
THE QUANTUM HALL PROBLEM IN LATTICES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Eliot Kapit

August 2012



c© 2012 Eliot Kapit

ALL RIGHTS RESERVED



THE QUANTUM HALL PROBLEM IN LATTICES

Eliot Kapit, Ph.D.

Cornell University 2012

This thesis represents a body of work investigating the physics of strongly inter-

acting quantum particles, confined to a two-dimensional plane in a nontrivial

vector potential (such as a transverse magnetic field), commonly referred to as

quantum Hall physics. The result which anchors these studies is my discovery,

reported in 2010 (PRL 105, 215303), of a lattice model in which there is a de-

generate manifold of single-particle states, with wavefunctions matching those

of the lowest Landau level of continuum particles, providing a bridge between

continuum and lattice physics. Within this model anyonic states are robust and

thus amenable to observation. Building on this result, I numerically demon-

strate the braiding of anyons in many-body quantum Hall states of bosons, con-

firming their anyonic statistics. I also study the equation of state of quantum

Hall bosons for various flux densities and choices of hopping parameters, with

the goal of quantifying the effects of finite temperature and examining the feasi-

bility of observing these states in a system of cold atoms. I then propose a new

architecture for superconducting qubits, where flux states of circulating current

combined with superconducting transformers and tuned voltage offsets mimic

the physics of charged particles in a magnetic field, allowing boson quantum

Hall physics to be studied in an environment free of charge noise. Finally, I

review the work presented here and speculate on its possible applications to

topological quantum computing.
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CHAPTER 1

INTRODUCTION

1.1 Quantum Hall Physics

This dissertation studies the quantum properties of identical particles confined

to a plane in a transverse magnetic field, commonly known as quantum Hall

physics. This nomenclature comes from the classical Hall effect, the generation

of a transverse voltage in conductors in crossed electric and magnetic fields.

It was discovered by Edwin Hall in 1879. This voltage, which arises from the

accumulation of charges due to the bending of the charge carriers’ paths from

the magnetic field, can be used to define a transverse electrical conductivity, σxy,

the ratio of the applied current to the generated transverse (Hall) voltage I/VH.

First discovered by Klaus von Klitzing in 1980 (just after the hundredth an-

niversary of Edwin Hall’s discovery) [130], the quantum Hall effect (QHE) is

an exact quantization of this conductivity in clean, two-dimensional electron

gases at extremely low temperatures, into integer or rational fractional multi-

ples of e2/h depending on the carrier density and magnetic field strength. The

precise value of σxy is given by νe2/h, where the coefficient ν is referred to as

the filling fraction and is the dimensionless ratio of the carrier density to the

density of magnetic flux quanta penetrating the sample. This quantization is

so exact that the QHE is used to define the international standard for electrical

resistance from Planck’s constant and the electron charge. Beyond this incredi-

ble precision, the quantum Hall states at fractional values of ν exhibit a number

of exotic properties, the most famous of which being that the fundamental ex-

citations of these states are emergent anyons, collective vortices which carry an

1



exact fraction of an electron charge. These anyonic systems represent a state of

matter profoundly unlike any others discovered previously, thus making them

one of the most important areas of condensed matter research in the past three

decades. As I shall describe below, they may turn out to be important from a

practical and technological vantage point as well.

As background, I will begin with a brief overview of quantum Hall physics,

focusing on important theoretical aspects of the problem and describing some

of the methods used to study it. After that review, I will describe attempts to

realize this physics in other systems (particularly bosonic ones), beginning with

cold atoms and then moving to superconducting device arrays. I will then con-

clude this chapter with an outline of the four papers that make up the bulk of

this dissertation.

1.1.1 The Lowest Landau Level

A truly remarkable fact about the quantum Hall effect is how strongly the many-

particle physics of the interacting electrons depends on the single particle spec-

trum of two-dimensional charged particles in quantum mechanics, known as

the Landau levels. Since the structure of the Landau levels is important to all of

my subsequent work, we will quickly review it here before proceeding. We first

consider a single particle, placed in a plane. The Hamiltonian for this particle is

H =
1

2m
(p − eA/c)2 , (1.1)

where p = −i~∂/∂x is the particle’s momentum and A is the magnetic vector

potential, which satisfies B = ∇ × A. Since this equation does not have a unique

solution, A is defined only up to a gauge transformation A → A + ∇ f (r), where

2



f is any real, continuously differentiable scalar function of r. Clever choice of

this gauge can massively simplify the desired calculation, and for most of this

work we will choose the “symmetric gauge” where

A =
B
2

(
yx̂ − x̂y

)
. (1.2)

This vector potential describes a constant magnetic field B = B̂z which points

normal to the plane, and will be the gauge of choice for this section.

We now define complex coordinates z = x + iy and z∗ = x − iy and let lB =

√
hc/eB be the magnetic length scale. H can be decomposed as:

a = 2
∂

∂z∗
+

z

2l2B
; b = 2

∂

∂z
− z∗

2l2B
; (1.3)

H = − ~
2

2m
ba +

1
2
~ωc, (1.4)

whereωc = eB/m is the particle’s cyclotron frequency. We note that [H, b] = ~ωcb,

so b can be regarded as a ladder operator. The ground states of H are thus any

functions annihilated by the operator a, and (ignoring normalization) are given

by

ψn (z) = zn exp− |z|
2

4l2B
. (1.5)

The states ψn are the lowest Landau level (LLL) wavefunctions, and form an ex-

act, massively degenerate level since any power of z multiplied by the gaussian

factor is a ground state of H. The excited states can be found by simply acting

with powers of b on the LLL wavefunctions, and each excited level has the same

degeneracy as the LLL. For an infinite system this degeneracy is infinite, and for

a finite system the degeneracy is equal to Nφ, where Nφ = 2−1
Φ
−1
0

∫
B · dS is the

total magnetic flux penetrating the system divided by twice the magnetic flux

quantum Φ0 = h/2e. We choose Nφ to be an integer in all subsequent calcula-
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tions, and in periodic systems Nφ must be an integer for the boundary condi-

tions to be well-defined. To avoid confusion, we specify the flux quantum as

h/2e rather than h/e since we will be concerned with superconducting systems

later in this work. For a finite disc geometry, this degeneracy sets the highest

power of n of zn as Nφ − 1. In a toroidal geometry (periodic boundary con-

ditions), the LLL is expressed in terms of Jacobi theta functions [45, 1], with

the degeneracy unchanged. The reduction to 2 dimensions is typically accom-

plished in experiments through the use of quantum wells– ultrathin sheets of a

material (typically gallium arsenide) sandwiched between two insulators with

a large band gap. If the well width w is thin enough, the excitation frequency

ωz = ~
2π2/2m∗w2 can be made much larger than the Landau level spacing, so the

effect of the third dimension can be ignored outside of possible renormalization

of the interaction matrix elements.

The structure of the LLL allows for a number of striking analytical predic-

tions which would be nearly impossible to make for other single particle spec-

tra. Firstly, given the finite integer spacing of the Landau levels and infinite den-

sity of states, one would expect the 2DEG to be a band insulator, except when

the chemical potential is precisely equal to an integer multiple of ~ωc. While it is

true that the bulk conductivity does vanish when µ , ~ωc, the edge conductivity

is nonzero, leading to an exactly quantized transverse conductivity σxy = νe2/h

from chiral edge states at zero temperature. First derived by Thouless [124],

employing the Kubo formula to compute the transverse conductivity yields an

expression proportional to

σxy ∝
i

2π

∫
dk1dk2

[〈
∂ψ

∂k1

∣∣∣∣∣
∣∣∣∣∣
∂ψ

∂k2

〉
−

〈
∂ψ

∂k2

∣∣∣∣∣
∣∣∣∣∣
∂ψ

∂k1

〉]
. (1.6)

This is nothing more than the momentum space integral of the Berry curva-

ture [137] over the entire Brillouin zone, and given that the system’s wavefunc-
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tion is single-valued, it must be an integer, called the Chern number. At fi-

nite temperature, there will be an exponentially small longitudinal conductivity

σxx ∝ exp−~ωc/kBT as well, due to a nonzero population in the excited bands.

This result is also robust against impurities. Provided that enough available

states remain in the LLL (see below), a quantum Hall system can always com-

pletely screen static, short-ranged repulsive impurity potentials at nearly zero

energy cost. Consider an impurity placed at complex position w. We assume

that the impurity interacts with the electrons through contact repulsion, so that

the impurity potential is Uimpδ
2 (z − w). To screen the impurity potential, we sim-

ply modify the many-body wavefunction by

Ψ

({
z j

})
→

∏

i

(zi − w)Ψ
({

z j

})
. (1.7)

This wavefunction now vanishes whenever any particle contacts the impurity,

and therefore has no energy shift from the impurity potential. Since it is con-

structed only from single particle states in the LLL, it is a valid ground state. The

common terminology for these states is to say that the new state has a quasihole

at position w. A quasihole is a quantized vortex which threads a single quantum

of flux and has vanishing fluid density at its core. Generically, quasiholes (and

their conjugates, quasiparticles) are a fundamental excitation of any many-body

quantum Hall state, and for fractional states (ν non-integer; see below) they are

anyons with fractional statistics and charge [66]. In the many-body system with

a random distribution of attractive and repulsive impurities, the landau levels

will be broadened slightly by the impurity scattering rate, but so long as the

chemical potential µ remains in the gap between them, the conductivity quan-

tization argument of the previous paragraph still holds and the transverse con-

ductivity is exactly quantized, up to exponentially small corrections from finite
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temperature.1 It is also important to note that if the impurity position w is con-

trollable, quasiholes can be moved simply by changing w. This process, called

braiding when multiple quasiholes are present, is the primary focus of chapter

3.

The exact degeneracy of the LLL also makes it easy to construct exact or

variational ground states for the interacting many-body problem. Though our

previous discussion mainly referred to fermionic states, let us now consider a

quantum Hall system of bosons with mass m and charge q, interacting through

a contact interaction. The grand canonical Hamiltonian is

H =
1

2m

∑

i

(pi − qAi/c)2
+ U

∑

i j

δ2
(
ri − r j

)
− µN (1.8)

Imagine that we have a group of N bosons in a circular region penetrated by a

total of Nφ flux quanta. Remarkably, if N ≤ Nφ/2, the ground states of this system

are known exactly, and further, the system is compressible up to N = Nφ/2−1 but

gapped when N = Nφ/2. As proof, we first require all of the particles to occupy

LLL states. Within this restriction, the ground state will be a polynomial in the

complex particle coordinates z j, and that the maximum degree of any coordinate

in the polynomial is Nφ − 1, as described in the discussion of the single particle

LLL states earlier in the chapter. Further, we require that the polynomial is

homogeneous, so that for any given component of the polynomial zn1
1 zn2

2 ...z
nN
N the

sum of all powers ni must be constant. With these requirements laid down, we

consider the case of N = Nφ/2, a filling fraction of ν = 1/2. The ground state is

1It is important to note that a finite population of impurities is actually required to observe
the QHE in an experiment, since the chemical potential would otherwise undergo discontinuous
jumps and have an essentially zero probability of sitting between Landau levels. The impurities
create a manifold of localized states in between the Landau levels, which allow the chemical
potential to sit between Landau levels without contributing to conductivity. However, a large
enough population of impurities will disrupt the formation of the more complicated fractional
states discussed below, so ultrapure samples are required for most FQHE experiments.
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unique and exactly given by the Laughlin state, which for bosons at ν = 1/2 is

Ψ

({
z j

})
=

∏

i< j

(
zi − z j

)2
exp−

1

4l2B

∑

i

|zi|2 . (1.9)

This wavefunction is a ground state of the system, since all of the particles are

in the LLL and the wavefunction vanishes whenever two particles coincide,

thus completely suppressing the contact interaction in (1.8). To see that it is

the unique ground state, we note that any change in the wavefunction con-

sistent with bose statistics must involve adding or removing even powers of
(
zi − z j

)
, since any terms involving z∗i involve promotion into excited Landau lev-

els and cost a finite energy ~ωc. Removing even powers of
(
zi − z j

)
costs energy,

however, since the interaction energy no longer vanishes, but adding powers of
(
zi − z j

)
is also forbidden, since the highest allowed power of zi in a LLL wave-

function is Nφ −1. The Laughlin state is therefore unique and gapped. Similarly,

for N < Nφ/2 − 1 an exact ground state can be found by multiplying (1.9) by

a symmetric polynomial in zi of appropriate degree, so the wavefunction is no

longer unique and particles can be added without any interaction energy cost.

For longer ranged interactions, (1.9) is still an excellent variational ground state

(for fermions interacting through Coulomb repulsion–the longest ranged inter-

action between fundamental particles– the fermionic Laughlin state at ν = 1/3

has better than 97% overlap with the numerical ground state [141]) and the sys-

tem remains gapped. Note that a gapped state in bosons indicates strong corre-

lation physics– since bosons cannot fill a Landau level, there will be no integer

quantum Hall effect as in the fermionic 2DEG.

Much of the theoretical knowledge we have of many-body quantum Hall

states comes from exact diagonalization studies, where the low-lying eigenvec-

tors and eigenvalues of a many-body Hamiltonian such as (1.8) are computed

numerically for small numbers of particles in a finite region. Exact diagonal-
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ization is popular for two reasons: First, other techniques, such as perturbation

theory or quantum Monte Carlo, are inapplicable; there is no small parameter to

perturbatively expand in, and the gauge field leads to a sign problem in Monte

Carlo. Second, the large spacing between Landau levels dramatically simplifies

the exact diagonalization calculation. Provided that the particle density is not

too large, one can assume that all particles are in the LLL (a technique referred

to as lowest Landau level projection), which reduces the problem to one of find-

ing the appropriate polynomial in zi which minimizes the interaction potential.

This is equivalent to finding the lowest eigenstates of the Hamiltonian:

HLLL =

Nφ−1∑

i jkl

Vi jkla
†
i a†jakal, Vi jkl = 〈i j|Hint |kl〉 (1.10)

where i, j, k, l are single particle eigenstates in the LLL. The interaction coef-

ficients Vi jkl for arbitrary interactions must be found numerically, though by

decomposing them into angular momentum channels analytical results can be

employed to dramatically simplify the calculation. LLL projected exact diago-

nalization an ideal tool to test the validity of trial wavefunctions such as (1.9);

these trial wavefunctions include complex paired states with non-abelian anyon

excitations– the subject of my study in chapter 3. Though I do not use LLL

projection in this work (it is less necessary in lattice systems, and many of the

systems I study are strongly interacting and relatively dense), the analytical in-

sights which have come from it have guided much of my work, and I will refer

frequently to them throughout. Exact diagonalization is also my tool of choice

for understanding many-body states when analytical methods have failed, and

forms the bulk of my calculations in chapters 3 and 4.

Non-abelian anyons [82] are fractional excitations where the wavefunction

for three or more anyons is degenerate, and adiabatic exchanges of two anyons
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produces a nontrivial rotation in this degenerate subspace. Generically, differ-

ent exchanges do not commute, so repeated exchanges of anyons (referred to

as braids) can be used to construct complicated unitary transformations. Any-

onic braiding is the subject of the third chapter of this work, so I won’t discuss

it in detail here, except to say that non-abelian anyons could be used to build

a noise-tolerant topological quantum computer [61]. So long as the anyons are

sufficiently far apart, the degeneracy associated with them will not be lifted by

local perturbations unless those perturbations are strong enough to create addi-

tional anyon-antianyon pairs. If the ground state is gapped, this energy cost is

finite and all noise below it is exponentially suppressed, providing a profound

degree of protection against decoherence from external noise sources.

1.1.2 Towards a Quantum Hall State of Bosons

The only experimentally observed examples of quantum Hall effects are two

dimensional electron gases confined in ultrapure GaAs quantum wells or sin-

gle layers of graphene. In particular, no bosonic quantum Hall system has yet

been realized, for the simple reason that it is extremely difficult to construct

a system of charged, planar bosons in a strong magnetic field. The bosonic

quantum fluids studied in condensed matter experiments are either electrically

neutral (Helium-4) or expel magnetic flux (Cooper pairs in a superconductor),

and trapped ions are untenable since complex magnetic field configurations are

necessary for the trap itself. This is an unfortunate state of affairs, since be-

yond natural academic interest, there is a deep technological reason to search

for quantum Hall bosons: non-abelian anyons and topological quantum com-
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puting.2

As I show in chapter 3, and as argued previously [95, 24, 82], the bosonic

quantum Hall states at ν = 1 and ν = 3/2 exhibit non-abelian anyon excitations.

Taking this as sufficient motivation to search for a bosonic quantum Hall sys-

tem, I will now describe some of the most promising candidates. These include

arrays of superconducting qubits (where two states of the qubit can act the pres-

ence or absence of a hard core boson) [131, 28, 85], “photon lattices” of coupled

optical waveguides [42, 127] and neutral cold atoms, [10] where an effective

magnetic field may be introduced through rotation [24, 100, 21, 120, 136, 36] or

more exotic means [81, 43, 71, 109, 72, 22, 4, 25]. I will shortly describe some

of these systems, focusing on cold atoms (studied in chapters 2, 3 and 4) and

superconducting device arrays (chapters 3 and 5). I will detail the advantages

and disadvantages of these systems for quantum Hall physics, and discuss the

experimental challenges inherent in building them.

1.1.3 Quantum Hall Bosons and the Lattice

As I will describe, many of the most promising proposals for producing bosonic

quantum Hall physics involve lattice Hamiltonians of the Bose-Hubbard form,

H = −
∑

jk

(
J jke

iφ jk a†jak + H.C.
)
+

U
2

∑

j

n j

(
n j − 1

)
. (1.11)

Here, j and k denote lattice sites on a two-dimensional square lattice, J jk is a

real hopping amplitude, and U is a local repulsion term. The phases φ jk are

2There are also non-abelian anyon states in the 2DEG; there is good evidence to support their
existence at ν = 5/2, and they may also occur at ν = 12/5. See the introduction to chapter 3 for a
list of other candidate systems.
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equivalent to the Peirels phases generated by a gauge field,

φ jk =
q
~c

∫ rk

r j

A · dl. (1.12)

The sum of φ jk around any closed path in the lattice is gauge invariant, and if

the system is in a nonzero effective magnetic field, nonzero.

At first glance this Hamiltonian looks nothing like the continuum Hamilto-

nian (1.8), and aside from the dilute limit, there is no a priori reason to expect

that the physics of its ground states should match that of the continuum. Build-

ing on previous studies [108, 43, 49], a central result of this dissertation is that

the two systems share profound similarities; the (qualitative) gaps, quantized

conductivities and the statistics of their anyonic excitations are the same. This

relationship can be demonstrated analytically through the appropriate choice of

hopping amplitudes J jk. The direct equivalence of the lattice and the continuum

is demonstrated in chapter 2, and the following chapters 3 and 4 build on that

result to study the exchange statistics and thermodynamic properties of this sys-

tem. To prepare for these theoretical discussions, I will now detail some of the

physical systems described by (1.11), which represent the best opportunities to

realize bosonic quantum Hall physics in the real world.

