x, y + L) = −α (x, y) exp
[

+i
π

L
(2x0 − x)

]

, (4.4)

where α (x, y) = 〈â j〉, and (x, y) are the Cartesian coordinates of site j, and (x0, y0)

are free parameters which correspond to the coordinates of the vortex core in

our supercell.

4.2.2 Results and discussion

The phase diagrams for L = 1 − 4 are displayed in Figure 4.1. Each phase plot

has the familiar lobe-shaped Mott-insulator region in the deep-well limit, whose

size varies as one changes nv [23, 40]. We refer to the plaquette-centered vortex-

lattice phase by the symbol P, and the site-centered vortex-lattice phase by the

symbol S . As shown in these phase diagrams we find alternating bands of P and

S . Moving from weak (large t̃) to strong coupling (small t̃) we find for L = 1: P;
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Table 4.1: Boundary curve spacings. Separation between each structural
boundary curve (L = 1 − 4) and its corresponding Mott lobe,

quantified by ∆ t̃ at µ̃ =
√

2−1 (the Mott-lobe tip, see Figure 4.1).
Curve number 1 refers to the curve closest to the Mott lobe,
curve number 2 is the next curve out, etc.

P
P

P
P

P
P

P
P

P
P

P
P

P
PP

Curve number

L =
2 3 4

1 0.034 0.00087 0.000017

2 —– 0.012 0.0013

3 —– —– 0.0046

L = 2: PS ; L = 3: PS P; L = 4: PS PS ; L = 5 (not pictured): PS PS P. The bands get

very narrow as one increases L and as one approaches the Mott lobe. Table 4.1

gives the width of the various phases along the line µ̃ = µ̃c, where µ̃c

(

=
√

2− 1
)

is the scaled chemical potential at the tip of the n = 1 Mott lobe.

There are several important features of these phase diagrams. First, the out-

ermost vortex-lattice phase is always P, since a shallow optical-lattice potential

pins vortices to the maxima of the potential. Second, for the values of L we have

investigated, the phase diagram of a square vortex-lattice configuration charac-

terized by nv = 1/L2 has L phase boundaries. Third, the innermost vortex-lattice

phase alternates between P (odd L values) and S (even L values). And finally,

the phase boundaries appear to share a universal hyperbolic shape. Although

we have no explanation for the second observation, below we will explain the

others.

We analyze the nature of the vortex-configuration phase transition by study-

ing how the energy depends on the location of the vortex core in a single super-

cell. Figure 4.2 illustrates that the transitions are discontinuous. We quantify the
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Figure 4.1: Vortex structural phase plots. (a)-(b) Structural phase plots for
the cases L = 1 and L = 2, respectively. Dimensionless param-
eters t̃ = t/U and µ̃ = µ/U represent hopping amplitude and
chemical potential, respectively, where each quantity is nor-
malized by the on-site interaction. The plot labels P, S and
MI refer to P-centered, S-centered and Mott-insulating phases,
respectively. (c) The L = 3 phase plot, where shading is used to
emphasize the thin reentrant P phase. (d) A closeup of the crit-
ical region of the Mott lobe in (c); the reentrant phase is more
clearly resolved. (e) The L = 4 phase plot, on this parame-
ter range, the inner structural-boundary curve cannot be dis-
cerned from the Mott lobe. (f) A closeup of the critical region
of the Mott lobe in (e); shading is used to resolve the second
reentrant phase region (S phase).
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Figure 4.2: Energy vs core-placement. Vortex core position (x0, y0) in units
of optical-lattice spacing with (x0, y0) = (0, 0) corresponding to a
vortex centered on a site, and (x0, y0) = (0.5, 0.5) corresponding
to a vortex centered on a plaquette. These plots correspond

to the L = 3 recurrent phase boundary at µ̃ =
√

2 − 1, and
0.0519 ≤ t̃ ≤ 0.052. In (a) (t̃ = 0.0519) and (b) (t̃ = 0.052)
the vertices of the red (gray) lines are sites, and the plots are
shaded so that darker (lighter) corresponds to lower (higher)
energy. Plot (a) [(b)] corresponds to the P (S) state for t̃ just
below (above) the boundary. (c) A composite of energy vs
core-position curves on the diagonal line y0 = x0 ∈ (−0.5, 0)
(from plaquette to site), for t̃ between the spinodal points of

the boundary. For each curve E (x0) = [E (x0) − E (−0.5)] /EMott,
where E (x0) = 〈ĤRBH〉 (x0). From top to bottom, this plot has
15 lines corresponding to t̃max = 0.051902and t̃min = 0.0519015,
with spacing ∆t̃ = 7.5× 10−7.
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Table 4.2: Coexistence region widths. Coexistence region widths, ∆ t̃, at

µ̃ =
√

2 − 1 (Mott-lobe tip) for the structural phase boundaries
(L = 1 − 4). Widths are determined by finding the distance be-
tween spinodals. Curve number 1 refers to the boundary curve
closest to the Mott lobe, curve number 2 is the next curve out,
etc.

P
P

P
P

P
P

P
P

P
P

P
P

P
PP

Curve number

L =
2 3 4

1 0.014 7.5× 10−6 2.8× 10−7

2 —– 0.0004 1.5× 10−6

3 —– —– 2.5× 10−5

abruptness of the phase transition by measuring the width of the coexistence re-

gion; that is, we calculate the difference in t̃ (at fixed µ̃) between spinodal points

where each of the two energy minima disappear. As shown in Table 4.2, the

coexistence region becomes thinner as L increases, and as the system moves

toward the insulating phase.

The experimental consequences of our findings depend crucially on the en-

ergy difference of the two configurations. For example, the lattice will no longer

be pinned if the temperature T exceeds this energy. On the line µ̃ = µ̃c we

plot these energies in Figure 4.3. The pinning energy decreases rapidly as L in-

creases, and as the system approaches the insulating phase in parameter space.

We find that the phases inside the outermost P phase all have tiny energy dif-

ferences. To even see the L = 2 transition one requires a temperature below

0.15nK. Hence our findings are mainly of academic interest. If the temperature

is large compared with the pinning energy then the vortex configuration will

be determined by the competition between vortex-vortex interaction, which fa-

vors a triangular vortex-lattice phase, and entropy, which favors a disordered
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Figure 4.3: Energy difference between P and S states. Energy difference
between P and S states with respect to t̃ at fixed values of L.
(a)-(d) correspond to L=2-5, respectively. The dimensionless
energy difference ∆Ẽ = (EP − ES ) /U, where EP(S ) = 〈ĤRBH〉P(S ).
The P-centered configuration is always favored in the outer-
most phase region. The energy differences decrease with de-
creasing nv (increasing L), and also as the system approaches
the insulating region (decreasing t̃). These numbers suggest
that, in practice, a homogeneous vortex-lattice configuration is
unlikely to be thermally stable in any of the inner phase re-
gions.

vortex-liquid.

An additional concern is that the structures we find might be in part an arti-

fact of the mean-field theory. Even if this is the case, we believe it is valuable to

understand the structure of the mean-field theory. Furthermore, in the follow-

ing sections we will give arguments which suggest that those results are more

general. Finally, we note that experiments are currently far from the regime we

consider.
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4.3 Analytic theory near the Mott-boundary

Very near the Mott phase we can linearize Eq. (4.1) and analytically calculate

the state of the system. During preparation of this paper, Umucahlar and Oktel

[41] presented an independent study with substantial overlap of this section.