1.2 Artificial Gauge Fields in Cold Atoms

A particularly promising system to realize a bosonic QHE is trapped, cold, elec-

trically neutral atoms.[10] At first glance, this is an extremely counterintuitive

statement; neutral atoms do not experience a magnetic field except through the

Zeeman interaction and shifts in the hyperfine levels, and the traditional def-

inition of the QHE is a quantized, transverse conductivity, something which
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is difficult or impossible to measure in a trapped cloud. Nonetheless, it is quite

likely that QHE physics will be observed in cold atoms in the near future. While

the loss of the simplest measurement (conductivity) is indeed an obstacle, other

observational methods unique to cold atoms (time of flight and in situ density

imaging) can be employed to study these systems in ways which are impossible

in a 2DEG. The fourth chapter of this dissertation is devoted to a study of pre-

cisely this system, and shows how density imaging of trapped quantum Hall

bosons can reveal a staircase of incompressible quantum Hall states, the signa-

tures of which persist at temperatures high enough to be reached in the next

generation of experiments.

The key to realizing a quantum Hall state in cold atoms is the generation

of an artificial gauge field, a set of terms in the system’s Hamiltonian which

are structurally the same as the magnetic vector potential in (1.1). There are

a number of ways to do this (see [25] for a review), and I will describe two

in some detail here. The first, rotation [21], is the simplest to understand, but

for technical reasons it is unlikely to scale to the field strengths necessary to

reach the quantum Hall regime. The second, light assisted hopping in an optical

lattice, is more exotic and inapplicable to the continuum system, but has already

been used to generate extremely strong staggered effective magnetic fields [4],

and can readily be generalized to the uniform fields considered in this work.

1.2.1 Rotation

We consider the Hamiltonian of a particle in an anisotropic Harmonic trap,

H =
p2

2m
+

1
2

mω2
t

(
x2
+ y2

)
+

1
2

mω2
z z2. (1.13)
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We let ωz ≫ ωt, so that the confinement is much stronger along the z axis. In

this limit, the Hamiltonian is approximately 2d, and we can ignore motion in

z. We now imagine that a perturbation is introduced to set the particle rotating

around the z axis, such as an elliptical deformation of the trap potential which

rotates in the xy plane with angular frequency Ω. We transform to the rotating

frame, and obtain a new Hamiltonian:

H →
p2

2m
+

1
2

mω2
t

(
x2
+ y2

)
−Ωr × p. (1.14)

We now observe that we can pull the r × p term into the Hamiltonian’s kinetic

term:

H →
(
p − mΩ̂z × r

)2

2m
+

1
2

m
(
ω2

t −Ω2
) (

x2
+ y2

)
. (1.15)

This is nothing more than (1.1) with qA = mΩ {y,−x, 0} and an additional har-

monic confinement term; the Hamiltonian of a harmonically trapped particle in

a constant magnetic field (in z) of strength B = 2mΩ/q. Rotating atomic gases,

both with and without optical lattices [100, 136, 120, 21] have been extremely

successful in studying vortices and vortex lattice physics, but the (relatively)

slow rotation in these experiments corresponds to ν ∼ 100, two orders of mag-

nitude higher than the quantum Hall regime. Previous calculations have sug-

gested that the transition from vortex lattice to quantum Hall physics occurs

around ν = 6 [21], but the details of this transition are not well-understood.

The great drawback to rotation is that it turns static disorder sources into

dynamic ones and can lead to rapid heating and particle loss. As described ear-

lier in the discussion of quasiholes, quantum Hall states are surprisingly robust

against static disorder, merely accumulating pinned quasiparticles or quasi-

holes at potential minima and maxima, Further, since the magnetic length is

very short– the typical cloud would be hundreds of magnetic lengths wide in
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the LLL regime– smooth inhomogeneous potentials should simply lead an in-

homogeneous distribution of quantum Hall puddles across the trap, which can

be readily distinguished from each other through in situ imaging.

In the rotating system, however, any inhomogeneities in the optical potential

which do not co-rotate with the rest of the cloud will become time-dependent

potentials in the rotating frame, and thus will cause heating, scattering and par-

ticle losses. These scattering rates should scale with the rotation frequency, and

thus ensuring that they are small compared to the Landau level spacing (which

is also proportional to ω) requires fine control over the magnetic and optical

potentials. While this is primarily an engineering problem and not a theoreti-

cal one, it is difficult enough that the strongly correlated LLL regime [104] has

only been reached for extremely small clouds (< 10particles) [36], where signa-

tures of quantum Hall physics are murkier and far less conclusive than in the

many-body limit.

1.2.2 Light-Assisted Hopping

An exciting alternative to rotation is to use 2-photon Raman transitions to create

an effective gauge field in a tilted optical lattice. We begin with an anisotropic

cubic lattice, with the barriers along the z direction strong enough that transi-

tions between layers are essentially forbidden and the system can be treated as a

set of independent planes. We then tune the optical potential to add a potential

gradient to the system along the x direction, so that the atoms experience a po-

sition dependent chemical potential µ→ µ+V xi/a, where a is the lattice spacing

and xi are positions in the lattice. There is no potential gradient along the y di-
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rection. If V is large compared to the hopping parameter J, energy conservation

will freeze the atoms into lines of constant xi, reducing the lattice to an array of

1d tubes.

To restore x-direction hopping and introduce an artificial gauge field, we

now add two lasers as shown schematically in figure 1.1. These lasers, at mo-

menta and frequencies {k1, ω1} and {k2, ω2}, are tuned so that ω1 and ω2 are near

a resonance to drive a transition into one of the atom’s hyperfine states. In the

process shown in figure 1.1, the atom first absorbs a photon from laser 1 and

then emits a photon from laser 2, acquiring a net energy ω1 − ω2 and net mo-

mentum k1 − k2. If ω1 −ω2 = V , the atom can hop from row xi to row xi + 1, thus

freeing the particles to move along the x direction. With each hop, however, the

particle has gained a momentum boost of k1 − k2, and if the lasers are tilted so

that k1 − k2 = kl̂y, the canonical momentum p of the hopping particle is shifted

by

p→ p + kl
x
a

ŷ. (1.16)

With the lasers turned on, the scalar potential tilt vanishes from the particle’s

Hamiltonian (the energy gained or lost to photons in the hopping process can-

cels it out), replaced instead by a vector potential equivalent to a constant mag-

netic field. The magnitude of the x direction hopping depends on the details of

the optical potential and the Rabi frequencies of the atom-laser coupling. This

technique has already been successful [4] in realizing strong staggered mag-

netic fields (using a staggered optical potential V (x) = V (−1)xi/a), and I expect

uniform fields to be obtained in the near future.
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Figure 1.1: Schematic picture of light-assisted hopping as a source of an
artificial vector potential. Through a 2-photon Raman process
(black arrows), a pair of lasers promote particles to an excited
hyperfine state |e〉 and then back down to the ground state with
a net energy and momentum boost of ±V and ±kl. This allows
the particle to hop along x, and due to the energetic gain and
loss from the Raman process, the tilt vanishes in the low-energy
Hamiltonian. Since the momentum boost along y depends on
x, the Raman process acts as an artificial magnetic field on the
neutral atoms in the lattice. For visual clarity, the sinusoidal
variation of the lattice potential along y is not shown.

1.3 Superconducting Device Arrays

An alternative set of systems which could mimic the physics of quantum Hall

bosons are arrays of superconducting devices. Unlike cold atoms, only lattice

quantum Hall systems are possible using superconductors, since the Meissner

effect guarantees that bulk superconducting systems will expel magnetic flux

and the Cooper pairs will not experience an external magnetic field until super-

conductivity is disrupted at the critical field Hc. With that restriction in mind,
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multiple candidate devices remain for simulating the Bose Hubbard Hamilto-

nian (1.11) in an effective magnetic field. After all, formally any set of coupled

2-level systems can be reduced to (1.11) in the U → ∞ limit, and provided that

the phase factors φ jk can be introduced, quantum Hall physics can be realized in

these systems. Engineering these phase factors, however, is a subtle and chal-

lenging problem. I will now detail two superconducting device arrays which

could describe a bosonic quantum Hall system.

1.3.1 Charge Qubit Lattice

First proposed in this context in 1994 [18, 110], the charge qubit lattice is an ar-

ray of tiny superconducting grains placed on an insulating substrate, coupled

to their neighbors through Josephson contacts so that Cooper pairs can tunnel

from grain to grain [28, 131]. Since the regions between the grains are insulat-

ing, they do not screen magnetic flux and tunneling Cooper pairs experience

an applied magnetic field through the Peierls phases φ jk described previously.

If the grains are small enough (∼ 0.1µm in diameter or smaller, corresponding

to a net capacitance of 10−15F or less), the energetic cost of placing additional

Cooper pairs on a grain becomes substantial, and the Hamiltonian is given by a

Bose Hubbard model,

H = −
EJ

2

∑

jk

(
a†jake

iφ jk + H.C.
)
+ 4EC

∑

i

(ni − Oi)
2 . (1.17)

Here, EJ is the Josephson energy which couples the grains through Cooper pair

tunneling, the charging energy EC = e2/2C, where C is the self-capacitance of a

grain, and Oi is a normalized charge offset term. Historically, it was precisely

this system (without the magnetic field) which the Bose Hubbard model was
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created to describe [30]. The offsets Oi represent the sum of intrinsic effects

(trapped charges on the insulating substrate, deformations in the grains, and

charged impurities) and externally applied potentials.

There are a number of potential advantages to the charge qubit lattice. First,

the energy scales EJ and EC can be large, with EJ taking values up to 2K and

EC ∼ 10K or higher. Using the gaps calculated in chapter 4, this leads to many-

body quantum Hall gaps of around 1K in the clean limit at ν = 1/2 or 1, larger

than the gap at ν = 5/2 in the best 2DEG systems [82]. Further, assuming a

1.5µm spacing between grains, the magnetic field required for a flux density of

Φ0/4 per plaquette is 220µT, far smaller than the 2 − 10T fields used in 2DEG

experiments. Finally, the discrete nature of the grains makes it possible to in-

dependently tune the offset potential Oi at every site, offering unprecedented

control for the braiding and manipulation of quasiholes.

These advantages come with a serious drawback, however, in the form of

charge noise. Prior to tuning, the offsets Oi will take random values between -

1/2 and 1/2 at every site, since even with perfect fabrication methods there will

always be stray charges on the substrate and local chemical potential shifts in

the superconducting grains. While the classical fluctuations in Oi are slow (five

or more orders of magnitude slower than the hopping frequency [20]), they are

large, and so in absence of local tuning the lattice will be extremely disordered.

Since the strength of this disorder scales with EC, quantum Hall states will never

form unless the Oi are rapidly and individually tuned to a uniform value when

the system is initialized. The local measuring and tuning of hundreds of gates at

mK temperatures is an extremely challenging technical problem, making it un-

likely that bosonic quantum Hall states will be realized in charge qubit lattices
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Figure 1.2: Unit cell for a charge qubit array. The superconducting grains
(red) are small enough that their charging energy EC is larger
than the Josephson coupling energies EJ and E′J. If this is the
case, fluctuations in the Cooper pair density ni are strongly sup-
pressed, and occupation at each site is restricted to n and n + 1
Cooper pairs. Since the states created and annihilated by a†i
and ai are real Cooper pairs, the system’s conductivity can be
measured directly through standard methods.

in the near term.
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1.3.2 Flux Qubits

An alternative to the charge qubit lattice is to use a lattice of flux qubits [79, 86],

superconducting rings interrupted by three Josephson junctions whose eigen-

states are distributions of circulating currents in the presence of a frustrating

magnetic field. These circulating currents have a nonzero magnetic dipole mo-

ment, and through physics analogous to the Aharonov-Casher effect (the dual

of the Aharonov-Bohm effect for a magnetic dipole moving in an electric field)

[3], they can hop from ring to ring with phase factors that mimic a nontrivial

gauge field. The use of flux qubits in this manner is my own idea and new to

this work, and forms the fifth chapter of the dissertation. Flux qubits are not

sensitive to charge offsets, eliminating the charge noise problem described in

the previous paragraphs. I believe that this method offers a real chance of ro-

bustly simulating bosonic quantum Hall physics with current technology, and I

provide detailed calculations to support this claim later in this work.

1.4 Outline of this Dissertation

This dissertation is organized into five further chapters. The first, chapter 2,

reproduces my paper “Parent Hamiltonian for the Quantum Hall States in a

Lattice” [60], which shows that appropriately choosing the hopping matrix el-

ements J jk in a Bose Hubbard model can exactly reproduce the lowest Landau

level and degeneracy of the continuum problem, providing a direct link be-

tween the two systems. The next chapter reproduces my paper “Non Abelian

Braiding of Lattice Bosons” [59], where I built on the lattice LLL result to show

that the braiding of anyons with realistic potentials could be simulated numer-
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ically to determine the anyonic statistics of the quantum Hall states in that

model. Following that, I include a new paper, “Equation of State for Quan-

tum Hall Bosons in a Lattice” where I calculate the gaps and robustness of the

various FQH plateaus in lattice bosons and provide an outlook for observing

them in cold atoms experiments. This paper is currently in preparation for

publication. In chapter 5, “A Vector Potential for Flux Qubits,” I propose an

entirely new circuit architecture by which flux qubits– which are insensitive to

charge noise and the most robust qubit currently realized– could act like a Bose

Hubbard model in a nontrivial gauge field. Finally, in the conclusion, I summa-

rize my research and speculate about future directions and topological quantum

computing.
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CHAPTER 2

PARENT HAMILTONIAN FOR THE QUANTUM HALL STATES IN A

LATTICE

This work was done in collaboration with Erich Mueller, and was published

in Physical Review Letters. [60]

The interplay between periodic potentials and magnetic fields is an impor-

tant topic [47, 108, 89, 78, 21]. In the tight binding limit, the lattice broadens the

Landau levels into a series of finite bandwidth “Hofstadter bands” which can

be represented as a self-similar fractal. Since the original band-gaps persist, the

integer quantum Hall effects are robust against the lattice. The split degener-

acy, however, invalidates many of the analytic arguments used to explain the

fractional quantum Hall effect [66, 44, 92, 141], and questions remain about the

nature of the interacting system. Here, by adding longer range hoppings to a

Hubbard model, we produce a Hamiltonian for which several Hofstadter bands

coalesce into a single degenerate manifold. Adding local repulsion between the

particles, we show that at appropriate filling factors the Laughlin wavefunction

becomes an exact ground-state.

In a uniform magnetic field, the most general hopping Hamiltonian on a

two-dimensional square lattice is

H =
∑

j,k

J
(
z j, zk

)
a†jak; J

(
z j, zk

)
= W(z)e(π/2)

(
z jz∗−z∗jz

)
φ, (2.1)

where the position of the j’th lattice site is written in complex notation as

z j = x j + iy j, and the complex displacement between the two sites is z = zk − z j.

The operators a j annihilate an atom at site j. The phase factor
(
z jz∗ − z∗jz

)
φ =

2i
(
x jy − y jx

)
φ, corresponds to a uniform magnetic field in the symmetric gauge,
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with flux φ through each plaquette. This flux is only defined modulo 1, and

having a full flux quantum through each plaquette is gauge equivalent to no

flux. We will explicitly assume 0 ≤ φ ≤ 1, and take φ = p/q to be the ratio of two

relatively prime integers. If one chooses W to be −t for nearest neighbors and

zero otherwise, one reproduces the Hofstadter spectrum [47]. We show that if

instead we choose

W(z) = t ×G (z) e−
π
2[(1−φ)|z|2] (2.2)

G (z) ≡ (−1)x+y+xy ,

the lowest p Hofstadter bands collapses to a single fully degenerate Landau

level. Although we work in the symmetric gauge A = (B/2) (xŷ − yx̂), con-

verting our results to other gauges is trivial: under a gauge transformation

A(r) → A(r) + ∇Λ(r), the field operator transforms as c j → c jeiΛ(rj). The flux is

measured in units of φ0 = h/e, where h is Planck’s constant, and e is the electric

charge. Our derivation of this Hamiltonian is similar to one used by Laugh-

lin [67] and subsequently corrected/extended in [103, 123]. The paradigm of

creating a parent Hamiltonian for which a desired quantum state is an exact

eigenstate has been fruitful in a number of other spin models [6, 2, 139]. We will

work in units where t = 1.

Our model is relevant to many broader studies of quantum Hall physics. The

analytic nature of our proof expands our understanding of quantum Hall eigen-

states, and since we have defined a lattice model with the same ground state

structure as the continuum problem, our theory could prove to be a valuable

starting point for computational studies of the quantum Hall systems. Further,

it is likely [78] that interesting Quantum Hall ground states may exist on the

lattice that have no direct continuum analog, and the analytic lowest Landau
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level (LLL) of our model should make it much easier to search for them.

The most promising experimental realization of our model is in optical lat-

tices [10]. Optical lattice experiments can study both bosonic and fermionic

quantum Hall states, and allow us in principle to study much larger fluxes (such

as φ = 1/3 or more) than can be achieved with real magnetic fields. The gauge

potential in the optical lattice system can be created in a number of ways: time-

varying hopping elements [108], lattices with multiple sets of minima [81], co-

herent Raman scattering [109] and rotation [43, 100, 120, 136, 21, 71]. Further, op-

tical lattice systems allow us to directly tune the hopping amplitudes between

nearby sites. Long range hopping is difficult to arrange, but J falls off as a

Gaussian, and in the limit of small φ it suffices to include only nearest and next-

nearest neighbor hopping. The ratio of the nearest and next-nearest neighbor

hopping matrix elements can be controlled in an experiment by adjusting the

shapes of the barriers between those sites. One practical scheme would involve

adding an additional array of shallow wells displaced by half a lattice spacing in

both the x and y directions. Integrating out these shallow sites will renormalize

the nearest and next-nearest neighbor hoppings. A second scheme would be to

divide the original lattice into two sublattices. Separating the sublattices in the

z-direction will attenuate the nearest neighbor tunelling while leaving the next-

nearest neighbor matrix element largely unchanged. Figure 2.1 compares the

energies of the single particle eigenstates of Eq. (2.1), using the W in Eq. (2.2), as

well as truncating to only nearest neighbors or next-nearest neighbors. As one

can see, even for φ = 1/3, the next-nearest neighbor hopping already reduces

the bandwidth to 0.1t.
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Not only does this Hamiltonian produce a macroscopically degenerate man-

ifold of single particle ground states, but this manifold is spanned by wavefunc-

tions of the form

ψn

(
z j

)
= 〈 j|ψn〉 = zn

j exp
(
−πφ

2

∣∣∣z j

∣∣∣2
)
, (2.3)

all with energy ǫ = −1. Remarkably, this is the same structure as the continuum

problem, where the LLL is characterized by the same degenerate set of single

particle states. To prove this result, we write

〈 j|H |ψn〉
〈 j|ψn〉

=

∑

z,0

G (z)

(
z j + z

)n

zn
j

e−
π
2 |z|

2−πφz∗jz. (2.4)

We then appeal to the singlet sum rule [91, 67],

k (c) ≡
∑

z

eczG (z) e−
π
2 |z|

2
= 0 ∀c, (2.5)

where the sum is over all z = n+ im with integer n and m. By taking any number

of derivatives with respect to c one finds

∑

z

f (z) G (z) e−
π
2 |z|

2
= 0, (2.6)

for any entire function f (z) that diverges sufficiently slowly as |z| → ∞ 1. Since

we do not include the z = 0 term in Eq. (2.4), one immediately finds that the right

hand side is simply -1, proving that the LLL wavefunctions (2.3) are degenerate

eigenstates. No analogous argument works for the higher Landau level wave-

functions, which involve powers of both z∗ and z.