4.3.1 Reduced-basis ansatz and Harper’s equation

It is simplest to illustrate this method by starting with the case of a uniform

system which is not rotating (Ω = 0). The expectation value of this Hamiltonian

with respect to our Gutzwiller product state is

〈Ĥ〉/N = −σt̃|α|2 + 1
2
〈n̂2〉 −

(

µ̃ +
1
2

)

〈n̂〉 , (4.5)

where σ is the number of nearest neighbors, and N is the total number of sites.

As one approaches the n-particle Mott lobe we can, as before, make the ansatz

that the single-site wavefunction is of the form |ψ〉 = fn−1|n−1〉+ fn|n〉+ fn+1|n+1〉,

with ( fn−1, fn, fn+1) =
(

ǫ1,
√

1− ǫ2
1 − ǫ2

2, ǫ2

)

, where ǫi are small. One can readily

verify that the terms neglected in this ansatz are of higher order in ǫ. Minimizing

〈Ĥ〉 one finds that the chemical potential at which ǫi becomes nonzero is

µ̃± =

(

n −
1
2
(

1+ σt̃
)

)

±

√

1
4
σ2t̃2 −

(

n +
1
2

)

σt̃ +
1
4
. (4.6)

In particular, the tip of the Mott Lobe is at µ̃c =
√

n (n + 1) − 1, σt̃c =

[

2n + 1+ 2
√

n (n + 1)
]−1

.

Adding rotation, the energy divided by U is

〈ĤRBH〉 = −
∑

〈i, j〉

(

t̃i jα
∗
iα j + c.c.

)

+

∑

i

(

1
2
〈n̂2

i 〉 −
(

µ̃ +
1
2

)

〈n̂i〉
)

, (4.7)
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where t̃i j = t̃ exp
[

iπν
∫ ~ri

~r j
(xŷ − yx̂) · d~r

]

. Again, near the Mott lobe we write

(

f i
n−1, f i

n, f i
n+1

)

=

(

λiα∗i ,

√

1− |αi|2
(

|λi|2 + |λi
1|2

)

, λi
1αi

)

(4.8)

where α = α + O
(

α3
)

, and λi
1 =

1√
n+1

(

1−
√

nλi
)

. Note that unlike our previous

calculations, we do not need to restrict nv = ν.

Next we minimize with respect to λi to find

〈ĤRBH〉 = −
∑

〈i, j〉

(

t̃i jα
∗
iα j + c.c.

)

+
n − µ̃
n + 1

(

1− n
n − µ̃
1+ µ̃

)

∑

i

|αi|2 + EMott , (4.9)

where EMott is the energy-per-site of the n-particle Mott state, and we have ne-

glected terms of order α3. Next we minimize with respect to α∗k. In the case of

the 2D square lattice we arrive at a symmetric-gauge Harper’s equation [26],

− α (x + 1, y) exp
[

iπνy
]

− α (x − 1, y) exp
[

−iπνy
]

− α (x, y + 1) exp [−iπνx]

− α (x, y − 1) exp [+iπνx] + ǫα (x, y) = 0 , (4.10)

where

ǫ =
1
t̃

n − µ̃
n + 1

(

1− n
n − µ̃
1+ µ̃

)

. (4.11)

A simple gauge transformation, α̃ j = α j exp
[

−iπν
∫ ~rk

~r j
(xŷ + yx̂) · d~r

]

along with the

assumption that α̃ (x, y) = exp(iγ)β (x), brings Eq. (4.10) into the more familiar

form

β (x + 1) + β (x − 1) + 2 cos(2πνx − γ) β (x) = ǫβ (x) , (4.12)

where the circulation density ν = p/q is a rational fraction, and γ is a wavevector

set to π/2q in Ref. [26]. The eigenvalue spectrum of Eq. (4.10) has an intricate

fractal-structure known as the Hofstadter butterfly [26].
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Figure 4.4: The Mott boundary and the Hofstadter butterfly. The blue
(light gray) surface in (a) is the mean-field Mott boundary of
the Bose-Hubbard model at zero temperature for chemical po-
tential µ̃ = {0, 1}, and circulation-quanta per optical-lattice site
ν = {0, 1}. The red (dark gray) curve on this surface [and outlin-
ing the bottom edge of the spectrum in (b)] demonstrates how,
at fixed µ̃ (the value in the Figure is µ̃ = 0.2), the value of t̃ is
inversely related to the edge eigenvalues of the Hofstadter but-
terfly spectrum shown in (b). The black curve on the boundary
surface [and in (c)] demonstrates how, at fixed ν (in this case
ν = 1/4), the value of t̃ is just a familiar Mott-lobe boundary in
the

(

t̃, µ̃
)

-plane, as shown in (c).

Fixing ν and µ̃, the corresponding point on the Mott lobe is the smallest t̃ for

which Eq. (4.11) is an eigenvalue of Eq. (4.10). This condition is satisifed by the

largest eigenvalue ǫ = ǫedge (ν) of Eq. (4.10). We call this largest eigenvalue the

edge eigenvalue. The Mott boundary is then given by

t̃ =
1

ǫedge[ν]
n − µ̃
n + 1

(

1− n
n − µ̃
1+ µ̃

)

, (4.13)

where n is the integer corresponding to the total-particle density in the Mott

lobe. This remarkable relationship is illustrated in Figure 4.4. In the non-

rotating case we find ǫedge[ν = 0] = 4, and Eq. (4.13) reduces to Eq. (4.6).

The eigenvectors of Harper’s equation have rich topologies. The highest
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Figure 4.5: Hofstadter butterfly eigenvectors. Hofstadter butterfly eigen-
vectors for ν = 1/100 in a 10x10 supercell. The position coor-
dinates (x0, y0) are in units of the optical lattice spacing, and
the order parameter density |α|2 is normalized so that over a
single supercell

∑

(x0,y0)|α(x0, y0)|2 = 1. The bands are indexed
with n = 1 for smallest central-eigenvalue, n = 2 for next small-
est, etc. (a)-(c) Plots of order-parameter density |α|2 for bands
n = 100, n = 97 and n = 91 respectively. (d)-(f) The corre-
sponding complex-phase fields. At each site is the base of an
arrow pointing in the direction (Re [α] , Im [α]), and with length
proportional to |α|. Positively (negatively) charged vortices are
labeled with a red “+” (blue “−”). The green boundary en-
closes one unit cell. The size and shape of this boundary are
fixed, but varying ǫ will shift its position. The n = 100 plot
has a single vortex with charge +1. The n = 97 state has a cen-
tral doubly-quantized vortex of charge 2, connected by domain
walls to vortices of charge −1 near the faces of the cell. Vortices
of charge +1 lie near the corners. The n = 91 pattern contains 8
“+”–vortices and 7 “−”–vortices in each unit cell.
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band (corresponding to the largest ǫ’s) contains states with regular arrays of

singly quantized vortices. Changing ǫ continuously changes the location of the

vortices relative to the lattice. The lower bands include states with more compli-

cated structures with multiple vortices of opposite signs. Also, the band struc-

ture is symmetric with respect to reflection about ǫ = 0. Illustrative structures

are shown in Figure 4.5.