Given that the wavefunctions in (2.3) are identical to those of the continuum

problem, the total number of degenerate states per unit area is the same as in

1If f diverges faster than eπ|z|
2/2/z2, the the sum will not be absolutely convergent; we thus

can’t reorder terms from the Taylor series over n with those from the sum on z, invalidating the
cancellation order by order in z.
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the continuum. In our units, where the lattice spacing is unity, this results in

φNs LLL wavefunctions in a region containing Ns lattice sites. Thus φ is the

fraction of all single particle states which reside in the LLL. Taking φ = p/q,

the standard Hoffstadter problem yeilds q distinct bands. Thus, as we confirm

numerically, our LLL must be made from the lowest p of these. This p-fold

collapse is consistent with the relationship between the Chern numbers of the

Hofstadter bands, and that of the LLL [64].

For φ > 1/2 it is natural to also consider the Hamiltonian formed if one

replaces φ in Eq. (2) with 1 − φ and leaves equation (1) unchanged. Due to

the periodicity in φ of lattice models, this gives a Hamiltonian with the same

absolute flux per plaquette, however it is clearly a distinct Hamiltonian, with

shorter range hopping. This alternative Hamiltonian yields states analogous to

(2.3), but with z replaced by z∗, and a degeneracy of (1 − φ)Ns in a region of Ns

lattice sites.

The massive ground state degeneracy of our system can be lifted by interac-

tions. Since our model reproduces the continuum lowest Landau level, we can

simply use those results. On-site repulsion in the lattice is equivalent to point

interactions in the continuum. Consider for example the interacting Hamilto-

nian

H =
∑

j,k,σ

J
(
z j, zk

)
a†jσakσ +

U
2

∑

j,σ

a†jσa†jσa jσa jσ, (2.7)

Any LLL wavefunction which vanishes when two particles coincide is a ground

state of this Hamiltonian. Due to the structure of the LLL, there is a maximal

atomic density for which this occurs. For bosons the highest density ground

state is the ν = 1/2 Laughlin state, while for 2-component fermions it is the ferro-

magnetic “111” state. At fixed density, these states are unique up to topological
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Figure 2.1: (Color Online) All single particle eigenvalues for the hopping
Hamiltonian in Eq. (2.1) with φ = 1/3 on a 12× 12 lattice with
periodic boundary conditions. The index n labels eigenvalues
from smallest to largest. The dark blue points use hopping ma-
trix elements given by Eq. (2.2), the light green points are the
same model with only nearest and next nearest neighbor hop-
ping, and the medium red points have only nearest neighbor
hopping (the Hofstadter Hamiltonian). Energies are all mea-
sured in units of t. The blue and green points are nearly in-
distinguishable. The lowest 1/3 of the dark blue points are all
degenerate.

degeneracies. The other Laughlin states and more exotic quantum Hall states

are also ground states if ν ≤ 1/2, however they are not unique if all interactions

are local.

Longer ranged interactions [5, 43], on the other hand, will typically lift the

degeneracy entirely, but we shall not treat them in any detail here. Long range

interactions can be realized in an optical lattice through dipolar gases. Such
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interactions also make analytic results more difficult to obtain. However, since

our model has the same ground state manifold as the continuum problem, any

arguments based on the analytic structure of the LLL states will hold in our

lattice theory.

Our argument is readily extended to a finite system with magneto-periodic

boundary conditions,

ψ (z + nL + imL) = ψ (z) eiπφL(ny−mx). (2.8)

There one replaces the polynomials in Eq. (2.3) with appropriate products of

Gaussians and Jacobi theta functions [45, 1]. One also replaces J(z j, z) in Eq. (2.1)

by its magneto-periodic extension

JL(z j, z) =
∑

R

J(z j, z + R) exp
(
π

2
(z jR

∗ − z∗jR)φ
)
, (2.9)

where the sum is over all R = nL + imL for integer n,m. This finite system is

amenable to numerical calculations. To invoke the singlet sum rule in a periodic

geometry, one must simply merge the sums on z and R into a single sum over all

z , 0. The phase factors from the magnetoperiodicity of ψ (z) and J cancel each

other.

In the finite system with magneto-periodic boundary conditions, one re-

places defines the periodic analog of the Laughlin wavefunction

Ψ ({zn}) = Ψcm×
M∏

k< j

χ
p
jk

M∏

j=1

eπ
pM

2L2

(
z2

j−|z j |2
)

Ψcm =

p∏

i=1

θ1

(
π

L
(Z − Zi)

)
. (2.10)

The center of mass coordinate is Z =
∑

j z j, and χ jk = θ1(π(z j − zk)/L), with θ1(z) =
∑

n(−1)n−1/2 e−π(n+1/2)2 eiz(2n+1). There are p parameters Zi which represent the loca-

tion of the center of mass zeros. In the continuum system there is a symmetry
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which causes the energy to be independent of how these are chosen. The space

of degenerate states is spanned by p orthogonal wavefunctions. In most lattice

models this symmetry is broken, and the degeneracy is lifted. Since Eq. (2.10)

is made up of lowest Landau wavefunctions, in our model the degeneracy per-

sists. In Fig. 2.2 we confirm this degeneracy via an exact diagonalization calcu-

lation for 4 bosons on a 4× 4 lattice with p = 2 and hard-core repulsion. We find

similar results on 3× 3 lattices.

Our results gives some insight into recent calculations of Sorensen et al.

[108, 43]. They investigated the standard Bose-Hubbard model with nearest

neighbor hopping and a uniform magnetic field. Fixing the filling factor at

ν = 1/2, they found that when φ became of order 0.2 the overlap between the ex-

act ground state and the p = 2 Laughlin state (2.10) begins to rapidly decrease.

The characteristic range of hoppings in our model increases with φ – and near

φ = 0.2 the next nearest neighbor matrix element starts to become significant.

One may well ask how fractional quantum Hall physics would manifest

itself in cold atoms. Although most difficult, the most exciting observations

would be ones which investigated the braiding properties of the excitations

[117, 142]. These states also have definite signatures in Bragg spectroscopy [89].

The most robust probe, however, is an analog of the vanishing longitudinal re-

sistance seen in solid state systems – namely the incompressibility of the frac-

tional quantum Hall states [128, 21]. This incompressibility is readily observed

in trapped systems, where the chemical potential (and hence the filling factor)

varies slowly in space. As is caricatured in Fig. 2.3, the equation of state n(µ) has

a series of plateaus corresponding to the filling factor taking on integer fractions.

Within the local density (Thomas-Fermi) approximation, the density profile of
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Figure 2.2: First 100 eigenvalues for 4 particles on a 4 × 4 lattice with pe-
riodic boundary conditions, φ = 1/2, and hard core repulsion.
The two states at ǫ = −4 are Laughlin states (2.10); the degener-
acy stems from the toroidal geometry. There is a distinct energy
gap of 0.566tnn to the lowest excited states, where tnn is the near-
est neighbor hopping amplitude.

the trapped cloud will display these same plateaus. The width of these plateaus

is set by the gap to single particle excitations in the fractional quantum Hall

states. As shown in figure 2.2, in the hard core limit the gap in a 4× 4 lattice at

ν = 1/2 and φ = 1/2 is 0.566 times the nearest-neighbor tunnelling strength tnn.

This should be compared to the bandwidth V ≈ 4tnn. As µ goes from 0 to V the

density goes from zero to one. One therefore expects that the ν = 1/2 plateau

will occupy roughly 1/8 of the cloud. More involved estimates will be given in

chapter 4.
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1− φ/2

φ/2
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Figure 2.3: Schematic plot of 〈n〉 vs. µ, for lattice bosons described by
the model given in Eqs. (2.1,2.2), with hard core interactions
added. The steps correspond to incompressible fractional
quantum Hall states commensurate to ν = 1/2. This structure
will be visible in the density profile of a trapped gas. In the
presence of finite (but large) local repulsion this same structure
will repeat between each of the Mott plateaus. Similar struc-
ture will be seen with Fermions, but with plateaus at fillings
with odd denominators.
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CHAPTER 3

NON-ABELIAN BRAIDING OF LATTICE BOSONS

This work was done with Paul Ginsparg and Erich Mueller, and was pub-

lished in Physical Review Letters. [59]

3.1 Introduction

When two identical quantum mechanical particles exchange places, the wave-

function typically acquires a phase: θ = 0 for bosons, and θ = π for fermions.

Remarkably, there exist 2d systems [66, 44, 92, 141, 134, 133, 103, 123] whose

“anyon” excitations display fractional statistics, with θ , 0, π. Even more remark-

ably, there are models in which exchanging quasiparticles not only produces a

phase, but also rotates the system between degenerate states [80, 82, 41, 94, 95,

12, 83, 32, 107, 35, 69, 39, 102, 62, 61, 24]. Under these circumstances, exchanges

may not commute. Kitaev [61] proposed using such nonabelian quasiparticles

for quantum computation, with qubits constructed from the degenerate states.

Quantum gates are implemented by “braiding” the quasiparticles: using time-

dependent potentials to drag the quasiparticles around one another, switching

their positions. The collective nature of the encoded quantum information pro-

vides protection against various decoherence mechanisms. Here we start from

a microscopic Hamiltonian, and numerically calculate the result of such a braid-

ing experiment. We find that even for surprisingly small systems (4×4 lattices),

this procedure can be used to establish non-abelian statistics, and hence to im-

plement quantum gates.

Explicitly calculating the results of a braiding operation for a realistic mi-
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croscopic Hamiltonian is difficult. Previous studies have mostly focused on the

properties of variational wavefunctions [82, 133, 83, 38, 33, 54, 55, 126, 9, 93, 65,

11]. As in physical experiments, a numerical experiment must contend with

finite size effects, mixing of higher bands, the location of unpinned quasipar-

ticles, and uncertainty about both the exact many-body wavefunction and the

interaction between a quasiparticle and the applied perturbation. Overcoming

these difficulties is well worth the effort, since observing the braiding of two

quasiparticles provides a definitive test of exchange statistics. This numerical

approach complements more indirect experimental approaches, such as observ-

ing shot noise or interference effects in the tunneling of edge states [135].

3.2 Model

We choose a model which is both experimentally relevant, and computationally

tractable: hard-core bosons hopping on a square lattice, with phases on the hop-

ping matrix elements corresponding to a uniform magnetic field. This model

describes Cooper pairs hopping on a Josephson junction array in a magnetic

field [131, 28, 116] when the charging energy is large compared to the hopping

energy. It also describes cold atoms in a deep optical lattice [10] with an artifi-

cial gauge field [109, 71, 136, 21, 72]. Recent developments in cold atom physics

[109] suggest that the fractional quantum Hall regime will be attained in the

near future.

A general Hamiltonian for lattice bosons is

H = −
∑

jk

(
J jkeiφ jka†jak + H.C.

)
+

U2

2

∑

j

a†ja
†
ja ja j (3.1)
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+
U3

6

∑

j

a†ja
†
ja
†
ja ja ja j.

a†k/ak creates/annihilates a boson at complex coordinate zk on a square lattice

with unit lattice spacing. Defining z ≡ z j − zk = x + iy as a complex integer,

iφ jk = −πφ2
(
z jz∗ − z∗jz

)
is the Peierls phase of the B field (with φ the density of flux

quanta per plaquette). The properties of this Hamiltonian depend on the form

of Ji j. The simplest model would just include nearest neighbor hopping [47].

As argued in [60], the fractional quantum Hall states are particularly robust

if we use a specific gaussian hopping, J jk ≡ J (z) = J0G (z) exp
(
−π2 (1− φ) |z|2

)
,

where G (z) = (−1)1+x+y+xy and J0 is a constant. In all but one case (see caption of

table I), we take the hard-core limit of U2 → ∞. We define JNN = J0e−π/4 as the

energy scale of the problem. U3 is an artificial three-body repulsion which we

introduce in some calculations. The magnetic length in this system, lB = 1/
√

2πφ

lattice spacings, is very short for the flux densities studied (lB = 0.56 for φ =

1/2). We showed in [60] that the single-particle spectrum of (3.1) reproduces

the continuum lowest Landau level (LLL) with φL2 degenerate single particle

ground states on an L×L lattice. As explained in [60], the longer range hoppings

can be engineered by appropriately shunting the Josephson junction array, or

by appropriately tailoring the optical lattice potential. For φ . 1/3 it suffices

to include next-nearest-neighbor hopping. Since the lowest Landau level is the

ground state manifold of (3.1), a LLL-projected calculation in the continuum

would give similar results, at the cost of more complexity in the calculation.

We add to Eq. (3.1) a time-dependent potential V j(t) through a Hamiltonian

Hp =
∑

j V j(t)a
†
ja j. At time t = 0, we take V to be zero except on a few sites,

where it is positive. We slowly change V such that V j(T ) = V j(0), but with two

of the potential bumps exchanged. If quasiparticles are pinned to the defects,
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this will exchange them. Experimentally, the potential V j could be engineered

by gates on individual Josephson junctions, or through targeted lasers in an

optical lattice. Such addressability was recently demonstrated in [115]. In our

numerics, we move our bumps by linearly reducing the amplitude of V on one

site, while linearly increasing it on a neighbor.

Under an adiabatic cyclic change of the Hamiltonian, non-degenerate states

will return to themselves with an additional phase factor, while degenerate

states can mix: e−iHT |ψi〉 = e−i
∫

E dt ∑
j Mi j|ψ j〉. Throughout we neglect the

∫
E dt

term, where E(t) is the instantaneous energy at time t. This temporal phase

can be experimentally distinguished from the geometric phase by traversing

the path at different rates. The unitary matrix Mi j is calculated by integrating

the Berry connection:

M = P exp

(
2πi

∮
dλ γ

)
. (3.2)

Here, γi j = i 〈ψi| ∇λ
∣∣∣ψ j

〉
is the Berry connection matrix, the |ψi〉 are a basis of

degenerate states, λ parametrizes the path, and P is the path ordering symbol.

While the Berry connection γ is a gauge-dependent quantity, the matrix M is

physical and gauge invariant (up to joint choice of basis at the start and end

points).

To numerically calculate Eq. (3.2), we use a method described in [90, 98],

breaking the path into many small discrete steps, engineered to maintain the

degeneracies of the spectrum. For each point λ on the path, we diagonalize

H to produce a basis |ψi(λ)〉. This basis is not unique: the phases of |ψi(λ)〉 are

arbitrary, and one can form a new basis by taking arbitrary linear superpositions

of degenerate states. We fix this arbitrariness by choosing
〈
ψi (λ) |ψ j (λ + dλ)

〉
=
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δi j + O
(
dλ2

)
. The Berry matrix is then

Mi j = 〈ψi(λ f )|ψ j(0)〉 . (3.3)

Following [98], we generate the states |ψi(λ + dλ)〉 =
∑

j(A
−1)i j|ψ̃ j(λ + dλ)〉 by first

determining the eigenstates |ψ̃i(λ + dλ)〉 using a generic diagonalization algo-

rithm, and then calculating the overlap matrix Ai j = 〈ψi(λ)|ψ̃ j(λ + dλ)〉. Since A

will be unitary only up to corrections of order dλ, we perform a Gram-Schmidt

orthogonalization at each step.

In Fig. 3.1, we illustrate the initial configurations of the impurities and some

of paths over which we move them. We use relatively small systems: between

3 and 9 particles on lattices of up to 24 sites with periodic boundary conditions;

with the hard core constraint the largest Hilbert spaces studied contained about

50,000 states. While state-of-the art algorithms on high performance comput-

ers would allow us to study larger systems, we find that finite size effects are

already sufficiently small on these modest grids, presumably due to the robust

nature of the topological effects of interest. Our algorithm was implemented in

Mathematica on a desktop computer.

3.3 Results

The results of our braiding calculations are summarized in table I. In all cases,

the applied impurity potentials are strong. We assign each state an effective fill-

ing fraction νeff = N/NLLL , where NLLL is the number of single particle states in

the LLL in the presence of the impurities. In every case studied, for Nimp impu-

rities NLLL = Nφ − Nimp (where Nφ is the number of flux quanta), showing that a

full quasihole (QH) is pinned at each impurity. Each quasihole is a first order
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zero of the many-body wavefunction and binds a single flux quantum. These

full QHs will be supplemented by non-abelian fractional QHs at the appropri-

ate filling fractions, though due to the small sizes of our systems and the nearly

zero amplitude of the wavefunction near impurities, we cannot be certain of

their locations. Our braiding results are consistent with the assumption that

any non-abelian fractional QHs track the locations of the impurities. In the ther-

modynamic limit, νeff → ν. In the table, each unitary braid matrix M is denoted

by a pair of phases (p1, p2), where eiπp1 and eiπp2 are the eigenvalues of M. For

cases with more than 2 impurities, we label the exchange of impurities i and j

(as labeled in Fig. 1) by Ri j.

The simplest case νeff = 1/2 provides an excellent test of the algorithm, since

we know (in the absence of a perturbing potential) that both the ground state

wavefunction, and its quasihole excitations, are given exactly by Laughlin’s

variational ansatz [60]. On the torus, the ground state is twofold degenerate

[45, 87]. Excitations about these two degenerate ground states require overcom-

ing an energy gap ∆ ∼ JNN . The quasiholes are abelian anyons, and the Berry

matrix in the ground state subspace should be the identity times a phase of ±π/2,

depending on the direction of the exchange path [134, 133]. This is consistent

with our numerical studies of the path in Fig. 1(a). Since a complete braid of

one quasihole around another is equivalent to two exchanges, we find a phase

of π for the path 1(c). As expected, when we introduce more impurities, we find

that near νeff = 1/2 all braids commute.

A generic potential splits the two-fold degeneracy of the ground state by a

small energy ǫ. We attribute these splittings to interactions between the quasi-

particles when they are moved close to one another. By optimizing the shapes
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Figure 3.1: (Color online) (a)–(c) Exchange paths used to braid quasipar-
ticles on various lattices. In each path, the impurities (shaded
red) are incrementally moved along the segments (1,2,3...) until
they return to their starting positions, exchanged. The dashed
box represents the periodic lattice boundary. (d)–(i) show the
initial configurations of the impurities for the 3- and 4- impu-
rity braids.

of the potential at each time step, we can make ǫ < 0.02∆ for all points in the

νeff = 1/2 braid. While largely irrelevant for νeff = 1/2, this optimization can

be crucial for producing sensible results near νeff = 1 or 3/2. If the trajectory is

traversed in a time T such that ~/∆ ≪ T ≪ ~/ǫ, these splittings have no physical

effect, and we therefore neglect them when calculating M. The splittings can

be further reduced by using larger systems. Detailed graphs of our optimized

potentials are shown in the supplemental information [59].

The physics near νeff = 1 and 3/2 is richer. At νeff = 1 for U2 small, all particles

are in the lowest Landau level and the ground state ΨG has a large overlap [24]

with the Moore-Read (M-R) Pfaffian state ΨMR [82, 80, 41, 94, 83, 32], a state

with non-Abelian excitations. We typically perform our calculations using hard-

core interactions, for which mixing with excited bands is significant and the

overlap is smaller: |〈ΨMR|ΨG〉| < 0.3. Despite the small overlaps, the ground state

with hard-core interactions is expected to be adiabatically connected to the M-R
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Lattice N Nφ Nimp GFS νeff Braid Path/Phases (all ×π)
Abelian
4× 4 3 8 2 G 1/2 (a) (0.49,0.49), (c) (0.99,0.99)
4× 4 6 8 2 F 1 (a) (0,0.99), (b) (0,1)
4× 4 7 8 2 G 7/6 (b) (0,1)

Non-abelian
6× 4 4 8 4(i) S 1 R12,R34 : (0.28,-0.28)

R24 : (−0.26,−0.75)
R13 : (0.22,−0.22)

4× 4 7 8 3(g) F 7/5 R13,R23: (0.08,0.73)
R12 : (0.08(1),0.76(4))

Ambiguous
4× 4∗ 4 8 4(d) F 1 R12,R13,R24,R34 : (0,1)
4× 4 7 10 4(e) F 7/6 R12,R13,R24,R34 :

(0.25(2),-0.25(2))
5× 4 4 10 4(f) G 2/3 R12,R34 : (-0.75,0.75),
8× 2 6 8 4(h) F 3/2 R12,R34 : (0.32,-0.32)

R23,R14 : (0, 1)
9× 2 9 10 4(j) F 3/2 R34 : (0.69,-0.69)

Table 3.1: The results of our numerical braiding studies. Here, N is the to-
tal particle number, Nφ is the total number of flux quanta, and
Nimp impurity sites have a repulsive potential applied. “GFS”
refers to whether the degenerate pair of eigenstates are the
ground (G), first excited (F) or second excited (S) states. The
braids are each characterized by a unitary matrix with eigen-
values eiπp1, eiπp2 → (p1, p2). The exchange paths are shown in
Fig. 1, with Ri j denoting the exchange of impurities i and j. The
algebras in the non-abelian cases approximate those described
in the text [38, 50]; cases labeled as ambiguous contain non-
commuting paths but the transformations associated with these
paths depended on the details of the path and/or did not match
the analytical predictions. Due to finite size splitting, not all
paths were accessible on all lattices; only paths which led to a
sensible braid and which were stable against small changes in
the impurity strength V j are quoted here. Hard core interactions
(U2 = ∞) were used in all cases except 4×4∗, where we also used
(U2 = 0,U3 = ∞). These two interactions gave nearly identical
results.
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state, and should share topological invariants such as exchange statistics. The

M-R state is the exact ground state [41] of a Hamiltonian with repulsive three

body interactions (U2 = 0, U3 > 0). As we expand on below, we find excellent

agreement between calculations using the two- and three-body interactions.

The M-R state is gapped and has two types of fundamental vortex excita-

tions. In addition to the full QHs described earlier, the M-R state has half-

quasihole (HQH) excitations, which bind half a flux quantum, partially exclude

particles from their location, and are non-abelian Ising anyons [82]. Wavefunc-

tions of the M-R type with 2n HQHs are 2n−1-fold degenerate [83] in the limit

that all the HQHs are far apart. Given our strong impurity potentials (V j ≥ JNN),

we expect each repulsive impurity to bind a full QH and a half quantum vortex.

Exchanging two HQHs performs a π/2 rotation within the degenerate subspace,

and the rotations produced by exchanging different pairs of HQHs do not gen-

erally commute. Up to abelian phases, for four HQHs there is a basis [53, 16, 33]

in which the braid matrices take the form

R12 = R34 = e−i π4σy , R13 = R24 = e−i π4σx . (3.4)

To estimate the overlap of the unitary transformations which result from

our braids with the predictions of the analytical theories of Bose quantum Hall

states, we use the matrix overlap measure (M1, M2) ≡ |tr(M1M†2)|/2. This quantity

is insensitive to overall phases or changes to the shared basis of M1 and M2, and

we consider two unitary matrices to be equivalent if |tr(M1M†2)|/2 = 1.

For the case of N = 4,Nφ = 8 and Nimp = 4 on the 6 × 4 lattice (where two

impurities need never be nearest or next-nearest neighbors in a braid), our nu-

merical results are in remarkable agreement with eq. (3.4). Labeling the analyt-

ical predictions by R and the numerical matrices M, we can find a basis where
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(R12, M12) = (R34, M34) = 0.99, (R24, M24) = 0.98and (R13, M13) = 0.97.

When impurities are allowed to approach more closely, however, the nu-

merical results diverge from the analytical predictions, and in many cases, the

exchange of two strong impurities produces a rotation by π. We conjecture that

this represents the exchange of two pairs of HQHs, which either do not sit di-

rectly on the impurities but move with them as they are exchanged, or experi-

ence tunneling events when impurities move too close to one another. For the

case of a 4 × 4 lattice with N = 4, Nφ = 8 and Nimp = 4, we obtained identical

results when considering the ordinary hard-core two-body or a hard core three-

body interaction, where the M-R state is the exact ground state [41]. For N = 7

and Nφ = 10 on the same lattice (Fig. 3.1e), we consistently obtained rotations

by (0.5± 0.03) π, but the matrices which resulted were not straightforwardly re-

lated to the analytical predictions in eq. (3.4), and depended strongly on the

path by which a pair of impurities were exchanged. These results show that

the precise relationship of the non-abelian vortices to the impurities is subtle

[125, 52, 93, 111]. Further, they reveal that the Berry matrices can be strongly

modified for paths whose impurities come close together. Surprisingly, the de-

generacies are not necessarily broken by these close approaches.

Finally, near νeff = 3/2 (fig. 3.1g,h,j), we obtained a result consistent with the

predictions for a Fibonacci anyon theory [50], the effective theory of the Read-

Rezayi state at k = 3 [95]. Previous numerical studies of continuum bosons

in the LLL [24] have found strong evidence for this state, a particularly excit-

ing result since Fibonacci anyons are capable of universal topological quantum

computing. Comparing our numerically derived matrices at (N = 7, Nφ = 8

and Nimp = 3) with the transformations derived by Hormozi et al. [50], we ob-

41



tained (R13, M13) = 0.99 and (R23, M23) = 0.90. However, for the exchange of

impurities 1 and 2, we found two sensible paths (a) and (b); in path (a) impu-

rity 3 was allowed to move during the braid and in (b) it was not. We found

that (R12, M12(a)) = 0.93, but (R12, M12(b)) = 0.69 and (M12(a), M12(b)) = 0.46. As

discussed above, this disagreement is likely due to tunneling events when the

impurities approached as next-nearest neighbors. For the 8×2 and 9×2 lattices,

we obtained rotations of nearly 3π/5 as predicted, but the resulting matrices had

little overlap with those predicted from the Fibonacci anyon theory.

3.4 Summary and Conclusions

In summary, we have numerically studied a realistic model, eq. (3.1), which has

anyon excitations at filling fraction νeff = 1/2, and non-abelian anyons at νeff = 1

and 3/2 analogous to those in the Moore-Read and Read-Rezayi states. These

results suggest adiabatic continuity between the states of our lattice model with

hard-core interactions and those found purely in the LLL [24], to which our

model reduces in the limit of weaker on-site interaction. We have also shown

that surprisingly small lattices can reproduce infinite-system predictions, with-

out resorting to trial wavefunctions. This robustness is likely related to the

topologically protected nature of the states, and is encouraging for future ex-

periments.

The most intriguing implication of our result is in quantum computation. In

recent years, a wealth of theory [82, 16, 13, 33, 38] has shown that the M-R state

of electrons at ν = 5/2 could be used to construct topologically protected quan-

tum memory and quantum computing operations, and has described potential
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implementations. While non-abelian statistics in the ν = 5/2 state have not yet

been confirmed experimentally, the fact that the ν = 1 M-R state and the ν = 5/2

M-R state are in the same universality class implies that the theory for manipu-

lating quasiholes in the ν = 5/2 electron gas can be applied directly to our lattice

boson system. Our ν = 3/2 results are even more exciting since the Read-Rezayi

states can be used to construct a universal set of quantum gates. Implementing

our model in a Josephson junction array would open a new area of physics to

study topological noise protection and non-abelian statistics, since for φ ≤ 1/4

three non-abelian plateaux (ν = 1, 3/2, and 2) could be studied in the same ex-

periment. The ability to individually address any lattice site would provide an

unprecedented ability to manipulate quasiholes [33], potentially creating a truly

universal “quantum loom.”
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CHAPTER 4

EQUATION OF STATE OF QUANTUM HALL BOSONS IN A LATTICE

This work was done in collaboration with Erich Mueller, and is in prepara-

tion for publication.

4.1 Introduction

Recent experimental advances have made the study of exotic quantum Hall

states in bosons increasingly relevant [25]. While the quantum Hall effect

in fermions has been the subject of an enormous body of theoretical and ex-

perimental studies in two dimensional electron gases [92, 141], the bosonic

equivalent has been less studied. The most promising systems for experi-

mentally studying Bose quantum Hall physics include arrays of superconduct-

ing qubits (where two states of the qubit can act the presence or absence of

a hard core boson) [131, 28, 85], “photon lattices” of coupled optical waveg-

uides [42, 127] and neutral cold atoms [10], where an effective magnetic field

may be introduced through rotation [24, 100, 21, 120, 136, 36] or more exotic

means [81, 43, 71, 109, 72, 22, 4, 25]. While experimental challenges (noise

and defects in superconducting arrays [28, 20], weak effective interactions

in waveguides, heating and weak effective fields in cold atoms [10, 21, 77])

have thus far prevented the realization of bosons in the quantum Hall regime

[41, 97, 23, 43, 108, 78, 60, 114, 57, 59], tremendous progress has been made in

recent years and we expect that this physics will be demonstrated in the near

future. Here we study systems of strongly interacting lattice bosons in an effec-

tive gauge field. By explicitly computing the equation of state we demonstrate

how fractional quantum Hall states can be observed in cold atoms through in
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situ density imaging.

We study lattice bosons for a number of reasons. First, lattice bosons display

all of the physics of continuum bosons, as well as additional phenomena not

seen in the continuum [47, 64, 5, 43, 89, 108, 142, 129, 60, 128, 49]. Second, some

of the most promising ideas for creating analogs of magnetic fields in cold atoms

rely on a lattice, where the effective gauge field manifests itself through Pierels-

like phases in the hopping matrix elements. Staggered fields strong enough to

reach the lowest Landau level regime have been already been demonstrated

[4]; effective gauge fields of this magnitude are extremely difficult to produce

in the continuum. Third, the most plausible solid state realizations of bosonic

quantum Hall states are in lattices. Fourth, lattice systems are more amenable to

numerical simulation than continuum systems. They require a smaller compu-

tational basis than the continuum, removing the need for approximations such

as projection into the lowest Landau level. Finally, in a recent work [60] we

showed that adding longer ranged hopping terms to a Bose Hubbard model

can exactly reproduce the continuum lowest Landau level, providing a bridge

between the two systems.

To study these bosons, we numerically diagonalize the full many-body

Hamiltonian on small lattices and average over twisted boundary conditions

to minimize finite size effects. Defining the filling fraction ν to be the ratio

of particle density to flux density, our results show the unambiguous exis-

tence of gapped states at filling fraction ν = 1/2 (corresponding to a Laughlin

state), [43, 108, 60] and at ν = 1 (a paired state with non-Abelian excitations)

[80, 32, 82, 117, 59], as well as additional plateaus at other interesting filling

fractions. The existence of gaps at these filling fractions leads to a staircase of
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incompressible states, which could be observed in an optical lattice experiment

as plateaus in the radial density distribution n (r) [138, 31, 37, 36]. By directly

calculating the gaps and examining the resulting finite-temperature density pro-

files, we can place upper limits on the temperatures at which these effects could

be observed. In addition, some of the filling fractions where we observe gaps

are anomalous, suggesting a rich array of exotic quantum Hall or charge density

wave states in the interacting lattice boson system worthy of further experimen-

tal and theoretical study.

We also study the role of hopping range on the stability of FQH states. We

recently showed that the addition of specially chosen longer-ranged hopping

amplitudes to a lattice model can yeild a massively degenerate single-particle

manifold of ground state wavefunctions which are identical to the lowest Lan-

dal level (LLL) wavefunctions of the continuum limit [60]. In addition to this

Gaussian hopping model, we study models with nearest neighbor (Hofstadter)

and nearest (NN) and next nearest neighbor (NNN) hoppings. In the latter case

we choose the ratio of the hopping matrix elements to coincide with the Gaus-

sian model. We find that the equation of state is very sensitive to this choice

of hopping. In particular, both the next nearest neighbor and Gaussian models

possess significantly more robust fractional quantum Hall (FQH) states, which

are visible at much higher temperatures. Engineering challenges associated

with adding NNN hopping seem to be well worth attempting.

The remainder of this paper is organized as follows. In the next section, we

review the Gaussian hopping model and describe our numerical methods for

calculating the system’s partition function. We then present our results, dis-

cussing the structure of the series of incompressible states and providing an es-
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timate of their gaps and associated observability temperatures. We take care to

illustrate the effect of short- and long-ranged hopping amplitudes on the quan-

tum hall states, and provide an outlook for observing them in future experi-

ments.

4.2 Methods and Hamiltonian

4.2.1 System Hamiltonian

Throughout this work, we study the Bose-Hubbard Hamiltonian

Hu = −
∑

jk

(
J jkeiφ jka†jak + H.C.

)
+

U
2

∑

j

n j

(
n j − 1

)
. (4.1)

Here, j and k denote lattice sites on a two-dimensional square lattice, J jk is a

real hopping amplitude, and U is a local repulsion term. The subscript u in Hu

denotes that this is the uniform system Hamiltonian. We work in the hard core

limit of U → ∞ to reduce the size of our computational basis by forbidding

double occupancy of any lattice sites. The Peirels phase φ jk is best defined by

introducing a complex representation of the sites: z j = x j + iy j, with x j and y j

integers. In the symmetric gauge, the Pierels phases eiφ jk are

iφ jk = −
πφ

2

[
−z jz

∗
k + z∗jzk

]
. (4.2)

This Hamiltonian is an excellent description of atoms in an optical lattice with

an artificial gauge field, and can accurately describe the behavior of Cooper

pairs in a Josephson junction array if U is large compared to J.

To better approximate a larger system, we perform our calculation in

twisted, magnetoperiodic boundary conditions defined by twist angles
{
kx, ky

}
,
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so that

Ψ

(
z j + nLx + imLy

)
=

ei(nkx Lx+mkyLy)+ π2
(
z jR∗−z∗jR

)
φ
Ψ

(
z j

)
, (4.3)

where R = nLx + imLy, when a single particle is translated by one entire lattice

period. For a single particle, all the eigenvalues of (3.1) on an arbitrarily large

lattice may be found by simply diagonalizing the Hamiltonian on a smaller lat-

tice for a sufficiently large number of twist angle pairs. While this equality does

not hold for multiparticle states, twist angle averaging is an (uncontrolled) way

to reduce boundary effects. One imagines that a fraction of the finite size effects

will average to zero for a suitably large number of twist angle pairs. The data

presented here are computed on lattices averaged over twenty five randomly

chosen pairs of
{
kx, ky

}
, always including {0, 0}.

In a previous work, we demonstrated that, on an infinite lattice, if J jk in (3.1)

takes the form

J jk ≡ J
(
z j − zk

)
= J (z) ,

J (z) = J0G (z) exp
(
−π

2
(1− φ) |z|2

)
, (4.4)

G (z) = (−1)1+x+y+xy

(where J0 is a constant energy scale) the lowest φL2 single particle eigenstates

collapse to a single massively degenerate band [91, 67, 60, 40]. This degeneracy

is related to the fact that these states are precisely the exact lowest Landau level

eigenstates of the continuum problem, which in the infinite L limit are

ψn

(
z j

)
=

(
z j

)n
e−

πφ

2 |z j|2. (4.5)

Here, n is an integer with 0 ≤ n ≤ Nφ, where Nφ is the total number of mag-

netic flux quanta in the system. In a finite lattice with magnetoperiodic bound-
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ary conditions, the eigenstates are instead described by the Jacobi elliptic theta

functions [1, 45, 133, 134], and the hopping amplitudes are replaced by their

sum over lattice periods,

J
(
z j, z

)
→

∑

R

J
(
z j, z + R

)
exp

(
π

2

(
z jR
∗ − z∗jR

)
φ

)
. (4.6)

The degeneracy and ground state energy are unchanged. A plot of the distri-

bution of eigenvalues vs φ is shown in fig. 4.1. For any value of φ, the ground

state band gap (defined to be average energetic spacing between the states in

the lowest and first excited Hofstadter bands) is increased by the longer-ranged

hopping terms, an effect that is most pronounced as φ approaches 1/2, where the

Hofstadter spectrum [47] becomes gapless while the Gaussian hopping model’s

gap is large. Since the nearest neighbor hopping value varies with φ in this

model, for the remainder of this work we will express all energy scales in terms

of the nearest neighbor hopping parameter JNN = J0 exp−π2 (1− φ). For exam-

ples of similar lattice models with a nonzero Chern number and a (nearly) flat

ground state band, see [112, 113, 132, 84, 96].

4.2.2 Local Density Approximation

Since the primary focus of this work is on cold atom systems, we need to ac-

count for the fact that real experiments will be performed on clouds held in a

harmonic trap. To implement the trap potential, we add to the uniform system

Hamiltonian Hu a position dependent chemical potential −
∑

j µ jn j. In an optical

lattice, the Hamiltonian becomes

H = Hu +
mω2

t

2

∑

j

n jr2
j . (4.7)
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Figure 4.1: Eigenvalues of the Gaussian hopping model (4.4) as a func-
tion of φ for JNN = t. The energies diverge as φ approaches
1 since the hopping amplitudes become infinite-ranged in this
limit. The lower band is an exactly degenerate LLL and con-
tains φLxLy degenerate states on an Lx × Ly lattice. The excited
bands are qualitatively similar to the fractal bands of the near-
est neighbor (Hofstadter) model, and are analogous to the ex-
cited Landau levels of the continuum problem, albeit without
the exact degeneracy of the continuum Landau levels. The gap
from the lowest Landau level to the first excited band scales
linearly with φ for small φ, but by φ = 1/4 it is approximately
constant, increasing by only ∼ 14% from φ = 1/4 to φ = 1/2.
Beyond φ = 1/2, it increases and eventually diverges as the
hopping becomes infinite ranged.

We shall assume that this potential is slowly varying over the magnetic length

scale, which in units of the lattice spacing a is

lB/a =
1√
2πφ

. (4.8)

Under this constraint we can treat the system in the local density approxima-

tion (LDA), under which the properties of the system near r can be calculated

from the partition function of a uniform system with µ = µ (r). For the fluxes

considered (1/4 ≤ φ ≤ 1/2), the magnetic length is less than a lattice spacing;

note that in relative terms these fluxes are orders of magnitude larger than the

real magnetic flux in a typical 2DEG experiment, when compared to the spac-

ing of the atomic crystal lattice. Corrections to the LDA should scale as powers
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of mω2
t ra/JNN , and for appropriately shallow traps these effects should only be-

come significant at the cloud edges, where the density vanishes and we do not

expect FQH physics.

One important caveat to our study is that we are unable to calculate µ (n)

for arbitrary n, since we cannot diagonalize states with non-integer numbers of

particles. This means, for example, that the plateau for ν = 3/4 seen in the 4× 4

lattice with flux density φ = 1/2 is not present in the density profile computed

for the same flux density on a 5 × 4 lattice, since ν = 3/4 describes a state with

7.5 particles on that lattice. Our calculation may therefore fail to predict states

which would arise in larger systems; however, the large range of lattices and

flux densities studied here will partially compensate for this.