The edge state corresponds to an array of singly quantized vortices. For ν =

1/L2 we find that for even or odd L these vortices are site-centered or plaquette-

centered, respectively. This explains our previous observation of alternating

vortex-lattice phases corresponding to even and odd L values.

4.3.2 Discussion

Why does the Hofstadter butterfly, a pattern associated with noninteracting par-

ticles, appear near the Mott lobe, where the interactions are strong? The answer

is that near the Mott-lobe boundary most of the atoms are static, with only a

dilute gas of mobile particles and/or holes. The diluteness of these excitations

leads to single-particle physics.

It should be noted that this explanation does not depend on the approxima-

tions of mean-field theory. Even including fluctuations, near the Mott lobe (with

the exception of the region immediately about the tip), the system is described

by a weakly-interacting gas of excitations [23, 42]. Thus it is unlikely that the

structural transitions we find are an artifact of mean-field theory. Interactions

between the excitations can be included in our mean-field theory by including

higher-order terms in equation (4.9). If one approximates 〈n̂2
i 〉 = |αi|4, one recov-
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ers a nonlinear Schrödinger equation

−
∑

j, nn of k













α j exp













iπν
∫ ~rk

~r j

(xŷ − yx̂) · d~r
























+ |αk|2αk +
µ

t
αk = 0 . (4.14)

We should mention that one can also study Hofstadter butterfly physics far

from the Mott lobe by using a Feshbach resonance [10] to tune the interaction

of a gas of bosons trapped in a deep, rotating optical lattice. Merely reducing

the lattice strength is probably insufficient, as the tight-binding approximation

is apt to break down.

4.4 Summary

We have analyzed vortex-lattice phases in a deep optical-lattice potential using

the mean-field theory of the rotating Bose-Hubbard Model in a two-dimensional

square-lattice at zero temperature. We observed several transitions between

site-centered and plaquette-centered vortex states. For the (L x L)-supercell cal-

culation (corresponding to nv = 1/L2) there are L boundary curves – L − 1 struc-

tural curves, and the Mott lobe. We found that the structural transitions are

discontinuous, and we quantify trends in the widths of the corresponding coex-

istence regions as well as trends in the spacing of the structural boundary lines

in parameter space. The boundary curves share a universal hyperbolic shape.

We also carried out an analytic study where we determined that the linear

eigenvalue equation characterizing the Mott lobe also characterizes the Hofs-

tadter butterfly spectrum. From this we determined an expression for the Mott-

lobe boundary. This linearized analysis confirmed the vortex-core placement

found in our numerical study.
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CHAPTER 5

VORTICES NEAR THE MOTT PHASE OF A TRAPPED BOSE-EINSTEIN

CONDENSATE

The contents of this chapter are adapted from work originally archived

online as Vortices near the Mott phase of a trapped Bose-Einstein condensate,

arXiv:0808.1548v1; and submitted for publication in Physical Review Letters.

In this chapter we present a theoretical study of vortices within a harmoni-

cally trapped Bose-Einstein condensate in a rotating optical lattice. We find that

proximity to the Mott insulating state dramatically affects the vortex structures.

To illustrate we give examples in which the vortices: (i) all sit at a fixed distance

from the center of the trap, forming a ring, or (ii) coalesce at the center of the

trap, forming a giant vortex. We model time-of-flight expansion to demonstrate

the experimental observability of our predictions.

5.1 Introduction

Atomic clouds in a rotating optical lattice are at the intellectual intersection of

several major paradigms of condensed matter physics. These rotating clouds

may display a superfluid-insulator quantum phase transition [12], vortex pin-

ning [8, 27], frustration [43], Josephson junction physics [44], and even analogs

of the fractional quantum Hall effect [45]. Here we explore the theory of vortices

in such systems, showing how proximity to the Mott insulator phase impacts

the vortex configurations.

Considering a uniform gas of atoms of mass m in an optical lattice rotat-
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ing with frequency Ω, there are three macroscopic length scales in the problem:

the lattice spacing d, the magnetic length ℓ =
√

~/mΩ, and the particle spacing

n−1/3, where ~ = h/2π is Planck’s constant. Even without interactions, the com-

mensurability of these lengths leads to nontrivial physics – the single particle

spectrum, the Hofstadter butterfly, is fractal [26]. For interacting bosons, this

fractal spectrum leads to a modulation of the boundary between superfluid and

Mott insulating phases [41, 46]. Further, the vortices in a superfluid on a rotat-

ing lattice develop extra structure: their cores may fill with the Mott state [25],

changing which vortex arrangements minimize the energy [46].

We consider a harmonically trapped superfluid gas on a rotating optical lat-

tice in the single-band tight binding-limit close to the Mott state. We choose

to study a two-dimensional cloud, as it provides the simplest setting for inves-

tigating vortex physics, and is an experimentally relevant geometry [13]. The

proximity to the Mott state results in a nontrivial spatial dependance of the su-

perfluid order parameter, and drives a rearrangement of vortices.

A similar geometry was realized in a recent experiment [28], with the caveat

that their shallow optical lattice had such a large lattice spacing that they were

not able to reach the tight binding limit. In principle their technique can be

refined to explore the physics that we describe here. The tight binding limit may

also be reached through quantum optics techniques which introduce phases on

the hopping matrix elements for atoms in a non-rotating lattice [47, 48, 49, 50].
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5.2 Model and calculation

In the rotating frame our system is described by the rotating Bose-Hubbard

hamiltonian [9, 25]:

Ĥ = −
∑

〈i, j〉

(

ti jâ
†
i â j + h.c.

)

+

∑

i

(U
2

n̂i (n̂i − 1) − µin̂i

)

(5.1)

where ti j = t exp
[

i
∫ ~ri

~r j
d~r · ~A(~r)

]

is the hopping matrix element from site j to

site i. The rotation vector potential, which gives rise to the Coriolis effect, is

~A(~r) = (m/~)
(

~Ω × ~r
)

= πν (xŷ − yx̂), where ν is the number of circulation quanta

per optical-lattice site. The local chemical potential µi = µ0 − m
(

ω2 −Ω2
)

r2
i /2

includes the centripetal potential. In these expressions, µ0 is the central chem-

ical potential, ω is the trapping frequency, ~ri is the position of site i, â†i (âi) is a

bosonic creation (annihilation) operator, n̂i = â†i âi is the particle number opera-

tor for site i, and U is the particle-particle interaction strength. The connection

between these parameters and experiment are given by Jaksch et al. [9]. Here,

and in the rest of the paper, we use units where the lattice spacing is unity.

Both the superfluid and Mott insulator can be approximated by a spa-

tially inhomogeneous Gutzwiller product ansatz [9], |ΨGW〉 =
∏M

i=1

(

∑

n f i
n|n〉i

)

,

where i is the site index, M is the total number of sites, |n〉i is the n-particle

occupation-number state at site i, and f i
n is the corresponding complex ampli-

tude, with
∑

n | f i
n|2 = 1. Despite the limitations of being a mean-field theory, the

Gutzwiller approach compares well with exact methods, and strong coupling

expansions [23, 42, 51]. It has also been used extensively to understand experi-

mental results [12, 52, 53], and is well suited for studying the vortex physics that

we consider here.