4.2.3 Many-Body States

The central purpose of this work is to investigate the density signatures of the

exotic correlated states which are found at rational filling fractions. In this sec-

tion we review the properties of some of these states. Non-interacting fermions

exhibit a staircase of incompressible states whenever a Landau level is filled

(ν integer); these states are magnetic band insulators with a gap equal to the

Landau level spacing. Non-interacting bosons, on the other hand, cannot fill a

Landau level due to Bose statistics, and simply form a condensate of LLL states

[46] at zero temperature. A gapped state of bosons at any filling fraction must

therefore be driven by interactions and indicates exotic physics. The simplest

such state on a lattice is the Laughlin state [66, 45] at ν = 1/2,

ΨL

({
z j

})
=

∏

i< j

(
zi − z j

)2 ∏

i

e−
πφ

2 |zi |2, (4.9)
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where the zi are complex coordinates on the square lattice. This wavefunction is

the product of Gaussians and a symmetric polynomial (called a Jastrow factor)

which vanishes quadratically as two particles approach each other, and there-

fore minimizes the contact interaction in (3.1). The highest power of z allowed in

a LLL state (4.5) is Nφ − 1, so the wavefunction of the above state with one more

particle added at zN+1 must either allow for double occupancy (Ψ nonvanish-

ing as one or more zi’s approach zN+1) or promote particles into the first excited

band, increasing the energy of the state in either case. This finite energy cost

ensures that the system is gapped at ν = 1/2. The ν = 1/2 state is unique up to

a topological degeneracy dependent on the system’s boundary conditions. For

a system of LLL bosons with contact interactions only, all states with ν < 1/2

are compressible, since they can be written as the product of any symmetric

polynomial of appropriate degree with (4.9), and therefore a large degeneracy

persists. In our Gaussian hopping model the Laughlin state is the exact ground

state, and even for nearest neighbor hopping it is still a good description of the

ground state at ν = 1/2 for low flux densities [43, 108].

More interesting are the states with odd-denominator filling fractions, such

as ν = 1, which are believed to be bosonic analogues of the ν = 5/2 Moore-Read

state in 2DEGs [80, 32, 94, 95, 82]. The Moore-Read state of bosons at ν = 1 is

ΨP f

({
z j

})
= Pf

[
1

zi − z j

]∏

i< j

(
zi − z j

)∏

i

e−
πφ
2 |z|

2
. (4.10)

The additional factor is given by the Pfaffian of an antisymmetric matrix with

entries Mi j =

(
zi − z j

)−1
. It can alternately be written as an antisymmetrized sum

over all the ways the zN particles can be paired.

The Pfaffian wavefunction (4.10) no longer vanishes as any pair of particles

approach each other; however, within the limit of the LLL projection (where ωLL
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is large compared to the product of U with the particle density squared) and

restricted to two-body contact interactions, it is a very good description of the

ground state. We preformed a Monte Carlo evaluation of its interaction energy

for up to N = 64 particles at various particle densities and obtained an average

energy of EP f = 0.08UN at φ = 1/2, a savings of better than a factor of three

compared to an uncorrelated state (note that the Pfaffian wavefunction does

vanish when three or more particles coincide). In the U → ∞ limit, the Pfaffian

wavefunction (4.10) is no longer a good description of the ground state since

it does not screen double occupancy. However, for φ = 1/2, (4.10) has a lower

ground state energy than the numerically calculated U → ∞ ground state of the

Gaussian hopping model for U < 4.5JNN (note that this is approximately equal to

the total bandwidth). Above this value there will be some promotion to higher

bands within the true ground state, although the important physical properties

(including the degeneracy and braid properties of the low-lying excitations) are

unchanged in the large U limit, a fact confirmed by our numerical studies of

impurity braiding [59] and topological entanglement entropy (unpublished).

Finally, in addition to these gapped quantum Hall fluids, which also occur

in the Jain sequence of composite fermion states [97], at the appropriate parti-

cle and flux densities the system can also stabilize charge density wave states,

analogous to the Wigner crystal phase of 2d electrons. These states can have

a ground state energy gap and can be difficult to distinguish from the quan-

tum Hall states through exact diagonalization, since the small size of the lattice

makes it impossible to distinguish long-ranged order from short ranged anti-

ferromagnetic density correlations. For example, we find an anomalously large

gap in the Hofstadter model for ν = 1 on a 6 × 3 lattice with Nφ = 6, which

could indicate a competing charge density wave state, since the CDW would
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be commensurate on this lattice. While beyond the scope of this work, quan-

tum Hall states can be identified through numerical calculation of the system’s

Chern number [108], topological entanglement entropy [63, 68, 29, 144, 70, 26]

or quasiparticle braiding statistics. Further, in a real experiment, the gapped

plateaus may be dozens of sites wide, making it possible to use real-space imag-

ing to extract the long-ranged order parameter of the density wave states.

4.3 Results and Discussion

4.3.1 Equation of State

We computed the equation of state for various flux densities on 4 × 4, 5 × 4

and 6 × 3 lattices with magnetoperiodic boundary conditions. Sample density

profiles are plotted in figures 4.2 and 4.3 as a function of chemical potential µ.

These profiles can be mapped onto in-trap density profiles through the local

density approximation µ→ µ0 − mω2
t r2/2.

Of primary concern are the widths of the plateaus as a function of µ, since

wider plateaus are both easier to resolve in density imaging and more robust

at finite temperature. In fig. 4.4(a,b), we present the scaling of the widths of

ν = 1/2 and ν = 1 plateaus with the flux density φ, where W is the width of the

range in µ at a specific filling fraction across which the compressibility ∂n/∂µ

vanishes in the limit of T → 0. In fig. 4.4(c), we present a scatter plot of the all

plateau widths W derived in our calculations as a function of filling fraction ν.

To be observed in a real experiment, a plateau must be large compared to both

the lattice spacing and the imaging resolution, so the energetic widths plotted
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Figure 4.2: (Color online) The effect of temperature on the equation of
state for a 4 × 4 lattice with 8 fluxes using Gaussian hopping
parameters. The curves for the 4 × 4 lattice were calculated
for the Gaussian hopping model for T = {0.01, 0.05, 0.25} JNN

(blue,purple,gold) and demonstrate the effect of temperature
on the observability of the plateaus in ∂ 〈n〉 /∂µ. While the sig-
natures of the plateaus at T = 0.25JNN are difficult to discern
by eye, traces of the ν = 1/2 plateaus are visible as weak local
minima in ∂n/∂µ.
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Figure 4.3: (Color online) The effect of hopping parameter choices on the
equation of state, demonstrated in a 5 × 4 lattice with 6 fluxes
for T → 0. The three choices of hopping parameters are Gaus-
sian (blue), NN and NNN (purple), and NN only (gold). The
increased plateau width for longer-ranged hopping is clearly
apparent. For larger fluxes (φ ∼ 1/2) additional terms beyond
NNN hopping must be included to match the Gaussian model
results.
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in fig. 4.4 can be used to estimate the requisite shallowness of the trap in order

to observe the quantum Hall plateaus. We caution that, for the system sizes

studied, finite size effects are large and likely dominated by commensurability,

which tended to increase the plateau width relative to incommensurate cases at

similar flux densities.

In the vast majority of cases, longer ranged hopping enhances the plateau

width W compared to the nearest neighbor (Hofstadter) case. While at high

fluxes near φ = 1/2 the full long ranged model must be considered to dramati-

cally increase W, at low flux densities such as φ = 1/3 or φ = 1/4 the next nearest

neighbor term is sufficient to reproduce the results of the exact model to within

a few percent. In these cases, next nearest neighbor hopping increases the gaps

and observability temperatures by up to a factor of 2, which could be the dif-

ference between confirming the existence of incompressible states or not, since

we expect the nearest neighbor hopping term to be on the order of a few nK

in the large U limit. An unweighted average of all particle and flux densities

studied on the 4 × 4, 6 × 3 and 5 × 4 lattices gives Wν=1/2/JNN = {0.79, 0.65, 0.38}

for the Gaussian model, NN and NNN hopping, and the Hofstadter model, re-

spectively. Similarly, Wν=1/JNN = {0.54, 0.45, 0.41} for these choices of hopping

amplitudes. On average, the plateau width at ν = 1/2 increased by 66% with

the addition of next nearest neighbor hopping, whereas the plateau at ν = 1 is

increased by about 10%.

From these plots and calculated plateau widths, we can estimate approxi-

mate temperature scales below which the Bose quantum Hall states can be ob-

served. These states have no local order parameters; rather, they are distin-

guished by topological quantities, such as the existence of anyon excitations or
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Figure 4.4: (Color online) (a,b) Plateau widths vs φ at ν = 1/2 (a) and ν = 1
(b) vs Nφ for various lattice sizes. Blue circles correspond to
the Gaussian hopping model, purple squares to NN and NNN
hopping, and gold diamonds to the Hofstadter model. These
widths are extracted by finding the width in µ for which ∂n/∂µ
vanishes as T → 0. Anomalously large gaps at ν = 1 occured
when the flux was commensurate and could indicate competi-
tion from charge density wave order. Due to the small system
sizes studied, density correlations are insufficient to separate
charge density wave states with long-range order from frac-
tional quantum Hall liquids with short-ranged antiferromag-
netic correlations. Longer ranged hopping increases W in every
case at ν = 1/2 and in most cases at ν = 1. At lower fluxes, the
NNN and Gaussian results were nearly identical. (c) Scatter
plot of all plateaus observed in our calculations, as a function
of ν. Gaps tend to decrease with increasing ν. Most of the filling
fractions shown (such as ν = 3/4 or 5/4) are likely to be abelian
composite fermion states [97]; the states at ν = 1 and 3/2 are
likely to be non-abelian.
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a finite Chern number. There is no finite-temperature phase transition from a

compressible to an incompressible state (and no associated Tc). Instead, as the

temperature is lowered below the excitation gap ∆ the population of excitations

becomes exponentially suppressed, causing a reduction in the compressibility

κ = ∂n/∂µ, which vanishes exponentially for T ≪ ∆. We can therefore identify

FQH plateaus at finite temperature by finding regions where ∂n/∂µ has a local

minimum for n proportional to the flux density by a rational fraction. Note that

it is difficult to determine a criteria for the observability of a plateau, as inho-

mogeneities in the optical potential, incomplete equilibration, finite size effects

beyond the LDA and finite resolution uncertainties in measuring n and ∂n/∂r

are all factors complicating a real measurement, and not accounted for in our

numerical simulations. With that caveat, local minima in ∂n/∂µ are typically

visible until T ∼ W/2 in our study. Plateaus nearest to the particle-hole symme-

try point 〈n〉 = 1/2 are typically more visible relative to their width than ones

closer to 〈n〉 = 0 or 1.

While longer ranged hopping does enhance the stability of the FQH states,

in the absence of the artificial gauge field, the next nearest neighbor hopping

term in a square optical lattice is zero by symmetry since the optical potential

is separable in the x and y directions. In most cases, the gauge field source vio-

lates this separability (for example, in light-assisted hopping setups such as the

one realized by the Bloch group [4], particle tunneling amplitudes are highly

aniostropic before the Raman lasers are turned on), and so we expect that the

artificial gauge field source itself will generate next nearest neighbor hopping

terms. Given an optical potential, the next nearest neighbor tunneling ampli-

tudes can be calculated through a tight-binding model or an analysis of neigh-

boring Wannier functions [10].
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4.3.2 Total Entropy of the Trapped System

In studying trapped cold atomic systems, it is frequently more useful to con-

sider the entropy per particle than the system temperature, which is difficult to

measure [143]. For example, in the method developed by the Harvard group

[7], selective tuning of on-site orbital excitation energies is used to engineer ex-

tremely high fidelity (S ≃ 0.01kB per particle) Mott insulating regions in an opti-

cal lattice of bosons with extremely high fidelity. The system can then be tuned

to experience phase transitions into different states, and if the rates for which the

unit filling constraint is removed and the artificial gauge field is turned on are

sufficiently slow, then the process is approximately adiabatic and the entropy

will only increase at quantum phase transition points, such as the transition

from a gapless superfluid to the Laughlin state at ν = 1/2. By calculating S (T ),

we can obtain an “observability entropy” from the observability temperatures

(T ∼ W/2) described above. Since the total entropy will increase in the transi-

tion from a trapped BEC to the “wedding cake” structure of Mott insulator and

quantum Hall states, the observability entropy provides an upper bound on the

required entropy of the initial BEC to observe the quantum Hall plateaus after

the system has re-equilibrated.

We calculate the entropy S = ∂T
(
kBT logZ

)
as a function of T and local µ,

and then divide by LxLy to obtain an average entropy density per site, just as we

obtained the particle density 〈n〉. We then set µ (r) = µ0−mω2
t r2 and integrate the

calculated S and 〈n〉 over r to obtain the total entropy and total particle num-

ber, the ratio of which is the entropy per particle. We choose µ0 and mω2
t such

that the cloud has a radius of approximately 50 lattice spacings and contains

∼ 4000particles. Example S vs. T curves for various lattice and flux densities
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are plotted in Fig 4.5.

From the average plateau widths described above, we can define an aver-

age target entropy by finding the average entropy per particle S/N for which

T = W/2. For the Gaussian model in the trap potential described above,

〈
S T=W/2

〉
= 0.472kB per particle for observing the ν = 1/2 plateau and 0.415 for

observing the ν = 1 plateau. Similarly, for NN and NNN hopping these en-

tropies are 0.446 and 0.377, and for the Hofstadter model they are both equal to

0.338. These entropies exceed the lowest values of S/N achieved through con-

ventional cooling means (the record to our knowledge being S/N ∼ 0.1kB for

bosons in an optical lattice [77]), though those experiments were preformed in

the weakly interacting regime without an artificial gauge field, which may itself

be a significant heating source [25]. As mentioned earlier, far lower entropies

have been achieved in Mott insulating regions, but absent an extremely difficult

calculation of equilibration dynamics in the strongly interacting regime with an

artificial gauge field, we cannot predict how much entropy will be gained in

the phase transitions from the Mott insulator to the staircase of quantum Hall

states.

Another concern is the equilibration time for the quantum Hall states to

form. If the intrinsic timescale of the system is set by the inverse of the gap,

then assuming JNN = 5nK ≃ 108Hz, letting the gap be ∆ = JNN/2 gives a system

timescale of ∼ 19ms. Given that hold times in the trap are typically at most a few

seconds, incomplete equilibration of the system could be a significant barrier to

observing quantum Hall physics.
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Figure 4.5: (Color online) (a,b) Trap-averaged entropy per particle as a
function of kBT for φ = 3/10 (a, calculated on a 5 × 4 lattice)
and φ = 4/9 (b, calculated on a 6 × 3 lattice). The blue curve
corresponds to the Gaussian hopping model, the purple to NN
and NNN hopping, and the gold to the Hofstadter model. (c)
Radial density (blue), compressibility (∂n/∂µ, purple) and en-
tropy density (gold) as a function of radial coordinate r for the

Gaussian hopping model with µ (r) =
(
3.3− 0.0028r2

)
JNN and

kBT = 0.15JNN. Due to the finite system temperature, ∂n/∂µ
does not vanish, but it does exhibit local minima at the appro-
priate rational filling fractions.
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4.4 Conclusions and Outlook

Using numerical exact diagonalization, we computed the equation of state for

strongly interacting quantum bosons in a lattice in an effective magnetic field.

Our results suggest that incompressible bosonic quantum Hall states can be ob-

served in cold gases through in situ density imaging in the near future. In par-

ticular, the zero temperature width of the plateau in ν = 1/2 Laughlin state is

in the range of W ∼ 0.5 − 1JNN (depending on flux density and choice of hop-

ping parameters), with an excitation gap and associated observability temper-

ature both approximately equal to W/2. Temperatures kBT < JNN have been

reliably achieved in prior experiments on bosons in deep optical lattices, and

while we expect the artificial gauge field to be an additional heating source,

next generation cooling techniques may be able to offset it. Further, our trap-

averaged entropy calculations show that local minima in the compressibility

(which approach incompressibility as the temperature is lowered) can be ob-

served at achievable values of S/N, again assuming that heating from the arti-

ficial gauge field does not dramatically change the system entropy compared

to bosons in an ordinary deep optical lattice. Longer ranged hopping can dra-

matically increase the widths of the quantum Hall plateaus, especially for the

Laughlin state at ν = 1/2, and optical lattice configurations which naturally pro-

duce these hopping terms could make quantum Hall physics much easier to

observe through density imaging.
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CHAPTER 5

A VECTOR POTENTIAL FOR FLUX QUBITS

This work was done in collaboration with Erich Mueller, and is in prepara-

tion for publication.

5.1 Introduction

The realization of a quantum Hall state of bosons– a state of charged, strongly

interacting bosons confined to a 2d plane in a transverse magnetic field– would

be a tremendous development in condensed matter physics. Beyond the aca-

demic interest in such a system and its important differences from the more

familiar fermionic states in 2d electron gases (2DEGs, [66, 92, 141]), previous

studies [24, 43, 108, 21, 78, 49, 114, 57] suggest that quantum Hall bosons can ex-

hibit ground states with various types of abelian and non-abelian anyon statis-

tics. This property makes these systems a candidate for topological quantum

computing, which promises far greater noise tolerance than current approaches

[61, 82].

There are significant technical obstacles to constructing such a system: na-

ture does not provide any obvious candidates for a 2d fluid of charged bosons

in an (unscreened) magnetic field. One promising proposal is to simulate the

magnetic vector potential artificially in neutral cold atoms [25, 10]. However,

there is no obvious way to measure conductivity in cold atoms, so the simplest

and most dramatic signature of quantum Hall physics– quantized transverse

conductance– cannot be directly measured, though other features of quantum

Hall physics, such as the gap, could be observed through other methods. An al-
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ternative scheme is to use lattices of tiny superconducting grains (charge qubits,

[18, 110, 28, 131, 75, 20]) connected through Josephson junctions. Conductivity

can be directly measured in this system and suitably low temperatures can be

reached in a dilution refrigerator, but the random charge noise (which scales lin-

early with the interaction strength) characteristic to these grains would prevent

the quantum Hall regime from being reached without significant local tuning

of the potentials on hundreds or thousands of lattice sites. Other proposals in-

clude superconducting Jaynes-Cummings lattices [85] and “photon lattices” of

coupled optical waveguides [42, 127].

We here propose a new system which avoids many of these obstacles. Our

scheme is to construct a square lattice of “flux qubits”– mesoscopic supercon-

ducting rings interrupted by three Josephson junctions, placed in a magnetic

field [79, 86, 17, 73, 74, 118, 76, 58, 15, 56]– operated in the regime where the

two lowest eigenstates carry distinct nonzero values of the average circulating

current and therefore magnetic flux (henceforth called fluxons). By capacitively

coupling the rings to their neighbors through superconducting transformers,

fluxons can tunnel from site to site, and due to phase accumulation analgous

but not identical to the Aharonov-Casher effect [3], with appropriate voltage

offsets they will mimic the physics of charged particles moving in a magnetic

field. These qubits are operated in a regime where charge noise can be safely

ignored, so they do not require the level of local tuning necessary in a charge

qubit lattice. In addition, the fluxons naturally experience strong local repulsive

interactions, and they can be manipulated with external electromagnetic fields.
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5.2 Three-Junction Flux Qubits

The basic elements of our system are three-junction flux qubits, originally pro-

posed by Mooij et al [79, 86] and widely adopted in the superconducting device

community. The circuit diagram of this type of qubit is shown in figure 5.1.

Adopting the standard notation in the literature, the qubit consists of a ring

interrupted by three Josephson junctions, two with Josephson energy EJ and

junction capacitance C and one with Josephson energy αEJ and capacitance αC.