Using |ΨGW〉 as a variational ansatz, we minimize the energy with respect to
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the { f i
n}. We then extract the density ρi =

∑

n n| f i
n|2 and the condensate order

parameter αi = 〈âi〉 =
∑

n

√
n
(

f i
n−1

)∗
f i
n at each site. The condensate density ρc

i =

|〈âi〉|2 is equal to the superfluid density in this model, and is generally not equal

to the density.

We use an iterative algorithm to determine the { f i
n} which minimize the en-

ergy. We use a square region with L sites per side and hard boundary condi-

tions. We find that we must take L much larger than the effective cloud diame-

ter so that our solutions do not depend on those boundaries. Typically we use

40 ≤ L ≤ 90. For the simulation described in Figure 1 we impose four-fold ro-

tational symmetry, but from unconstrained simulations on smaller clouds we

find that this constraint does not significantly change the phenomena. Similar

calculations were performed by Scarola and Das Sarma [54] to analyze the case

where the single-particle Mott state is surrounded by a rotating superfluid ring.

Since this mean-field theory is highly nonlinear we find that the iterative al-

gorithm often converges to different solutions depending on the initial state we

use. For the results shown here we first iterate to self-consistency in a parame-

ter region where the solution is unique, then slowly change parameter values,

using the result from the previous parameters as a seed. One should see analo-

gous results in an experiment where one adiabatically changes parameters. As

in such experiments [55] we observe hysteresis.

5.3 Results

We have performed a thorough investigation of a wide range of parameters

and, as one would expect, we find that a basic understanding of the trapped gas
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can be extracted from the phase diagram of the homogeneous system, where

Ω = ω = 0 [Figures 1(a) and 2(a)]. For a sufficiently gentle trap, the gas looks

locally homogeneous, and its density at any point r can be approximated by that

of a uniform system with chemical potential µ(r) = µ0 − V(r). As a general rule,

nontrivial vortex structures appear when the LDA superfluid density deviates

significantly from a typical Thomas-Fermi profile. The vortices tend to move to

regions where there is a local suppression of the superfluid density.

We illustrate this principle with two examples: in Figure 5.1 we study the

case where the superfluid density has a ring-shaped plateau, and in Figure 5.2

we consider the case where a Mott region sits in the center of the cloud.

5.4 Ring vortex configuration

We begin with the nonrotating configuration illustrated by the left half of the

Subfigures in Figure 1 (with t/U = 0.06, µ0/U = 0.7). There is a plateau in the

superfluid density but not in the total density, and the phase of the superfluid

order parameter is uniform. Starting from this non-rotating configuration we

gradually increase the rotation speed to ν = 0.04, iterating to self-consistency

at each step. Rather than forming a lattice, the resulting vortices form a ring

around the central ρc peak in Figure 1(d). This configuration is favored because

it minimizes the sum of competing energy costs: the rotation favors a uniform

distribution of vortices, but the single vortex energy is smallest where ρc is low.

As seen in Figure 1(c), the phase of the superfluid inside the ring is essen-

tially constant. This can be understood by an analogy with magnetostatics. The

velocity ~v obeys an analog of Ampere’s law
∮

~v · d~ℓ = (h/m)Nv, where Nv, the
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Figure 5.1: Ring vortex configuration. Comparison between non-rotating
(ν = 0) and rotating (ν = 0.04) states of a system characterized
by (t/U = 0.06, µ0/U = 0.7). (a) Mean-field phase plot of the
uniform Bose-Hubbard model. Contours of fixed ρ and ρc, are
indicated by red and black curves. The superfluid density van-
ishes in the single-particle Mott region labeled “n = 1”, and
increases with lightening shades of purple. The vertical orange
line represents the LDA parameter-space trajectory for the cur-
rent system. (b) [(d)] Comparison of density [condensate den-
sity]. (c) Comparison of order parameter complex phase field.
The complex phase is represented by “Hue”. Solid and dotted
white lines are a guide to the eye. Black circles enclose singly-
quantized vortices. As seen in (c) and (d), vortices form in a
circular pattern on the condensate density plateau; the density
(b) changes only slightly due to rotation.
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number of vortices enclosed in the contour of integration, plays the role of the

enclosed current. Neglecting the discreteness of the vortices in the ring, the fluid

inside is motionless, while the fluid outside moves as if all the vortices were at

the geometric center of the cloud. Even with only eight vortices our system ap-

pears to approach this limit. If one increases the rotation speed, one can find a

state with several concentric rings of vortices in the plateau. Similarly, increas-

ing µ0/U can can lead to multiple superfluid plateaus, each of which may con-

tain a ring of vortices. This structure of nested rings of vortices is reminiscent of

Onsager and London’s original proposal of vortex sheets in liquid helium [56].

5.5 Giant vortex

Our second example of nontrivial vortex structures is illustrated in Figure 5.2,

where the LDA predicts a superfluid shell surrounding a Mott core. Rather than

forming a lattice of discrete vortices, one expects that this system will form a “gi-

ant” vortex [7] when rotated: the vortices occupying the Mott region, leaving a

persistent current in the superfluid shell. The energy barriers for changing vor-

ticity are particularly high, so we generate the rotating state in two stages. We

start with a non-rotating system (ν = 0) at weak coupling (t/U = 0.2, µ0/U = 0.3),

gradually increasing the rotation to ν = 0.032, where we find the square vortex

lattice illustrated in Figures 2(b – left) and (d). We then adiabatically reduce t/U

from 0.2 to 0.03. As we reduce t/U, the central ρc drops, while ρ approaches

unity there. Eventually we see a Mott regime at the center of the cloud. During

the evolution, we find that 8 of the vortices escape from the edge of the trap,

while four of the vortices coalesce at the center of the trap and effectively form

a vortex of charge 4. Such a dense packing of vorticity would be unstable in the
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Figure 5.2: Giant vortex. Comparison of a vortex lattice far from the Mott
regime (t/U = 0.2) and a giant vortex system where the Mott
phase occupies the center of the cloud (t/U = 0.03). (a) Mean-
field phase plot for the uniform Bose-Hubbard model with ver-
tical orange parameter-space trajectory representing a system
with (t/U = 0.03, µ0/U = 0.3). (b) Comparison of order param-
eter complex phase fields. (c) [(d)] Comparison of density and
condensate density where t/U = 0.03 [t/U = 0.2].

absence of the optical lattice. For larger systems with higher rotation rates one

finds giant vortices with larger circulation.

Due to its multiply connected topology, a ring, such as the one formed here,

is one of the archetypical geometries used in theoretical discussions of super-

fluidity [57, 58, 59]. There are several experimental schemes for creating a ring-

shaped trap [60], and many theoretical studies of giant vortex formation stabi-
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lized by a quadratic-plus-quartic potential [61, 62, 63, 64]. Here the multiply

connected geometry is spontaneously formed by the appearance of the Mott

state in the center of the cloud. As was found by Scarola and Das Sarma [54],

this Mott region effectively pins the vortices to the center.