The ring is placed in an ambient magnetic field which points into the page and

has a magnitude such that the total flux through the ring is fΦ0, whereΦ0 = h/2e

is the magnetic flux quantum. There are capacitances γC and κC connected to

external voltage sources. The capacitances γC represent the capacitive coupling

of the ring to stray charges on the substrate, and since γ ∼ 10−2 in a typical flux

qubit we will neglect them in our calculations. On the other hand, the capaci-

tances κC are not necessarily small compared to C and are connected to a real

constant voltage source VE. The rings are interrupted by shunted transform-

ers M connected to capacitors gC as shown in fig. 5.3, where g ≪ 1. If g and

the self inductance L of the inner ring side of the transformer are both small,

these circuit elements only weakly perturb the single-ring Hamiltonian, and

will only be of importance when considering interactions between neighbor-

ing rings. The transformers could simply be parallel wires as shown in fig. 5.3b.

We assume that the mutual inductance M in the transformer is much larger than

the self-inductances of the wires, and we further assume that the voltage drop

∆V j2 across the interior (ring) side of each transformer is small compared to the

dynamical part of voltage drop across the Josephson junction below it (ignor-

ing the constant shifts VE and V0; this condition works out to ∆V j2 ≪ 2e/C).
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The bottom of the ring is held at constant voltage V0, and we choose it to have

superconducting phase φ = 0. With these conventions, the ring Hamiltonian is:

H =
C
2

[
(V1 − V0)

2
+ (V2 − V0)

2
+ α (V1 − V2)

2 (5.1)

+κ (V1 − VE)2
+ κ (V2 − VE)2

]
+ O (g)

−EJ
[
cos(φ1) + cos(φ2) + α cos(2π f + φ1 − φ2)

]
.

V1 and V2 are the voltages at the segments labeled by (1) and (2) in fig. 5.1.

To quantize the Hamiltonian, we want to write the voltages Vi in terms of the

charges Q1 and Q2, which are the sums of all the charges on the capacitor faces

connected to the associated regions. Explicitly,

Q1 = C (κ (V1 − VE) + α (V1 − V2) + V1 − V0) , (5.2)

Q2 = C (κ (V2 − VE) + α (V2 − V1) + V2 − V0) .

These relations can be inverted to obtain

V1 =
(1+ α + κ) Q1 + αQ2

(1+ 2α + κ) (1+ κ) C
+

V0 + κVE

1+ κ
, (5.3)

V2 =
(1+ α + κ) Q2 + αQ1

(1+ 2α + κ) (1+ κ) C
+

V0 + κVE

1+ κ
.

Inserting these relations into (5.1), the ring Hamiltonian becomes

H =

(1+ α + κ)
(
Q2

1 + Q2
2

)
+ 2αQ1Q2

2(1+ 2α + κ) (1+ κ) C
+ Hc (5.4)

−EJ
[
cos(φ1) + cos(φ2) + α cos(2π f + φ1 − φ2)

]
.

Here, Hc is an irrelevant constant term. Upon quantizing the Hamiltonian, Q j =

(2e/i) ∂/∂φ j and φ j are the charges and phases on regions (1) and (2) of the ring

as indicated in figure 5.3. The qubit is typically operated in the regime where

f ∼ 1/2, α ∼ 3/4 and EJ ≥ 30EC, where EC = e2/2C. We will require f , 1/2 in

order to obtain complex hopping matrix elements.
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EJ,CEJ,C

(1) (2)

αEJ, αC

κC κC

VEVE

V0

γC γC

fΦ0

Figure 5.1: Single flux qubit, without any circuitry to connect it to its
neighbors. The center Josephson junction has its Josephson en-
ergy and capacitance scaled by the parameter α relative to the
equivalent parameters in the other two junctions; α is typically
in the range of 0.6-0.8. The capacitances κC are used to apply
an external voltage VE to generate phases when the rings are
coupled, and κ is O (1). The capacitances γC, on the other hand,
represent the passive coupling to stray charge noise in the en-
vironment, and in a typical flux qubit, γ ∼ 10−2. Since γ ≪ κ we
neglect these terms in our calculations. A magnetic flux fΦ0

penetrates the ring, and if f , 1/2 or zero time-reversal sym-
metry is broken. The phases φ1 and φ2 of the superconducting
regions (1) and (2) are the two degrees of freedom of the qubit,
and the bottom of the ring is chosen to be φ = 0 and held at
voltage V0.

The eigenstates of this Hamiltonian can be computed numerically, and de-

pend strongly on f and α. Examples of these states are plotted in fig. 5.2. For

f near 1/2 and α > 1/2, the potential has two minima at φ1 = −φ2 = ±φ∗, cor-

responding to states with net circulating current. If f , 1/2, the potential is

no longer symmetric along the φ− = (φ1 − φ2) /2 direction, leading to differing

expectation values of φ− between the ground and first excited states. This situa-

tion persists even if f is large enough that the potential no longer has two local
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Figure 5.2: Eigenstates of (5.4), with plots of the potential in the bottom
row. In the top row, |ψ (φ1, φ2)|2 is plotted for the ground state
|0〉 (left) and the first excited state |1〉 (right) for EJ = 40EC, α =

0.75, κ = 1 and f = 0.515. In this regime the potential has
two minima (with different energies, since f , 1/2), and |0〉
and |1〉 are concentrated in them with little overlap. Due to
the large potential barrier separating them, the tunneling ma-
trix elements in this regime are exponentially surpressed with
J jk ∝ exp−c

√
EJ/EC for some c dependent on f and α. In con-

trast, in the middle row the same quantities are plotted for |0〉
and |1〉 when f = 0.54 and the potential has a single (asym-
metric) minimum and the overlap in |ψ (φ1, φ2)|2 between the
wavefunctions is appreciable. J jk is no longer exponentially
suppressed and is 2 orders of magnitude larger in this regime,
but it is difficult measure the state of the qubit by measuring
the current Ic sinφ1. On the bottom row, the potential terms in
(5.4) are plotted for f = 0.515 on the left and f = 0.54 on the
right.
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minima, and while previous studies of flux qubits have all been in the double

minimum regime, for the purposes of this proposal we only require that the two

lowest eigenstates |0〉 and |1〉 have nonzero expectation values in 〈φ−〉, though

neither |0〉 nor |1〉 (the fluxon state) carries a definite circulating current. Exam-

ple ground and first excited state wavefunctions are plotted in fig. 5.2 for the

two regimes. Note that in absolute terms, the difference between the two states

corresponds to a net flux through the loop which is far less than a flux quantum–

typically ∼ 10−3
Φ0 in previous experiments.

Before proceeding, it is useful to state a few facts about the low-lying eigen-

states. We write φ± = (φ1 ± φ2) /2. Throughout this work, we will make frequent

use of the following relations

〈a| φ+ |b〉 = 〈a|
∂

∂φ+
|b〉 = 0, (5.5)

〈a| φ− |b〉 = cab,

〈a| i∂
∂φ−
|b〉 = − 〈b| i∂

∂φ−
|a〉 = dab.

Here a and b are each 0 or 1. The first line of (5.5) holds even if f = 1/2, as

both |0〉 and |1〉 are even about φ+ = 0 and have no net momentum along φ±.

Generally, cab is nonzero if f , 1/2 and dab nonzero if a , b and f , 1/2. These

relations do not always hold for the higher excited states.

We will now consider the many-ring problem, where the rings are coupled

so that a fluxon in a given ring can tunnel to one of the neighboring rings if that

ring is unoccupied. With external voltages applied appropriately, the tunneling

matrix element will pickup a nontrivial phase analogous to the Aharonov-Bohm

phase q
∫

A ·dl that a charged particle experiences when tunneling in a magnetic

field. We will derive this result and then compute the amplitudes and phases of

the hopping matrix elements J jk for realistic device parameters.
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Figure 5.3: Flux qubit array. (a) Schematic circuit diagram. The lattice unit
cell consists of a single superconducting ring interrupted by
three Josephson junctions, with EJ and C labeled in the figure.
The phases of regions in (1) and (2) are taken to be the two de-
grees of freedom in each ring, and each is broken up by a trans-
former M, which is shorted across the top so the voltage at the
coupling capacitors gC is given by Vi − M∂Ii/∂t, where Ii is the
current through the Josephson junction to the bottom half of
the ring. The applied voltages VE alternate down the array. The
rings discussed in the text are labeled j and k. (b) One possible
arrangement of wires which realizes the transformer-capacitor
coupling. This scheme can be generalized to 2d arrays as well,
provided that the voltages and geometries of the contacts are
chosen appropriately. If r ≪ a and r ≪ r′, the mutual induc-

tance M is given by M = (µ0/2π)
(
r −
√

a2 + r2 + a tanh−1 a√
a2+r2

)
.

The phase generated in this arrangement will be ϕ + π as de-
tailed in table 5.1.
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5.3 Many-Ring Hamiltonian

5.3.1 Transformer-Capacitor Coupling

We couple these qubits to each other so that a fluxon (state |1〉) on one qubit can

be transferred to one of its neighbors (in state |0〉) by quantum tunneling. We

will show how the use of superconducting transformers, which pick up volt-

age shifts from the rate of change of the currents flowing through the sides of

each ring, can lead to complex hopping matrix elements if the ends of the trans-

formers are coupled capacitively to each other. The coupling of two qubits us-

ing only capacitors or only inductive elements will lead to real-valued hopping

terms, and it is the subtle interplay of the two types of circuit elements with

offset voltages and the ring geometry that leads to complex hopping.

Consider a pair of flux qubits coupled capacitively to each other as shown

in fig. 5.3a with capacitances gC, with g ≪ 1. We will focus on the left and

center qubits in fig. 5.3a this derivation. We choose C, EJ, f and g so that the

following conditions hold: (i) EJ ≫ EC (so that charge noise from stray off-

set charges on the substrate can be ignored; previous designs have been in the

range 30< EJ/EC < 80), (ii) the relative nonlinearities of the spectrum, character-

ized by |Ei − ω| /ω, where ω = E1−E0 is the fundamental excitation energy, to all

be significantly distinct from unity (this requirement will be formalized below),

and finally (iii) f , 1/2 so that 〈φ1〉 = − 〈φ2〉 is nonzero in both the ground and

excited states. If these requirements are met, we can restrict our attention only

to the lowest lying excited states |1〉 and |0〉. Note that f = 1/2 the Hamiltonian

is symmetric under the interchange of φ1 and φ2, so there will be no average

circulating current. We want the nonlinearities to be far from unity so that pro-
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cesses involving higher excited states, such as one where two |1〉 states combine

to form a |2〉 and a |0〉, are forbidden by energy conservation.

We will now explicitly derive the hopping coupling between the two neigh-

boring rings j and k shown in fig. 5.3a,

J jk ≡
〈
0j1k

∣∣∣ H jk

∣∣∣1j0k

〉
, (5.6)

which is the matrix element for transferring a fluxon from one ring to its neigh-

bor. Region (2) in ring j is connected to region (2) in ring k. Using the equivalent

circuit in fig. 5.3a, the coupling term in the Hamiltonian is

H jk =
gC
2

((
V j2 − V j,ind

)
−

(
Vk2 − Vk,ind

))2
. (5.7)

Here, the induced voltage is the contribution from the transformer, which is

equal to M∂I j2/∂t. We compute this induced voltage using the Josephson current

and phase relations I = Ic sinφ and δV = hφ̇/ (2e):

V j,ind = −
2IcMe

h

(
V j2 − V0

)
cosφ j2. (5.8)

We now plug in (5.3) for V j2, making the assumption that κC
(
V jE − V0

)
≫ 2e. If

this is the case, we can neglect the charge terms Qi and obtain:

V j,ind = −
2IcMeκ
h (1+ κ)

(
V jE − V0

)
cosφ j2 (5.9)

The equation for Vk,ind is identical up to the replacement of φ j2 with φk2 and V jE

with VkE . Using the relations (5.5), H jk (to lowest order in g) becomes

H jk =
8gEC (1+ κ)2

(1+ 2α + κ)2
× (5.10)

(
∂

∂φ j2
− iG j cosφ j2

) (
∂

∂φk2
− iGk cosφk2

)
,

G j = C
Ic Mκ (1+ 2α + κ)

h (1+ κ)

(
V jE − V0

)
.
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We have neglected terms which only act on single rings, since if g is

small they will simply make a small correction to the “kinetic” terms of

the Hamiltonian (5.4). If the wires are arranged as in fig 5.3b, M =

(µ0/2π)
(
r −
√

a2 + r2 + a tanh−1 a√
a2+r2

)
.

We now demonstrate that J jk =

〈
0j1k

∣∣∣ H jk

∣∣∣1j0k

〉
will be complex and have a

phase controlled by V jE and VkE. Since the single-ring Hamiltonian is real, we

can choose |0〉 and |1〉 to be real valued vectors in the phase basis:

|i〉 =
∫

dφ1dφ2ψi (φ1, φ2) |φ1, φ2〉 , (5.11)

where ψi (φ1, φ2) is a real-valued function. Let G j = −Gk = G. We define

H jk ≡
8gEC (1+ κ)2

(1+ 2α + κ)2
Γ2 jΓ2k. (5.12)

The matrix element is then given by:

J jk =
8gEC (1+ κ)2

(1+ 2α + κ)2
〈1| Γ2 j |0〉 〈0|Γ2k |1〉 , (5.13)

=
8gEC

(1+ 2α + κ)2

[
〈1| ∂

∂φ2 j
|0〉 〈0| ∂

∂φ1k
|1〉

+G2 〈1| cosφ2 j |0〉 〈0| cosφ2k |1〉

+iG 〈1|
∂

∂φ2 j
|0〉 〈0| cosφ2k |1〉

−iG 〈0| ∂

∂φ2k
|1〉 〈1| cosφ2 j |0〉

]
.

Since f0 (φ1, φ2) and f1 (φ1, φ2) are real, the first two terms in (5.13) are real and

the last two are purely imaginary. We note that, since the symmetry between

φ1 and φ2 is broken, the imaginary part of (5.13) would change sign if it were

region (1) connected to region (1) instead of region (2) connected to region (2).

Because of this, the phase ϕ for tunneling from the leftmost ring in fig. 5.3a to

the center ring is identical to the phase for tunneling from the center ring to the

rightmost ring. If G j = Gk = 0, the hopping matrix element is real and negative.
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Note also that if we had connected region (2) of ring j to region (1) of ring k

and set Gk = G instead of −G, we would have obtained a phase of ϕ + π, since

〈0| ∂/∂φ1 |1〉 = − 〈0| ∂/∂φ2 |1〉. This allows for tremendous flexibility in setting the

phases of the hopping matrix elements, since even with all offset voltages set to

zero (or with the transformers absent or routed around in the wiring) the signs

of the hopping matrix elements can be controlled simply by the geometry of the

wirings. A list of possible connections and voltages with their resulting phases

is shown in table 5.1.

We have numerically computed the magnitude of J vs. the parameters f

and α in (5.4), with G = 0.8π chosen so that the phase accumulated in tunneling

across one lattice spacing was approximately π/4. The matrix elements were cal-

culated by evaluating (5.13) with g = 0.1. The results of this parameter search are

plotted in fig. 5.4; for EJ = 200GHzhopping parameters up to 2.5GHz are pos-

sible in this approach. The optimum parameter space (given the nonlinearity

requirements described earlier) is α ∼ 3/4 and 0.525< f < 0.55. Note that in this

regime the potential only has a single minimum, and the ground and first ex-

cited state wavefunctions are analogous to deformed versions of the ground and

first excited harmonic oscillator states along φ− (and symmetric about φ+). In

the double minimum regime, the current distributions of the two states are well

separated from each other, but as a consequence J jk is exponentially suppressed

and is 2-3 orders of magnitude lower than in the single minimum regime.
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5.3.2 Interactions

The coupling H jk also generates a nearest neighbor potential interaction be-

tween fluxons. Noting that 〈i| ∂/∂φ1 |i〉 = 0 but 〈i| cosφ1 |i〉 = 〈i| cosφ2 |i〉 , 0,

evaluating 〈lm|H jk |lm〉 for l,m 0 or 1 leads to the nearest neighbor interaction:

Û jk = −
8gEC (1+ κ)2

(1+ 2α + κ)2
G jGk (5.14)

×
〈
n j

∣∣∣ cosφ1

∣∣∣n j

〉
〈nk| cosφ1 |nk〉 .

Here, n j/k = 0 or 1. For f , 1/2, (〈1| cosφ1 |1〉 − 〈0| cosφ1 |0〉) , 0, and since the

signs of G j and Gk depend on the offset voltages V jE and VkE the interaction

can be either attractive or repulsive. This dependence can be used to engineer

position-dependent interactions and on-site potential shifts. The relative magni-

tude of this term compared to J jk depends on f ,G, and α and is plotted in fig. 5.4.

Longer ranged interactions will arise when qubits beyond nearest neighbors are

connected to each other.

It is also possible to tune the nearest neighbor interactions independently

from the hopping term. Consider the arrangement shown in fig. 5.6. Additional

transformers have been inserted below the Josephson junctions; even though the

lower region is held at constant voltage V0, the time-varying current flowing

through the junction to the constant voltage source from the capacitively cou-

pled source VE will create voltage shifts in the transformers. The orientation of

the transformers determines whether the voltage shift from them will be pos-

itive or negative. If the transformers below the Josephson junctions have the

same mutual inductance M and capacitive coupling gC as those above the junc-

tions, the coupling term H′jk will be

H′jk =
4gEC (1+ κ)2

(1+ 2α + κ)2
(5.15)
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Connection
{
G j,Gk

}
Phase

(1)→ (1) {G,−G} ϕ

(2)→ (2) {G,−G} −ϕ
(2)→ (2) {−G,G} ϕ

(1)→ (1) {G,G} 0
(2)→ (2) {G,G} 0
(2)→ (1) {G,−G} π

(2)→ (1) {G,G} ϕ + π

(1)→ (2) {G,G} −ϕ + π

Table 5.1: Hopping phases for different choices of contacts and offset volt-
ages when a fluxon tunnels from ring j to ring k for a given |G|.
The magnitude of each hopping term is identical. G is linearly
proportional to the offset voltage VE. A phase of zero corre-
sponds to a hopping matrix element which is real and negative.

×
(
±G j cosφ1/2, j ∓Gk cosφ1/2,k

)2
.

The relative signs of the two cosine terms depend how the transformers are

arranged; for the arrangement shown in the figure, the matrix element from the

lower-ring couplings will exactly cancel the interaction potential term (5.14) and

alter the hopping matrix element (5.13). Of course, different values of M and g

will shift the magnitude of this potential contribution, allowing these interaction

terms to be tuned independently from the hopping terms.