By changing t/U one may study a few other interesting structures. For ex-

ample, one can engineer a situation where a central superfluid region is sur-

rounded by a Mott ring followed by a superfluid ring. At appropriate rotation

speeds one produces a configuration which has properties of both the states

seen in Figure 5.1 and in Figure 5.2. One will find no vortex cores (all of the

vorticity is confined to the Mott ring), the central region will be stationary, and

the outer region rotates.

Another interesting limit is found when one decreases the thickness of a

Mott/superfluid region so much that it breaks up into a number of discrete is-

lands. Small Mott islands act as pinning centers, while small superfluid islands

form an analog of a Josephson junction array [65].

5.6 Detection

Vortex structures near the Mott limit may be hard to detect using in-situ absorp-

tion imaging. As is exemplified by Figure 1(b), the vortices do not necessarily

have a great influence on the density of the cloud. This is principally because

near the Mott boundary the superfluid fraction becomes small: even though

the superfluid vanishes in the vortex core, the corresponding density may not

appreciably change. Two other pieces of physics also influence the visibility.

First, near the Mott boundary one can produce vortices with Mott cores [25].
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Depending on the bulk density, this can lead to vortices where there is no den-

sity suppression at all, or even a density enhancement. Second, the lengthscale

of the vortex core, the superfluid healing length, varies with U/t. For both very

large and small U/t the healing length is large, while at intermediate couplings

it is comparable to the lattice spacing, possibly below optical resolution.

We argue that the vortex structures will be much more easily imaged after

time-of-flight (TOF) expansion of the cloud for time t [32]. The density after

TOF expansion is made of two pieces – a largely featureless incoherent back-

ground from the normal component of the gas, and a coherent contribution

from the superfluid component. The coherent contribution forms a series of

Bragg peaks [12], where each peak reflects the Fourier transform of the super-

fluid order parameter. Neglecting interactions during time-of-flight, and using

Gaussian initial states at each lattice site, we calculate the TOF column density.

In the long time limit Dt ≫ RT F, where Dt = ~t/mλ, RT F is the radius of the initial

cloud, and λ is the size of each initial Wannier state, the column density of the

expanding cloud is

n(~r, t) = ρ(r, t)
[

(N − Nc) + |Λ(~r, t)|2
]

(5.2)

ρ(r, t) =
(

πD2
t

)−1
e−r2/D2

t (5.3)

Λ(~r, t) =
∑

j

α je
−i~r·~r j/Dtλ, (5.4)

where N and Nc are the total number of particles and condensed particles, re-

spectively.

The incoherent contribution (N−Nc)ρ(r, t) is simply a Gaussian. This is a con-

sequence of the Gutzwiller approximation, which neglects short range correla-

tions. Adding these correlations would modify the shape of the background,

but it will remain smooth. The coherent part has much more structure. Fig-
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Figure 5.3: Time-of-flight expansion. (a) Column density ρ scaled by the
central column density ρ0 as a function of space for the ring
configuration vortex state in Figure 5.1 after expanding for
time t. Positions are measured in terms of scaling parameter
Dt = ~t/mλ, where λ is the initial extent of the Wannier wave-
function. (b) One dimensional cut through center of (a). Note
the incoherent background between the Bragg peaks. (c) Close-
up of the central Bragg peak, corresponding to the Fourier
transform of the superfluid order parameter. The 8 dips in the
outer crest result from the 8 vortices in the initial state.
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ure 5.3 illustrates the density pattern which will be seen if the rotating cloud in

Figure 5.1 is allowed to expand.
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CHAPTER 6

COMMENSURABILITY AND HYSTERETIC EVOLUTION OF VORTEX

CONFIGURATIONS IN ROTATING OPTICAL LATTICES

The contents of this chapter are adapted from work originally archived as Com-

mensurability and hysteretic evolution of vortex configurations in rotating optical lat-

tices, arXiv:0809.2078; and submitted for publication in Physical Review A.

In this chapter we present a theoretical study of vortices within a harmoni-

cally trapped Bose-Einstein condensate in a rotating optical lattice. Due to the

competition between vortex-vortex interactions and pinning to the optical lat-

tice we find a very complicated energy landscape, which leads to hysteretic

evolution. The qualitative structure of the vortex configurations depends on

the commensurability between the vortex density and the site density – with

regular lattices when these are commensurate, and concentric rings when they

are not. We model the imaging of these structures by calculating time-of-flight

column densities. As in the absence of the optical lattice, the vortices are much

more easily observed in a time-of-flight image than in-situ.

6.1 Introduction

Atomic clouds in rotating optical lattices have garnered a large amount of inter-

est from researchers in the fields of condensed matter physics, atomic physics,

and quantum optics. An optical lattice simulates the periodic potential ubiq-

uitous in solid state physics, while rotation probes the superfluid character of

these cold atomic gases by driving the formation of quantized vortices. Here
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we explore the theory of vortices in an optical lattice. Specifically, we inves-

tigate the evolution of the vortex configurations that occur in the single-band

tight-binding limit as the rotation rate is slowly varied. The energy landscape

has a complicated topography that leads to hysteresis. The vortex configura-

tions depend on commensurability of several different length scales.

A uniform gas of atoms of mass m in an optical lattice rotating with fre-

quency Ω is characterized by several important scales. Among these are the

on-site interaction U, the lattice spacing d, the magnetic length ℓ =
√

~/mΩ, and

the particle density n, where ~ = h/2π is Planck’s constant. The behavior of the

system changes when these various scales form different commensurate ratios.

There are three well known examples of such commensurability effects, namely

when d2/πℓ2 is rational for a two dimensional noninteracting gas, when ndD is

an integer of a non-rotating gas in dimension D, or when πnℓ2 is rational for a

two-dimensional lattice-free gas. The first example gives the Hofstadter butter-

fly single-particle spectrum [26], the second the superfluid-Mott transition, and

the third the fractional quantum Hall effect. Here we explore how the commen-

surability between ℓ and d plays out in an interacting superfluid, away from the

Mott [41, 46, 66] and fractional quantum Hall limits [36, 45, 48, 49, 50, 67, 68].

We study the vortex configurations that emerge in a harmonically trapped

atomic cloud inside a rotating optical lattice in the single-band tight-binding

limit. The resulting phenomenology is rich, as the vortex configurations depend

on a number of factors, including: the vortex-vortex interaction, the vortex-

pinning potential due to the optical lattice, the finite cloud size, and the past

history of the cloud. Fast enough rotation of a uniform superfluid results in the

formation of an array of quantized vortex lines of cross-sectional density nvor,
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corresponding to a mean intervortex spacing of n−1/2
vor = ℓ/

√
π. In an infinite sys-

tem, these vortices arrange themselves in a triangular lattice configuration, but

a finite cloud size produces distortions [69, 70, 71, 72, 73, 74, 75]. A co-rotating

optical lattice introduces a vortex-pinning potential with minima at the optical

lattice potential maxima (between the occupied sites). For commensurate vor-

tex densities, this pinning can cause the lowest energy configuration to switch

from a triangular vortex lattice, to one that shares the geometry of the optical

lattice [8, 25, 27, 28, 76, 77]. In practice the vortices are insufficiently mobile to

find the true ground state, and one typically sees some metastable configura-

tion, for example with a number of domains separated by defects. We present a

realistic simulation of these effects.

We perform calculations in two-dimensions, modeling a harmonically

trapped gas of bosons in a rotating square lattice. The two-dimensional case

is convenient because we can then concentrate on the interaction between vor-

tex cores in a single plane. This is also an experimentally relevant geometry,

as the dimensionality of the system can be controlled by using an anisotropic

harmonic potential, or optical lattice, where the hard trapping direction is along

the rotation axis of the optical lattice [13]. A recent experiment [28] realized

exactly this scenario by placing a rotating mask in the Fourier plane of a laser

beam which forms an optical dipole trap. The mask contained three/four holes,

producing a triangular/square lattice in the image plane, where the atoms were

trapped. The lattice spacing was large due to the nature of their optics but can in

principle be made small enough to explore the single-band tight-binding limit

that we investigate. A similar setup, using a dual-axis acousto-optic deflector,

promises to reach this limit in the near future [78].
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We find hysteresis in our numerical algorithm, reflecting the complicated en-

ergy landscape for the vortex configurations, and discuss how similar hystere-

sis will appear in experiments. This landscape reflects the competition between

vortex-vortex interactions and pinning to the optical lattice. In section II we

describe our mean-field ansatz and numerical self-consistency routine. In sec-

tion III we show how vortex configurations evolve from commensurate lattices

to incommensurate ring-like structures as the rotation rate is varied. In section

IV we present the hysteretic evolution of vortex configurations on spin-up and

then spin-down. In section V we simulate the results of time-of-flight imaging

of these systems, and in section VI we summarize our results.

Previous work, focusing on the multi-band weak lattice limit, found vortex

structures similar to those we see in our tight binding model [8, 27], but did not

report on how these structures evolved as parameters were adiabatically varied.

Our discussion of the expansion of the rotating cloud initially in the single-band

tight-binding regime is also novel.

6.2 Calculation

In the reference frame of the rotating optical lattice, our system is described by

the rotating Bose-Hubbard hamiltonian [9, 25]:

Ĥ = −
∑

〈i, j〉

(

ti jâ
†
i â j + h.c.

)

+

∑

i

(U
2

n̂i (n̂i − 1) − µin̂i

)

(6.1)

where ti j = t exp
[

i
∫ ~ri

~r j
d~r · ~A(~r)

]

is the hopping matrix element from site j to

site i. The rotation vector potential, which gives rise to the Coriolis effect, is

~A(~r) = (m/~)
(

~Ω × ~r
)

= πν (xŷ − yx̂), where ν is the number of circulation quanta

87



per optical-lattice site. The local chemical potential µi = µ0 − m
(

ω2 − Ω2
)

r2
i /2 in-

cludes the centripetal potential. In these expressions, µ0 is the central chemical

potential, ω is the trapping frequency, Ω is the rotation speed, ~ri is the position

of site i, m is the atomic mass, â†i (âi) is a bosonic creation (annihilation) operator,

n̂i = â†i âi is the particle number operator for site i, and U is the particle-particle

interaction strength. The connection between these parameters and the laser

intensities are given by Jaksch et al. [9]. Here, and in the rest of the paper, we

use units where the lattice spacing is unity, and we operate exclusively at zero

temperature.

Both the superfluid and Mott insulator are well described by a spatially in-

homogeneous Gutzwiller product ansatz [9],

|ΨGW〉 =
M

∏

i=1















∑

n

f i
n|n〉i















, (6.2)

where i is the site index, M is the total number of sites, |n〉i is the n-particle

occupation-number state at site i, and f i
n is the corresponding complex ampli-

tude, with
∑

n | f i
n|2 = 1. This ansatz is more general than the more standard

mean-field approximation described by the lattice Gross-Pitaevskii equation. In

the limit where the latter works well, the two theories agree. The Gutzwiller

ansatz has been used extensively to understand experimental results [12, 52, 53],

and is well suited for studying the vortex physics that we consider here.

Using equation (6.2) as a variational ansatz, we minimize the energy with

respect to the { f i
n}. We then extract the density ρi =

∑

n n| f i
n|2 and the condensate

order parameter αi = 〈âi〉 =
∑

n

√
n
(

f i
n−1

)∗
f i
n at each site. The condensate density

ρc
i = |〈âi〉|2 is equal to the superfluid density in this model, and is generally not

equal to the density.

We use an iterative algorithm to determine the { f i
n}which (locally) minimize
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the energy. We use a square region with L sites per side with hard boundary

conditions. We find that we must take L much larger than the effective trap ra-

dius so that our solutions do not depend on those boundaries. Typically we use

40 ≤ L ≤ 90. We calculate 〈ĤRBH〉 using equation (6.2). Minimizing 〈ĤRBH〉 with

respect to f i∗
n with the constraint

∑

n | f i
n|2 − 1 = 0 gives L2 nonlinear eigenvalue

equations, one for each site,

−t
∑

k, nn of j

(

〈âk〉
√

m f j
m−1R jk + 〈â†k〉

√
m + 1 f j

m+1Rk j

)

+

(U
2

m2 −
(

µ (r) +
U
2

)

m + λ j

)

f j
m = 0 ,

(6.3)

where the sum is over all nearest neighbors of site j, m is the particle-number

index, λ j is a Lagrange multiplier, and R jk = exp
[

i
∫ ~r j

~rk
d~r · ~A(~r)

]

, with i=
√
−1.

We iteratively solve these equations: first choosing a trial order-parameter field
{

α(0)
j

}

, where α j = 〈â j〉; then updating it by α
(p)
j =

∑

n

√
n f j∗

n−1

({

α
(p−1)
j

})

f j
n

({

α
(p−1)
j

})

,

where p is the iteration index. Similar calculations were performed by Scarola

and Das Sarma [54] to analyze the case where the single-particle Mott state is

surrounded by a rotating superfluid ring. In the uniform case this algorithm has

been used by Wu et. al. [25] as well as Goldbaum and Mueller [46] and Oktel et.

al. [40, 41].

Since equation (6.3) is highly nonlinear, we find that the solution that this it-

erative algorithm converges to is sensitive to the initial state we use. This feature

allows us to see the hysteretic effects described in the text. Experiments will see

similar hysteresis, but the precise details will differ from our calculations (for

example the critical frequencies for vortex entry and egress will be somewhat

modified).

We systematically explore the phase space, varying the parameters in the

hamiltonian. We simulate clouds with diameter from 30-60 sites, comparable
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to the sizes studied in experiments [52, 53]. For the largest simulations we im-

pose four-fold rotational symmetry, but introduce no constraints in the smaller

simulations.

6.3 Commensurability and Pinning
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Figure 6.1: Adiabatic spin-up. Properties of cloud during adiabatic spin-
up with parameters (t/U = 0.2, µ0/U = 0.3, RT F = 15). (a) En-
ergy vs rotation rate. Sharp drops indicate vortex formation.
Energy scaled by on-site interaction parameter U, and rotation
rate quoted as ν, the number of circulation quanta per optical-
lattice site. (b), (d), (f) Superfluid density profile at parame-
ters labeled in (a). Light-to-dark shading corresponds to low-
to-high density, and position is measured in lattice spacing.
Light spots correspond to vortex cores. Red and green lines
are guides to the eye. (c), (e), (g) Superfluid phase represented
by Hue. Solid white circle denotes edge of cloud. Dashed lines
are guides to the eye. Black circles denote vortex locations. In
(b), (c) and (f), (g) rotation speed should favor a commensurate
square vortex lattice rotated by π/4 from the optical lattice axes.
(d), (e) represents an incommensurate rotation speed.
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We find a great variety of vortex patterns, including those resembling square

vortex lattices. These are most stable at the rotation rates where they are

commensurate with the underlying optical lattice. Commensurate Bravais lat-

tices exist when 1/ν is an integer, and commensurate square lattices when

ν = 1/(n2
+ m2), for integral n and m [8, 27, 28]. Which vortex patterns appear in

a simulation, or in an experiment [55], depends on how the system is prepared.