5.3.3 Constraints on M

The previous derivation required that the voltage shift on the interior (ring) side

of the transformer was small enough to ignore, and could be neglected in the

single-ring Hamiltonian. Recalling that G j = C IcMκ(1+2α+κ)
h(1+κ) V jE (for V0 = 0), we

can set VE by requiring that G ∼ 1. To demonstrate that the voltage shift on

the interior of the ring can be ignored, we need to compare the time derivative
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Figure 5.4: Clockwise from top: ω in GHz, δI = 〈1| sinφ1 |1〉 − 〈0| sinφ1 |0〉
and δφ2 for state |1〉, as functions of α and f . These values were
calculated for EJ = 200GHz, EC = 5GHz and κ = 1. Note that
most of the plot range falls outside of the double minimum
regime in the potential.
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Figure 5.5: Left to right: J jk and the nearest neighbor en-

ergy shift U jk = 8gEC (1+ κ)2 (1+ 2α + κ)−2 G2

× 〈1| cosφ1 |1〉 (〈1| cosφ1 |1〉 − 〈0| cosφ1 |0〉), both in GHz, as
functions of f and α for G = 0.8π, g = 0.1, EJ = 200GHz,
EC = 5GHzand κ = 1. The hopping phase is approximately π/4
for this choice of G.
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VEVE

V0V0

gC

gC

Figure 5.6: Schematic arrangement of additional transformer-capacitor
couplings which cancels the interaction term (5.14) generated
by the primary coupling. The transformers on the lower right
(between region 2 and the constant voltage source V0) side of
each ring are reversed relative to the other transformers in each
ring, flipping the sign of their voltage shifts. Changing the
magnitudes of M or g in the lower couplings, or changing the
arrangement of the transformers, will produce different nearest
neighbor interaction potentials.
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of the current through the capacitor gC, ∂Ilink/∂t to the time derivative of the

current through the ring ∂I j2/∂t. If ∂Ilink/∂t ≪ ∂I j2/∂t, then the induced voltage

in the ring can be ignored, since the voltage shift from the transformer in the

tunneling leads is O (2e/C). We have:

∂I j2/∂t ≃
2Ice

h
VE cosφ j2, (5.16)

∂Ilink/∂t ≃ −gC
2IcMeκ
h (1+ κ)

VE

×
(
cosφ j2 − cosφk2

) (2eVE

h

)2

.

Recall that we also require κCVE ≫ 2e. If we obtain VE by setting G = 1, requiring

that ∂Ilink/∂t ≪ ∂I j2/∂t implies that we want to make the product of IcM large,

but not too large so that κCVE ∼ 2e. This can be achieved for realistic parameter

choices. For example, for Ic = 460nA (corresponding to EJ = 11K), C = 5fF, g =

0.2, α = 0.75, κ = 2 and M = 5×10−11H, κCVE ≃ 60e and ∂I j2/∂t ≃ 20 ∂Ilink/∂t. Note

that the dominant effect of this term is to perturb the single-ring potential. Since

EC ≪ EJ, even if the voltage shift on the inner ring approaches the voltage shift

at the connecting capacitors, the deformation of the single-ring potential term

will still be small.

5.3.4 Charge Noise

In the first section, we noted that stray charges in the environment could pro-

duce voltage shifts in the ring through the capacitances γC. Since γ is two or-

ders of magnitude smaller than κ, we ignored it in calculating the properties

of qubits. In the limit of large EJ/EC, shifts in the qubit energy levels from off-

set charges are exponentially suppressed, so there will be no detectable shifts

in ω. Where these offset charges will manifest themselves, however, is in the
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charge-voltage relations (5.2),

V j → V j +
γ

1+ γ + κ
V jO, (5.17)

where V jO is the voltage from the charge offsets. Inserting this shift into the

qubit Hamiltonian (5.4) is equivalent to a simple gauge transformation of the

single-ring eigenstates and is of no physical importance, but when we insert it

into the coupling term (5.10), it results in a shift of the induced voltage coupling

G j,

G j → C
Ic Mκ (1+ 2α + κ)

h (1+ κ)
(5.18)

×
(
V jE +

γ (1+ κ)
κ (1+ κ + γ)

V jO − V0

)
.

This will lead to a correction to the amplitude and phase of J jk. However, since

we required that κCVE ≫ 2e and γ ≪ κ, the correction will be small and we do

not expect it to play a significant role in the many body physics.

5.3.5 Difference from the Aharonov-Casher Effect

Close examination of (5.13) demonstrates that it is possible to generate nontriv-

ial effective gauge fields for the tunneling fluxons. In the simplest example,

consider a large circle of flux qubits, as shown in fig 5.7a with the top Josephson

junction always oriented to face the outside of the ring. A single fluxon start-

ing at a given point on the circle, tunneling all the way around the circle and

returning to its starting location will accumulate a nonzero phase ϕ, since it will

add a phase ϕ′ with each step to the right and a phase −ϕ′ with each step to the

left. This is analogous to the Aharonov-Casher phase accumulated by a moving

dipole (fig 5.7b), where a magnetic dipole of moment m moving along a closed

path picks up a net phase of ϕAC = (1/~c)
∫

(E ×m) · dl.
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(a)

(b)

q

m

Figure 5.7: Analogy between the artificial vector potential in our flux qubit
arrangement and the Aharonov-Casher effect. In (a) the flux
qubits are arranged with identical applied voltages VE so that
tunneling a fluxon around the ring accumulates a nonzero
phase ϕ. The voltage shifts are equivalent to placing a point
charge in the center of the ring. In (b), a physical dipole m
pointing out of the page encircles a point charge q, also accu-
mulating a phase ϕ in making a complete loop. It is important
to note that, while the hopping phases in (5.13) are structurally
similar to the Aharonov-Casher phases, they do not arise from
that effect, as detailed in the text.
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It is important to note, however, that the phases in (5.13) do not arise from

the Aharonov-Casher effect, as the actual A-C phase that would be accumulated

tunneling a fluxon around the ring in fig 5.7a is zero. This is because, unlike pre-

vious studies of Josephson vortex tunneling [27, 34, 119], the “fluxons” we study

are not exact, quantized bundles of magnetic flux but rather have wavefunctions

describing a spread of different currents with nonzero expectation values. This

means that in any tunneling process, there is no definite exchange of circulat-

ing current between adjacent flux qubits, so it is not sensible to consider the

process as a transfer of a magnetic dipole moment of some quantized magni-

tude. Rather, it should be viewed as a correlated change in the magnitudes of

the dipole moments of a pair of adjacent, immobile dipoles, and since the A-C

term in the Lagrangian is proportional to v · (E ×m), for v = 0 the Lagrangian

is unchanged in this process and the A-C phase is zero. An alternative demon-

stration of this fact is to consider an electric dipole of moment p moving in a

circle in the xy plane around a magnetic dipole of moment m, with both p and m

pointed along z. If a physical dipole is being moved, the Aharonov-Bohm phase

is nonzero since the top and bottom charges experience different vector poten-

tials. However, if we replace the moving dipole with a discrete array of dipole

moments and increase and decrease the electric dipoles to move a net moment

around the ring, the net phase will be zero since the azimuthal component of Aφ

does not enter into the equation and all contributions from motion coupling to

Az will sum to zero.
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5.3.6 Two Dimensional Arrays and the Lowest Landau level

By considering a lattice of these rings and ignoring inaccessible higher excited

states, we arrive at the final hopping Hamiltonian

H = −
∑

jk

∣∣∣J jk

∣∣∣
(
a†jake

iϕ jk + H.C.
)
+

∑

j

ωn j (5.19)

+

∑

jk

U jkn jnk.

A hard-core constraint is enforced. An example configuration which real-

izes a uniform flux per plaquette is shown in fig. 5.8. Previous studies

[47, 64, 5, 43, 89, 108, 142, 129, 60, 128, 49, 59] have shown that the square lattice

version of this Hamiltonian is analogous to the lowest Landau level problem

of strongly interacting bosons, and realizes abelian and non-abelian fractional

ground states at the appropriate fixed densities. We expect that small arrays

should be sufficient to observe quantum Hall physics, since the magnetic length

lB = a/
√
ϕ (where ϕ is the gauge-invariant phase accumulated when a fluxon

circulates around a plaquette) can be less than a lattice spacing1. Connections

between flux qubits beyond nearest neighbors can reproduce the exact lowest

Landau level of the continuum [60, 59] and lead to more robust fractional quan-

tum Hall states, but they may not be necessary to observe the Laughlin state

at ν = 1/2 [43], where the filling fraction ν is the ratio of particle to flux den-

sity. A wide range of other possible quantum spin-1/2 models, both with com-

plex phases and without, could be studied in this device architecture; we find

quantum Hall systems to be the most intriguing, due to the existence of abelian

anyons at ν = 1/2 and the existence (with tuning) of non-abelian anyons at ν = 1

and 3/2 [82, 59], along with other exotic states at different filling fractions.

1We calculate the magnetic length by analogy to the mapping to the lowest Landau level in
[60]; the coefficient of the Gaussian in the Landau level wavefunctions sets lB.
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We caution that obtaining uniform gauge fields of arbitrary magnitude is

very difficult through this method if the magnitudes of the hopping matrix ele-

ments are to be kept constant across the array. When the phase ϕ becomes large,

the shift in the magnitude of J jk is also large, so the capacitances gC must be

finely tuned to balance this effect. However, when the flux per plaquette is a

simple, rational fraction, such as 1/4,1/3, or 1/2 quanta per plaquette, the 2π

periodicity of ϕ afforded by the lattice can be exploited to greatly simplify the

array engineering process. Appropriate use of the relations in table 5.1 can en-

sure that phases for each individual hop are near 0 or π and therefore make only

small shifts in the magnitudes of the hopping matrix elements. In figure 5.8, an

arrangement is shown which produces a uniform flux of 1/4 quanta per plaque-

tte. Similar constructions can be employed for lattices with 1/3 or 1/2 quanta

per plaquette and/or next nearest neighbor hopping.

The fluxon loss rate in our array is favorable for observing quantum Hall

physics. Given J = 2GHz, a (relatively pessimistic) decay rate of the first excited

state Γ1 = 2MHz [140, 20] and a Landau band spacing of ωLLL ≃ 3JNN, we have a

normalized Landau band spacing of 3 × 103
Γ1. This compares favorably to the

equivalent ratio in high-quality GaAs heterostructures [121], where the single-

particle scattering rate is Γ ∼ 10GHzand the Landau level spacing at B = 10T is

26.2THz. This ensures that this loss rate by itself will not prevent quantum Hall

states from forming in our array, provided that a passive loading mechanism

is introduced to balance the decay rate and keep the average fluxon density

constant.

85



−VE

−VE−VE

−VE−VE

−VE

−VE−VE

+VE

+VE+VE

+VE+VE

+VE

+VE

ϕ = −π/4

ϕ = −π/4

ϕ = π/4

ϕ = 3π/4

ϕ = 5π/4
(2)→ (2)(2)→ (2)(2)→ (2)

(2)→ (2)(2)→ (2)(2)→ (2)

(2)→ (2)

(2)→ (2)

(2)→ (2)

(1)→ (1)(1)→ (1)(1)→ (1)

(1)→ (1)(1)→ (1)(1)→ (1)

(1)→ (1)

(1)→ (1)

(1)→ (1)

(2)→ (1)(2)→ (1)

(2)→ (1)(2)→ (1)

Figure 5.8: A 2d array configuration which would lead to a uniform ef-
fective gauge flux of 1/4 quanta per plaquette (a net phase of
π/2 accumulated for encircling a plaquette by moving counter-
clockwise). The links between rings above or below each other
are connected to the inner side of each transformer so pick up
no voltage shifts or complex phases. Here V0 = 0 and the ap-
plied voltage VE alternates appropriately to ensure that a step
to the right yields the phase indicated along the side of each
row. By noting that 〈ψ| expiG sinφ1 |ψ〉 = 〈ψ| exp−iG sinφ2 |ψ〉 and
G ∝ VE, we see that ϕ = π/2 for motion around any plaquette in
this lattice. Next nearest neighbor contacts can also be added,
but are not shown here for simplicity.
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5.4 Conclusion

We have demonstrated a method for realizing a quantum Hall state of bosons

using linked flux qubits in an electric field. With appropriate protocols for

loading the lattice with fluxons (likely through a microwave source) and per-

forming four-terminal measurements of the fluxon conductivity, we expect that

conductivity quantization could be observed on small arrays. The statistics

of anyonic collective modes could be determined through similar methods

[101, 13, 135, 121]. Beyond this, with suitable methods for manipulating vortices

in the fluxon lattice, arrays of flux qubits could be used to construct a topological

non-abelian anyon qubit [61, 50, 82], trading information density for topologi-

cal protection against decoherence. In that sense our proposal is similar to the

surface code and cluster state [122] ideas developed in recent years, and pro-

vides a new potential mechanism for reducing decoherence in superconducting

quantum information devices.
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CHAPTER 6

CONCLUSION

In the previous chapters, I covered many aspects of the problem of strongly

interacting lattice bosons. In chapter 2, I showed that a lattice model with

longer-ranged hopping exactly reproduces the lowest Landau level of the con-

tinuum. Thus all of the elegant mathematics (including, potentially, a conformal

field theory description of the eigenstates) of the continuum can be applied to

this lattice model. In chapter 3, I used realistic impurity potentials to numer-

ically braid anyons on small lattices. This calculation confirmed the anyonic

nature of the lattice quantum Hall states. In chapter 4, I studied the equation of

state of this system and demonstrated that the ground state energy gaps were

large enough to observe bosonic fractional quantum Hall states in near-term ex-

periments. Finally, in chapter 5, I proposed a new architecture for linked super-

conducting qubits with tunable hopping phases and energies. This architecture

avoids the issues of charge noise which have prevented boson quantum Hall

physics from being observed in previously studied Josephson junction arrays.

I will conclude this thesis with some speculations about using lattice bosons to

construct a topological quantum computer, or Quantum Loom.

6.1 Anyon Qubits

6.1.1 Anyon Fusion and Ising Anyons

As described in chapter 3, the topological degeneracies associated with non-

abelian anyons can be used to encode quantum information [61, 101, 33, 38,
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50, 82]. The two filling fractions of interest for these purposes are ν = 1 (Ising

anyons) and ν = 3/2 (probable Fibonacci anyons), with dramatically different

braiding properties and technical concerns. To understand how anyons can be

used to encode quantum information, it is useful to introduce the concepts of

topological charges and fusion rules. The details I will present here are taken

from the review article by Nayak et al [82], which is an excellent introduction to

non-abelian anyons and topological quantum computing.

The low-energy degrees of freedom of a non-abelian anyon system can be ex-

pressed as a finite set of emergent quasiparticles, which we label as the charges

qi. These charges obey four important properties. First, the system contains

a trivial charge 1, which is an unfractionalized abelian particle that describes

the underlying particles which create the anyon system– electrons in the 2DEG,

fluxons in a lattice of flux qubits, and so forth. In our case, this particle will be a

boson. Second, in any process acting on a closed region, the topological charge

is conserved, so that the fusion sum (to be defined shortly) of all the topological

charges in that region is unchanged by any manipulations of the system which

act only on that region. Third, the topological charges obey fusion rules, so

that the combination of two charges qi and q j which results from bringing the

two charges close together will interact with other anyons which are far away

as if it were a single new charge qk. These fusion rules can be expressed by a

set of fusion matrices F, and generically the outcome of the fusion of two non-

abelian anyons depends on nonlocal quantum numbers which can be manipu-

lated through braiding and exchanging anyons. Finally, the fourth requirement

is that in a closed system, the fusion sum of all charges in the system must be

equal to 1. This requirement can be simply understood as reflecting the fact that

the system is made up of real, unfractionalized electrons, colt atoms, Cooper
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pairs or fluxons, and while the emergent degrees of freedom may be fractional,

the nonexistence of fundamental fractional charges means that the sum of all

the emergent quasiparticles must be equivalent to a finite integer number of

real particles.

To understand fusion rules, we will consider the Ising anyon theory, dis-

cussed in chapter 3, which describes the Pfaffian states of bosons at ν = 1 and

fermions at ν = 5/2. In this theory there are three fundamental charges, 1, σ and

ψ. The fusion rules of these charges are

1 + X = X (6.1)

σ + ψ = σ

ψ + ψ = 1

σ + σ = 1 + ψ.

The symbol X stands for any of 1, σ or ψ. The first rule simply states that the

charge 1 acts as the identity particle. The second and third state that the fu-

sion of a ψ with a σ or a ψ with a ψ has a unique outcome, but the fourth rule

states that the fusion of two σ particles can have two possible outcomes, either

a trivial particle 1 or a ψ. The two possible outcomes are referred to as fusion

channels, and as will be explained below, these fusion rules require that the

system contains degeneracies. In the boson quantum Hall state at ν = 1, the

σ particles are half-quasiholes (or their conjugates, half-quasiparticles σ∗) and

carry charge q/2 and flux Φ0/2. The charges and fluxes of the 1 and ψ particles

depend on whether σ’s or σ and σ∗ particles are fused to create them. A pair

of a half quasihole and a half quasiparticle can either annihilate when fused,

leaving nothing, or create a neutral ψ mode.

The minimum degeneracy of a group of non-abelian anyons can be ex-
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pressed entirely in terms of its fusion outcomes, which specify the state up to

Abelian phases. In the example of Ising anyons, 2n σ anyons have a degener-

acy of 2n−1. This can be quickly derived by simply grouping the anyons into n

pairs, noting that each pair can fuse to 1 or ψ. This yields a degeneracy of 2n,

but the requirement that the fusion of all anyons in the system yields 1 gives

the constraint that the number of pairs which fuse to ψ must be even, reducing

the total degeneracy by a factor of 2. Exchanging σ particles between different

pairs will enact rotations within this degenerate subspace. A basis for these ro-

tation matrices R was presented in equation (3.4) in chapter 3, along with some

discussion of their properties. It is easy to imagine a quantum computer be-

ing constructed this way– one pair of anyons for each qubit, with some number

of additional pairs left over to manipulate them– and research to this effect is

ongoing [101, 38, 33, 82, 121, 56].

The state at ν = 1 in bosons is in the same universality class as the Pfaffian

state believed to be the ground state at ν = 5/2 in the 2DEG. If the ν = 5/2 state

of electrons is described by a Pfaffian-like wavefunction, it is a state of matter

supporting non-abelian anyons. Both numerical studies and quasiparticle inter-

ference experiments suggest that this is the case [135, 121]. Up to abelian phases,

the braid properties of the bosonic state at ν = 1 are identical to the theorized

Pfaffian state, so previous proposals for quantum computing based on this state

can be readily generalized to our lattice bosons.

There is one serious drawback to using Ising anyons for topological quan-

tum computing, however, and it is that the braid group realized by Ising anyons

is not large enough to enact any possible unitary transformation, and thus can-

not be used to construct a universal set of 1- an 2-qubit gates. To supplement the
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gates that one can construct from Ising anyons, one must either use operations

which do not have topological protection [16, 88], such as bringing anyons close

together for finite times to enact a phase gate from the breaking of the energetic

degeneracy, or introduce operations which dynamically change the topology of

the system [33]. The former idea would be relatively straightforward to imple-

ment, but introduces many additional sources of decoherence or gate errors,

and the latter is technologically formidable, requiring the fabrication of three

dimensional structures on the nanoscale or exquisite levels of local control of a

time-dependent potential. Both of these obstacles might be surmounted in the

future, but they present a significant challenge to any practical use of a topolog-

ical quantum computer based on Ising anyons.

6.1.2 Fibonacci Anyons

There is another type of non-abelian anyon which is computationally universal,

however: Fibonacci anyons. The fusion rules for these anyons are even simpler

than in the Ising case: the theory contains only two particles, 1 and τ, which fuse

according to:

1 + τ = τ, (6.2)

τ + τ = 1 + τ.