This hysteresis occurs because the energy landscape has many deep gorges with

near-degenerate energies, separated by high barriers.

To illustrate this energy landscape, we fix t/U = 0.2 and µ0/U = 0.3, and

study how the energy evolves as we vary the rotation speed. First, starting

with the non-rotating ground state, we sequentially increase the rotation speed,

using the previous wavefunction as a seed for our iterative algorithm. We adjust

ω as we increase Ω so that the cloud size, related to the Thomas-Fermi radius,

RT F =

√

2µ0

m(ω2−Ω2) , remains effectively fixed. The energy as a function of rotation

speed, shown in Figure 6.1(a), has a series of sharp drops, corresponding to the

entry of one or more vortices from outside of the cloud. At these rotation speeds

the system jumps from one local minimum of the energy landscape to another.

Figure 6.1 (b)-(g) shows the superfluid density and phases associated with

the vortex patterns found during this adiabatic increase in rotation speed, where

we impose four-fold rotation symmetry about the trap center. Subfigures (b)

and (c) show a regular square vortex lattice seen near the commensurate ν =

1/(2×62). Subfigures (d) and (e) show the vortex configuration at ν ∼ 1/(2×3.762)

which is intermediate between the commensurate values ν = 1/(2 × 32) and

ν = 1/(2 × 42). Rather than forming a square pattern, the vortex configuration

appears to be made of concentric rings. Such ring-like structures also occur for
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superfluids rotating in hard-walled cylindrical containers [79], where bound-

aries play an important role. Despite this analogy, it appears that in the har-

monic trap these circular configurations are not a consequence of the circular

boundary. When we simulate an elliptical trap, we still find roughly circular

vortex configurations. As one increases ν towards ν ∼ 1/(2× 32), a domain con-

taining a square vortex lattice begins to grow in the center of the trap. As seen

in Subfigures (f) and (g), at commensurability the domain only occupies part of

the cloud, even though one would expect that a uniform square lattice would be

energetically favorable. The inability of the system to find the expected lowest

energy configuration during an adiabatic spin-up is indicative of the compli-

cated energy landscape.

The patterns that we find are largely determined by the symmetry of the

instabilities by which vortices enter the system. For example, even when

we do not impose a four-fold symmetry constraint this adiabatic spin-up ap-

proach never produces square vortex lattices oriented at an angle other than

π/4 with respect to the optical lattice axes. On the other hand, we readily pro-

duce other commensurate vortex lattices by choosing the appropriate rotation

speed and seeding our iterative algorithm with the corresponding phase pat-

tern. We have verified this approach with square vortex lattices oriented at var-

ious angles with respect to the optical lattice, taking ν−1/2
= {4, 5, 6, 7, 8, 9, 10},

(5ν)−1/2
= {2, 3, 4, 5, 6} and (10ν)−1/2

= {2, 3, 4}.
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Figure 6.2: Hysteresis. (a) Energy versus rotation rate during increase
(blue line) and decrease (red line) of ν. Energy steps in the
blue (red) curve correspond to nucleation (expulsion) of vor-
tices. (b)-(e) Order parameter complex phase for parameters
labeled in (a). Black circles are drawn around vortex cores, and
white circles indicate the approximate extent of the gas.

6.4 Hysteresis

We further explore the history dependance of the vortex configurations by in-

creasing, then decreasing Ω. We do not impose a four-fold symmetry con-

straint, but take a smaller system with RT F = 7. At any given Ω, the en-

ergy shown in Figure 6.2 (a) depends on the system’s history. The increas-

ing(blue)/decreasing(red) rotation curve has sharp energy drops signaling the

introduction/ejection of vortices to/from the system. The energy drops occur
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at different Ω for spin-up and spin-down, indicating that the critical rotation

speed for a vortex to enter or exit the system is different. Generically, there are

more vortices in the system on spin-down than on spin-up. Depending on Ω,

one may find a lower energy state by increasing (subfigs. (b) and (c)) or by de-

creasing (subfigs. (d) and (e)) the rotation rate. As demonstrated by subfigs. (d)

and (e), vortex configurations produced during spin-up typically have the four-

fold rotational symmetry of the optical lattice, while the vortex configurations

calculated during spin-down are more likely to break this symmetry. An ex-

periment will display the same qualitative features, but slightly different vortex

configurations.

When Ω is changed more rapidly (i.e., the step-size is increased), we find

more symmetry broken states than when we use small steps. The energy differ-

ences between the symmetric and asymmetric states are extremely small, so the

energies shown in Figure 6.2 are robust over a large range of sweep rates.

6.5 Time-of-flight imaging

In a previous paper [66] we proposed detecting vortices in optical lattice sys-

tems through time-of-flight imaging [12, 32], where at time t = 0 one turns off

the lattice and the harmonic trap, letting the cloud expand. After some fixed

time t one then produces an absorption image of the cloud using a resonant laser

beam. In a weakly-interacting gas, the density profile is related to the momen-

tum distribution of the gas. Here we elaborate on this argument, and show how

the vortices will be observable in the time-of-flight (TOF) images. This com-

plements other methods for extracting vortex properties, such as Bragg spec-
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troscopy [80]. Recently Palmer, Klein, and Jaksch investigated time-of-flight

expansion in the fractional quantum Hall limit [50].

We present a simple model where we neglect interactions during the time-of-

flight. This approximation is quite good. First, the interactions between atoms

from different sites can generically be neglected: by the time atoms from differ-

ent sites overlap, the density is so low that they have negligable chance of scat-

tering. Second, in the single-band tight-binding limit the kinetic energy from

the zero-point motion of atoms on a single site should exceed the interaction

energy, meaning that the trajectory of the atoms will only be slightly perturbed

by the interactions. If one did include the effects of interactions during the ex-

pansion one would see a slight blurring of the interference patterns. This blur-

ring comes from two effects: (1) atoms from sites with higher occupation will be

moving faster (the interaction energy is converted into kinetic energy), and (2)

the interactions introduce phase shifts which depend on atom number.

Within our approximation, calculating the density of the expanding cloud

reduces to a series of single-particle problems. Taking the initial wavefunction

to be given by equation (6.2), after time t the wavefunction will be

|ψ(t)〉 =
M

∏

i=1



















∑

n

f i
n

[

â†i (t)
]n

√
n!



















|vac〉, (6.4)

where âi(0) is the operator which annihilates the single-particle state in site i

of the lattice. This operator evolves via the Heisenberg equation of motion,

i~∂tâ j(t) =
[

â j(t), Ĥfree

]

where Ĥfree is the Hamiltonian for non-interacting parti-

cles. This is equivalent to evolving the single-particle state annihilated by âi(t)

via the free Schrodinger equation.