The “k = 3 Read-Rezayi” quantum Hall states of fermions at ν = 12/5 and

bosons at ν = 3/2 may exhibit anyons with these fusion rules, up to a rather

complicated array of abelian phases (the theorized state of the 2DEG at ν = 12/5

has five fundamental charges, but they reduce to 1 and τ when abelian phases

are factored out). As shown by Hormozi et al [50], these phases can be ignored
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for the purposes of actual braiding operations, so these states may support truly

universal topological quantum computing. It is important to note, however, that

there are competing ground states for both of these systems which have other

types of braid statistics [99], and there is no firm experimental evidence to sup-

port or disprove the existence of Fibonacci anyons at ν = 12/5 in experiments.

Further, the gap at ν = 12/5 is far smaller than the gap at ν = 5/2, reducing the

protection against noise and defects.

All that said, let us assume that a k = 3 Read-Rezayi state of bosons at ν = 3/2

can be stabilized in the lattice quantum Hall model I have described in this dis-

sertation. To my mind, this is an eminently reasonable assumption. The k = 3

R-R state is in close proximity to competing orders (shown in the previously

cited studies), and given that the gauge flux density, hopping matrix elements,

and nearest neighbor interactions can all be tuned in a flux qubit array, it is very

likely that there are ranges of parameter space where the ground state is in the

Fibonacci anyon universality class. This state can be used as a universal quan-

tum computer [106, 50, 48, 8], with each qubit constructed from a group of three

impurity-pinned quasiholes. Any possible unitary transformation can be im-

plemented using suitably large numbers of braids, and given that the error rate

of a given quantum gate decreases exponentially as the number of braids in-

creases linearly, the resources required for quantum computing in this state are

tractable. In fact, as shown by Baraban et al [8], the number of Fibonacci anyons

required to factor a 128-bit number using Shor’s algorithm [105] is ∼ 103, com-

pared to 109 Ising anyons. Shor’s algorithm is the most famous and perhaps the

most important example of a problem which is exponentially difficult for a clas-

sical computer but can be solved in polynomial time on a quantum computer,

and the superiority of Fibonacci anyons to Ising anyons in this case is a stark
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demonstration of the potential power of Fibonacci anyon computing.

There is another hidden advantage to the ν = 3/2 R-R state of bosons com-

pared to ν = 1 bosons or ν = 5/2 fermions, one which arises in the measurement

of the qubits. To demonstrate this property, I will review the concept of differ-

ential conductivity measurement, which is likely the best current proposal for

how to measure a non-abelian qubit in a quantum Hall state. After outlining

this method, I will cite the explicit results for ν = 1, 5/2 and 3/2, and show how

the ν = 3/2 state avoids a measurement error which can arise in the other two

cases.

6.1.3 Measuring a Non-Abelian Anyon Qubit

The most promising method for measuring a non-abelian anyon qubit is dif-

ferential conductivity interference [101, 13, 51, 14, 135, 121], pictured for an

array model in figure 6.1. Schemes to measure conductivity interference take

different forms, but they all share the basic feature of one or more quantum

point contacts near which quasiparticles have a small probability of tunnel a

short distance through the bulk to the other end and thus not traversing part of

the sample. This causes the two quasiparticles to experience different unitary

transformations due to encircling different collections quasiparticles and mag-

netic flux in the two paths through the point contacts. The quasiparticles then

interfere when the two paths recombine, changing the observed conductivity.

For abelian quasiparticles, the unitary transformations are pure phases, but for

non-abelian quasiparticles these unitary transformations can take the form of

nontrivial rotations which suppress interference independent of any additional
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Figure 6.1: Schematic configuration for measuring the statistics of the
anyons, adapted from [101, 13, 51, 14, 135, 121]. Particles are
forbidden from hopping to the black sites (either due to the
sites being physically removed from the array or due to large
local repulsive potentials applied at them) and the gray tri-
angles labeled 1-4 are external contacts; in the experiment, a
“voltage” (real voltage for electrons and Cooper pairs, a mag-
netic field shift for fluxons) is applied between contacts 3 and
4 to induce a chiral edge current of quasiparticles from con-
tact 4 to contact 3. The edge quasiparticles are able to tunnel
through the narrow constrictions with amplitudes t1 and t2, and
as a consequence a voltage is induced between contacts 1 and
2, yielding a finite longitudinal conductivity σxx (which would
be zero were the constrictions absent). The sites shaded red
represent the path that ends with tunneling across the t1 con-
striction, the sites shaded blue represent the paths which either
tunnel through t2 or exit the system at contact 3, and the sites
shaded pink represent the path which includes interfering con-
tributions from the red and blue paths. As argued in the text,
one can determine the statistics of the anyons by studying the
response of σxx to changes in the quasiparticle content or flux
density of the region between the two constrictions. If the con-
strictions are removed, the longitudinal conductivity σxx van-
ishes and the quantization of the transverse conductivity σxy

can be observed.
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abelian phases (such as the Aharonov-Bohm phase from encircling magnetic

flux) the quasiparticles may experience. Experiments with two quantum point

contacts in 2DEGs have obtained results consistent with non-abelian statistics,

and one could easily construct an essentially identical arrangement in our array

models1. To make contact with these experiments, we will discuss the two-

contact geometry first, although single-contact “sack” geometries [51] can also

be used to probe the non-abelian character of the quasiparticles.

Consider the pocket geometry in figure 6.1. When the system is in a quantum

Hall phase, the bulk will be gapped and all conductivity is carried by gapless

chiral edge modes. Due to the bulk gap, the longitudinal conductivity σxx is zero

in a large system, but if the two pinch contacts are narrow enough, edge quasi-

particles will acquire a nonzero probability of tunneling through the gapped

bulk (given by two tunneling amplitudes t1 and t2) and yeild a finite σxx. In

the limit of t1 and t2 small (so that backscattering and multiple loops can be ig-

nored), the edge conductivity will be proportional to the sum of two quantum

amplitudes:

σxx (Ψ) ∝ |t1|2 + |t2|2 + 2Re
(
t∗1t2 f (Ψ)

)
. (6.3)

Here, t1 and t2 are the tunneling matrix elements for an edge quasiparticle to

tunnel across contacts 1 or 2 and f (Ψ) is a contribution from the quasiparticle

exchange statistics which is determined by the state Ψ of the fluid inside the

pocket. The coefficients t1 and t2 are non-universal, with amplitudes and rel-

ative phase dependent on the microscopic details of the pocket opening and

presence of local noise in that region. As a consequence t1 and t2 are difficult to

1To reproduce the specific experiment of Willett et al, in which side gates are used to contin-
uously tune the area inside pocket region, one would instead have to tune the magnetic field
density, as the area of the pocket cannot be smoothly varied due to the granularity of the lattice
and the short magnetic length.
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predict a priori. We can, however, calculate f (Ψ), and therefore the number of

possible values of σxx (Ψ) can be predicted and used to determine the statistics

of the quasiparticles. Importantly, t1 and t2 should be insensitive to perturba-

tions which are deep in the bulk system or in the pocket, and so long as stray

quasiparticles can be kept away from the narrow tunneling regions we can re-

gard them as fixed complex numbers. t1 and t2 can be tuned by applying a local

gate to the pinch regions, which would raise or lower the potential barrier and

change the probability of tunneling through the pinch to avoid traversing the

pocket region.

To show howσxx can be used to measure the state of a qubit, we first consider

the Laughlin state at ν = 1/2, whose fundamental quasiparticles are abelian

anyons with charge q/2. The total number of anyons in the system must be

even, but the total number of anyons in the center region is unconstrained. This

means that the anyons which pass through the contact t2 can encircle a different

total charge than those which pass through t1. Each anyon in the bulk is a full

quasihole which binds a single quantum of magnetic flux, so the anyons which

encircle it will pick up a phase shift of π relative to those which do not. Equation

(6.3) therefore takes two possible values:

σxx (Ψ) ∝ |t1|2 + |t2|2 + 2 |t1t2| cos(β + nπ) . (6.4)

Here β is the combination of the relative phases of t1 and t2 and the (constant)

Aharonov-Bohm phase accumulated in encircling the center region, and n is

the number of anyons in the region between the two contacts. If this system

were instead a Laughlin state of fermions at ν = 1/3, the final term would have

cos(β + 2nπ/3), since the anyons have charge e/3. The finite number and spacing

of values for σxx can thus be used to experimentally determine the statistics of

the anyons, even if t1 and t2 are not known.
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Let us now consider the Pfaffian state at ν = 1. The fundamental excitations

are σ particles, which are fractional quasiholes which carry half a quantum of

flux and charge q/2. As in the previous example, there will be a contribution

from the abelian phases, which will give a phase difference of π if the number

of σ particles in the center pocket is an even integer modulo 4 (ie, if there are

2, 6, or 10 σ particles in the pocket). However, if there are an odd number of σ

particles in the center region, then f (Ψ) is zero, since the act of encircling an odd

number of σ particles is equivalent to a NOT gate on the quantum state [16, 14],

so the σ particles which traverse the top path are in an orthogonal state to those

which traverse the bottom path and the two states do not interfere. Further, if

there are an even number of anyons in the central region, they can fuse to either

1 or ψ. Winding a σ particle around a ψ produces an additional phase of π.

Putting all these phase effects together, if there are n σ anyons enclosed in the

center region, the conductivity will be

σxx (Ψ) {ν = 1} ∝ |t1|2 + |t2|2 + 2 |t1t2| cos(β + nπ/2) (−1)Nψ
1+ (−1)n

2
, (6.5)

where Nψ = 0 or 1.

For the Pfaffian state of electrons at ν = 5/2, the fundamental quasiholes

have charge e/4 and carry half a flux quantum, so there are additional abelian

phases, but the result is otherwise the same as the ν = 1 case. To wit,

σxx (Ψ) {ν = 5/2} ∝ |t1|2 + |t2|2 + 2 |t1t2| cos(β + nπ/4) (−1)Nψ
1+ (−1)n

2
. (6.6)

At ν = 3/2 in bosons, the fundamental quasiholes have charge q/2, but carry

1/3 of a flux quantum rather than the 1/2 quantum carried by the anyons at

ν = 1. These quasiholes have topological charge τ and the fusion of two of them

can result in either a 1 or a τ, up to abelian phases. The quasiparticle inteference
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result can be generalized from the calculation by Chung and Stone [19]. For

bosons at ν = 3/2 we have:

σxx (Ψ) {ν = 3/2} ∝ |t1|2 + |t2|2 + 2 |t1t2| cos(β + 2nπ/3)


2−
√

5
2


Nτ

(6.7)

Here Nτ = 1 if the anyons in the center region fuse to τ and 0 if they fuse to 1.

The fact that these interference patterns all produce a finite range of out-

comes which depend on the total topological charge enclosed in a region

demonstrates that this method can be used to measure the state of a qubit. Let

us now compare these three interference results from this point of view. Assume

that t1 and t2 are constants which can be determined experimentally. For ν = 1

and ν = 5/2, the sign alternation of the interference term determines whether the

qubit is in state 1 or ψ. However, this phase can equally be the result of the pres-

ence of additional quasiholes (2 extra σ’s which fuse to 1 at ν = 1, 4 at ν = 5/2),

and it is here that a hidden error source enters the system. As mentioned previ-

ously, topological charge is conserved, so an error source, such as the scattering

of an electron into our out of the well in the 2DEG or the spontaneous decay of

a fluxon in the fluxon array, can only create 1 charges, though these may break

apart over time into combinations of nontrivial charges which fuse to 1. While

these events are suppressed by the gap, they do occur, and would be equivalent

to adding two full quasiholes at ν = 5/2 or a single full quasihole at ν = 1; this

decomposes into 4 or 2 σ particles, respectively, in the above counting. In either

case, this event produces an additional phase of π, so while it does not change

the state of the qubit directly, it changes the apparent state of the qubit when

measured through differential conductivity. The energy gap does make these

events relatively rare, but they are a concern if a prepared state is to be kept for

long periods of time.
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Fibonacci anyons, on the other hand, do not have this problem, since the

amplitude changing factor
(

2−
√

5
2

)Nτ

ensures that even if the abelian phase in the

region fluctuates, states where Nτ = 1 can always be distinguished from cases

where Nτ = 0. This is true for the Read-Rezayi state of electrons at ν = 12/5 as

well. When combined with the fact that the Fibonacci anyon states are computa-

tionally universal where the Ising anyon states are not, it becomes obvious that

Fibonacci anyons would be a superior system for topological quantum compu-

tation, provided that the technological obstacles to realizing Fibonacci anyons

can be overcome.

6.2 Towards a Quantum Loom

While it is impossible to predict what the ultimate impact of any research will

be, I believe that a suitable implementation of the superconducting architecture

presented in chapter 5 could stabilize Read-Rezayi states in a real experiment.

As shown in chapter 5, the intrinsic decay rate of flux qubits will not be a bar-

rier to this goal, and with good control over the device parameters (EJ, EC, M,

gC and the magnetic flux density) from ring to ring, scattering from disorder in

these parameters should be tractably small. At a flux density of 1/4 quanta per

plaquette, with just nearest and next nearest neighbor hopping the lowest band

is already a nearly exact lowest Landau level, with a bandwidth of only 1.5%

of the gap to higher excited bands. At this flux density, the magnetic length

is slightly less than a lattice spacing and plateaus at ν = 1/2, 1, 3/2 and 2 are

present. Tuning the nearest neighbor interaction and short-range hopping pa-

rameters could ensure that the state at ν = 3/2 is in the Fibonacci universality

class, and given the results of chapter 3 that surprisingly small lattices can ac-
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curately reproduce infinite system braiding results, fairly small lattices could

be used to demonstrate quantum Hall physics– as a back of the envelope esti-

mate, 10× 10 or smaller for conductivity quantization, with perhaps four times

as many sites for conductivity interference and another factor of two to four be-

yond that for braiding. To achieve these ends, the following protocols need to

be invented for the fluxon lattice:

* Stabilizing the fluxon population: since the rings have a natural relaxation

rate back to their ground state, fluxons added to the system will decay over time

until the lattice empties. One way of introducing the fluxons would be to apply

resonant microwave pulses at the excitation energy ω. The gap in a many-body

quantum Hall state may suppress the loss rate but will not cancel it entirely,

so some sort of passive “reservoir” source of excitations (or continuous, low-

amplitude microwave pumping) will be needed to continually add fluxons to

balance the decay rate.

* Applying and tuning local potentials: in the fluxon lattice, this could be

accomplished by tuning the local magnetic field density fΦ0. This will also

change the average circulating current at that site and alter the hopping phases,

but these shifts are both relatively small.

* Measuring the conductivity in response to an applied potential: since the

fluxons differ from the ground state by an average circulating current in the ring

(though this difference may be less than the variance in the wavefunctions), the

rate of change of flux in a region could be used to detect the rate at which flux-

ons are entering or leaving it. Such measurements are possible through SQUID

magnetometry, though there may be a better way to measure the current than

this.

101



* Pinning and braiding quasiholes: as described in chapter 3, the interaction

of quasiholes with repulsive impurity potentials is a subtle problem, but one

which could be studied directly in a conductivity interference experiment. To

have any hope of performing a topological quantum computation, the control

over quasihole position needs to be extremely good (thus ensuring that a quasi-

hole does not escape along the way during a braiding operation).

Since the device I am describing does not yet exist, it is of diminishing use-

fulness to discuss these requirements any further. Tackling any of them in a

real experiment would be extremely significant on its own. The qubit architec-

ture I have described is within reach of current technology, and if it functions

as predicted, could be scaled to boson quantum Hall physics and beyond. I am

certainly not claiming that this scheme will be the future of topological quantum

computing, nor am I promising that it will be more successful than the numer-

ous other ideas under current consideration. Rather, I am merely stating that it

is possible, and well worth the attempt at experimental realization.

102



BIBLIOGRAPHY

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Na-
tional Bureau of Standards, Washington, DC, 1972.

[2] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki. Rigorous results on
valence-bon ground states in antiferromagnets. Phys. Rev. Lett. 59, 799,
1987.

[3] Y. Aharonov and A. Casher. Topological quantum effects for neutral par-
ticles. Phys. Rev. Lett 53, 319, 1984.

[4] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and
I. Bloch. Experimental realization of strong effective magnetic fields in an
optical lattice. Phys. Rev. Lett 107, 255301, 2011.

[5] F. F. Assaad and S. Biskamp. Fractional quantum hall effect on a lattice.
Phys. Rev. B 51, 1605, 1995.

[6] A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer-
Verlag, 1994.

[7] W. S. Bakr, P. M. Preiss, M. E. Tai, R. Ma, J. Simon, and M. Greiner.
Interaction-induced orbital excitation blockade of ultracold atoms in an
optical lattice. Nature 480, 500, 2011.

[8] M. Baraban, N. E. Bonesteel, and S. H. Simon. Resources required for
topological quantum factoring. Phys. Rev. A 81, 062317, 2010.

[9] M. Baraban, G. Zikos, N. Bonesteel, and S. H. Simon. Numerical analy-
sis of quasiholes of the moore-read wave function. Phys. Rev. Lett. 103,
076801, 2009.

[10] I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold
gases. Rev. Mod. Phys. 80, 885, 2008.

[11] A. T. Bloukbasi and J. Vala. Rigorous calculations of non-abelian statistics
in the kitaev honeycomb model. New Journal of Physics 14, 045007, 2012.

[12] P. Bonderson, V. Gurarie, and C. Nayak. Plasma analogy and non-abelian
statistics for ising-type quantum hall states. Phys. Rev. B 83, 075303, 2011.

103



[13] P. Bonderson, A. Kitaev, and K. Shtengel. Detecting non-abelian statistics
in the ν=5/2 fractional quantum hall state. Phys. Rev. Lett. 96, 016803, 2006.

[14] P. Bonderson, K. Shtengel, and J. K. Slingerland. Interferometry of non-
abelian anyons. Annals Phys. 323, 2709, 2008.

[15] J. Bourassa, J. M. Gambetta, A. A. Abdumalikov Jr, O. Astafiev, Y. Naka-
mura, and A. Blais. Ultrastrong coupling regime of cavity qed with phase-
biased flux qubits. Phys. Rev. A 80, 032109, 2009.

[16] S. Bravyi. Universal quantum computation with the ν=5/2 fractional
quantum hall state. Phys. Rev. A. 73, 042313, 2006.

[17] I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, and J.E. Mooij. Coherent
quantum dynamics of a superconducting flux qubit. Science 299, 1869,
2003.

[18] M. Y. Choi. Quantum hall effect in ideal superconducting arrays at zero
temperature. Phys. Rev. B 50, 10088, 1994.

[19] S. B. Chung and M. Stone. Proposal for reading out anyon qubits in non-
abelian ν = 12/5 quantum hall state. Phys. Rev. B 73, 245311, 2006.

[20] J. Clarke and F. K. Wilhelm. Superconducting quantum bits. Nature 453,
1031, 2008.

[21] N. R. Cooper. Rapidly rotating atomic gases. Advances in Physics 57, 539,
2009.

[22] N. R. Cooper and J. Dalibard. Optical flux lattices for two-photon dressed
states. Europhysics Lett. 95, 66004, 2011.

[23] N. R. Cooper and E. H. Rezayi. Competing compressible and incompress-
ible phases in rotating atomic bose gases at filling factor ν=2. Phys. Rev. A
75, 013627, 2007.

[24] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn. Quantum phases of vor-
ticies in rotating bose-einstein condensates. Phys. Rev. Lett. 87, 120405,
2002.

[25] J. Dalibard, F. Gerbier, G. Juzeli unas, and P. Öhberg. Colloquium: Artificial
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