For this analysis we use the notation that ~r is a vector in the x − y plane, and
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z represents the coordinate in the perpendicular direction. We take the initial

(Wannier) state at each site, φi
(

~r, z
)

, to be gaussian:

φi
(

~r, z
)

=
1

(

πλ2
)1/2

1
(

πλ2
⊥

)1/4
exp













−
(

~r − ~ri
)2

2λ2
− z2

2λ2
⊥













, (6.5)

where λ =
√

~

mωosc
, and λ⊥ =

√

~

mω⊥
with ωosc and ω⊥ being the small oscillation

frequencies for each well. In the geometry we envision, ω⊥ ≫ ωosc. The wave-

functions at a time t after release of the trap are calculated by Fourier trans-

forming φi
(

~r, z
)

to momentum space, then time evolving under Ĥfree and finally

Fourier transforming back to position space to arrive at φi

(

~r, z, t
)

= φi

(

~r, t
)

f (z, t),

where the only thing we need to know about the transverse wavefunction f (z, t)

is that it is normalized so
∫

| f (z, t)|2dz = 1. The in-plane wavefunction is

φi

(

~r, t
)

=





















λ2

π
(

λ2 + i~t/m
)2





















1/2

exp

















−
(

~r − ~ri
)2

2
(

λ2 + i~t/m
)

















, (6.6)

and the column density of the expanding cloud is then

n
(

~r, t
)

=

∫

〈ψ(t)|ψ̂†
(

~r, z
)

ψ̂
(

~r, z
)

|ψ(t)〉 dz =
M
∑

i=1

[

ni − nc,i
]

|φi

(

~r, t
)

|2 +
∣

∣

∣

∣

∣

∣

M
∑

i=1

αiφi

(

~r, t
)

∣

∣

∣

∣

∣

∣

2

,

(6.7)

where ni
(

nc,i
)

is the number of atoms (condensed atoms) initially at site i, and

ψ̂
(

~r, z
)

is the bosonic field operator annihilating an atom at position (~r, z).

In the long-time limit where the expanded cloud is much larger than the

initial cloud (i.e., Dt = ~t/mλ ≫ RT F), this expression further simplifies, and one

has

n(~r, t) = ρ(~r, t)
[

(N − Nc) + |Λ(~r, t)|2
]

(6.8)

ρ(~r, t) =
(

πD2
t

)−1
e−r2/D2

t (6.9)

Λ(~r, t) =
∑

j

α je
−ir·r j/Dtλ, (6.10)
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where N and Nc are the total number of particles and condensed particles, re-

spectively. The envelope, ρ(~r, t), is a Gaussian, reflecting the Gaussian shape

of the Wannier state. The incoherent contribution (N − Nc)ρ(~r, t) has no addi-

tional structure. This is a consequence of the Gutzwiller approximation, which

neglects short-range correlations. Adding these correlations would modify the

shape of the background, but it will remain smooth.

The interference term has the structure of the envelope ρ(~r, t) multiplied by

the modulus squared of the discrete Fourier transform of the superfluid order

parameter. The discrete Fourier transform can be constructed by taking the con-

tinuous Fourier transform of the product of a square array of delta-functions,

and a smooth function which interpolates the superfluid order parameter. The

resulting convolution produces of a series of Bragg peaks, each of which have

an identical internal structure which is the Fourier transform of the interpolated

superfluid order parameter. The vortices will be visible in the structure of these

peaks.

Vortices in real-space lead to vortices in reciprocal space. This result is clear-

est for “lowest Landau level” vortex lattices [81] which are expressible as an

analytic function of z = x+ iy multiplied by a Gaussian of the form e−|z|
2/w2

, where

w is a length scale which sets the cloud size. Aside from a scale factor and a

rotation, the continuous Fourier transform of such a function is identical to the

original. More generally, the topological charge associated with the total num-

ber of vortices is conserved in the expansion process.

Figure 6.3 displays simulated expansion images corresponding to the initial

square vortex-lattice state shown in Subfigures 6.1 (a) and (b), where t/U = 0.2.

In these images, lighter colors correspond to smaller column densities. Using
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Figure 6.3: Simulation of column density seen in time-of flight absorp-
tion images. Darker shading corresponds to higher column
density. The initial state corresponds to the the 4x4 square vor-
tex lattice pictured in Subfigures 6.1(b),(c). (a)-(c) 0, 3, and 20
ms expansion. Left: column density profile calculated using
equation (6.7); Right: column density convolved with a 3 µm
wide Gaussian distribution to represent the finite resolution of
a typical imaging system. (d) long-time scaling limit, where
Dt = ~t/mλ≫ RT F.
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rubidium-87 atoms on an optical lattice characterized by d = 410nm and a hard

axis lattice depth of 30 ER, which are the experimental values in ref. [13], we

find that V0 = 5.7 ER, which gives λ = 84 nm. Subfigures 6.3 (a)-(c) display ab-

sorption images: the left-hand side (x < 0) is the column density calculated with

equation (6.7), while the right-hand side (x > 0) shows this density convolved

with a 3 µm wide Gaussian, representing the blurring from typical optics. Sub-

figure 6.3(d) displays the long-time expansion limit column density calculated

using equation (6.10), which only depends on the { f i
n}’s and the ratio (λ/d).

Subfigure 6.3(a) shows the in situ (t=0 ms) column density. At this stage the

Wannier functions are tightly peaked about the lattice sites, resulting in a series

of sharp density bumps. The heights of these bumps are slightly modulated

due to the square vortex lattice: near the cores of the vortices there is a slight

depletion of the density. Due to the small vortex size, none of this structure is

seen once the image is convolved with the Gaussian. This demonstrates that a

typical imaging setup would be unable to resolve the vortices. Subfigure 6.3(b)

shows the abosrption image after 2 ms time-of-flight. Several very broad Bragg

peaks have developed, each showing a number of low density regions reflecting

the square vortex lattice. Again, the vortex structure is lost upon convolution.

Subfigure 6.3(c) shows an absorption image after 20 ms TOF where, even after

convolution, the Fourier transform of the initial vortex pattern is clearly visi-

ble in each of the Bragg peaks. In their investigation of atoms in non-rotating

optical lattices, Spielman et. al. [13] allowed their atoms to expand for 20.1 ms

before imaging. Subfigure 6.3(d) is a column density calculated in the long-time

limit using equation (6.10). Aside from an overal scaling, and a slight rotation of

the structure within each Bragg peak, the image after 20 ms is almost identical

to the image seen in the long-time limit.
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6.6 Summary

We have studied the vortex structures in a harmonically trapped Bose gas in the

presence of a rotating optical lattice. We discussed the hysteretic evolution of

the vortex structures as the rotation rate is varied. This hysteresis is a signature

of the complicated energy landscape. We observed a tendency for the system

to find regular lattices configurations when the vortex density is commensu-

rate with the site density. At incommensurate vortex densities we instead see a

circular vortex pattern which is robust against changing the aspect ratio of the

trap. Finally we analyzed the time-of-flight expansion of one of these conden-

sates. We find that the vortex patterns are readily observed in the structure of

the resulting Bragg peaks.
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